A Scoping Review of CERAMENT™ Applications in Orthopedic Surgery
Abstract
1. Introduction
2. Methods
2.1. Information Sources and Search Strategy
2.2. Eligibility Criteria
3. Results
3.1. Literature Research
3.2. Study Characteristics
3.3. Clinical Outcome
3.3.1. Infection Control & Osteomyelitis
3.3.2. High-Risk Fracture Management
3.3.3. Benign Bone Tumors
3.3.4. Revision Arthroplasty
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CaS | calcium sulfate |
| HA | hydroxyapatite |
| MIC | minimum inhibitory concentration |
| PMMA | polymethyl methacrylate |
| PRISMA-ScR | Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews |
References
- Santoro, A.; Voto, A.; Fortino, L.; Guida, R.; Laudisio, C.; Cillo, M.; D’ursi, A.M. Bone Defect Treatment in Regenerative Medicine: Exploring Natural and Synthetic Bone Substitutes. Int. J. Mol. Sci. 2025, 26, 3085. [Google Scholar] [CrossRef]
- De Pace, R.; Molinari, S.; Mazzoni, E.; Perale, G. Bone Regeneration: A Review of Current Treatment Strategies. J. Clin. Med. 2025, 14, 1838. [Google Scholar] [CrossRef] [PubMed]
- Nusselt, T.; Hofmann, A.; Wachtlin, D.; Gorbulev, S.; Rommens, P.M. CERAMENT treatment of fracture defects (CERTiFy): Protocol for a prospective, multicenter, randomized study investigating the use of CERAMENT™ BONE VOID FILLER in tibial plateau fractures. Trials 2014, 15, 75. [Google Scholar] [CrossRef]
- Niemann, M.; Graef, F.; Ahmad, S.S.; Braun, K.F.; Stöckle, U.; Trampuz, A.; Meller, S. Outcome Analysis of the Use of Cerament. Diagnostics 2022, 12, 1207. [Google Scholar] [CrossRef]
- Abramo, A.; Geijer, M.; Kopylov, P.; Tägil, M. Osteotomy of distal radius fracture malunion using a fast remodeling bone substitute consisting of calcium sulphate and calcium phosphate. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 92, 281–286. [Google Scholar] [CrossRef]
- Freischmidt, H.; Armbruster, J.; Rothhaas, C.; Titze, N.; Guehring, T.; Nurjadi, D.; Kretzer, J.P.; Schmidmaier, G.; Grützner, P.A.; Helbig, L. Efficacy of an Antibiotic Loaded Ceramic-Based Bone Graft Substitute for the Treatment of Infected Non-Unions. Biomedicines 2022, 10, 2513. [Google Scholar] [CrossRef]
- McPherson, E.J.; Stavrakis, A.I.; Chowdhry, M.; Curtin, N.L.; Dipane, M.V.; Crawford, B.M. Biphasic bone graft substitute in revision total hip arthroplasty with significant acetabular bone defects: A retrospective analysis. Bone Jt. Open 2022, 3, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Freischmidt, H.; Armbruster, J.; Reiter, G.; Grützner, P.A.; Helbig, L.; Guehring, T. Individualized Techniques of Implant Coating with an Antibiotic-Loaded, Hydroxyapatite/Calcium Sulphate Bone Graft Substitute. Ther. Clin. Risk Manag. 2020, 16, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Kavarthapu, V.; Giddie, J.; Kommalapati, V.; Casey, J.; Bates, M.; Vas, P. Evaluation of Adjuvant Antibiotic Loaded Injectable Bio-Composite Material in Diabetic Foot Osteomyelitis and Charcot Foot Reconstruction. J. Clin. Med. 2023, 12, 3239. [Google Scholar] [CrossRef]
- Colding-Rasmussen, T.; Horstmann, P.; Petersen, M.M.; Hettwer, W. Antibiotic Elution Characteristics and Pharmacokinetics of Gentamicin and Vancomycin from a Mineral Antibiotic Carrier: An. J. Bone Jt. Infect. 2018, 3, 234–240. [Google Scholar] [CrossRef]
- Stravinskas, M.; Horstmann, P.; Ferguson, J.; Hettwer, W.; Nilsson, M.; Tarasevicius, S.; Petersen, M.M.; McNally, M.A.; Lidgren, L. Pharmacokinetics of gentamicin eluted from a regenerating bone graft substitute: In vitro and clinical release studies. Bone Joint Res. 2016, 5, 427–435. [Google Scholar] [CrossRef]
- Stravinskas, M.; Nilsson, M.; Vitkauskiene, A.; Tarasevicius, S.; Lidgren, L. Vancomycin elution from a biphasic ceramic bone substitute. Bone Jt. Res. 2019, 8, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Stravinskas, M.; Nilsson, M.; Horstmann, P.; Petersen, M.M.; Tarasevicius, S.; Lidgren, L. Antibiotic Containing Bone Substitute in Major Hip Surgery: A Long Term Gentamicin Elution Study. J. Bone Jt. Infect. 2018, 3, 68–72. [Google Scholar] [CrossRef]
- Fraga, K.; Maireles, M.; Jordan, M.; Soldevila, L.; Murillo, O. Osteomyelitis of the cuboid bone treated with CERAMENT G and V: A case report. J. Bone Jt. Infect. 2022, 7, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Drampalos, E.; Mohammad, H.R.; Pillai, A. Augmented debridement for implant related chronic osteomyelitis with an absorbable, gentamycin loaded calcium sulfate/hydroxyapatite biocomposite. J. Orthop. 2020, 17, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.M.; Pillai, A. Pathological Distal Tibial and Fibular Fracture in a Paediatric Patient: A Case Report. Cureus 2022, 14, e30235. [Google Scholar] [CrossRef]
- Anugraha, A.; Jehangir, N.; Alqubaisi, M.; Rafee, A.; Kurdy, N.; Pillai, A. End-capping of amputation stumps with a local antibiotic containing hydroxyapatite bio-composite—A report of 13 cases with chronic lower limb osteomyelitis. J. Orthop. 2020, 17, 124–126. [Google Scholar] [CrossRef]
- Ferguson, J.; Athanasou, N.; Diefenbeck, M.; McNally, M. Radiographic and Histological Analysis of a Synthetic Bone Graft Substitute Eluting Gentamicin in the Treatment of Chronic Osteomyelitis. J. Bone Jt. Infect. 2019, 4, 76–84. [Google Scholar] [CrossRef]
- Hoveidaei, A.H.; Shahul, S.; Esmaeili, S.; Pirahesh, K.; Ghaseminejad-Raeini, A.; Annasamudram, A.; Shrestha, R.K.; Conway, J.D. The Efficacy of Calcium Sulfate/Hydroxyapatite (CaS/HA) Gentamicin in Osteomyelitis Treatment: A Case Series. Antibiotics 2024, 13, 1068. [Google Scholar] [CrossRef]
- Karr, J.C. Management in the wound-care center outpatient setting of a diabetic patient with forefoot osteomyelitis using Cerament Bone Void Filler impregnated with vancomycin: Off-label use. J. Am. Podiatr. Med. Assoc. 2011, 101, 259–264. [Google Scholar] [CrossRef]
- McNally, M.A.; Ferguson, J.Y.; Scarborough, M.; Ramsden, A.; Stubbs, D.A.; Atkins, B.L. Mid- to long-term results of single-stage surgery for patients with chronic osteomyelitis using a bioabsorbable gentamicin-loaded ceramic carrier. Bone Jt. J. 2022, 104-B, 1095–1100. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Asano, E.; Hemat, H.; Bin Sahl, A.; Pillai, A. Adjuvant local antibiotic prophylaxis in Gustilo-Anderson IIIb open fractures: Up to 10 years follow-up on clinical outcomes and complications. J. Orthop. Surg. Res. 2025, 20, 610. [Google Scholar] [CrossRef] [PubMed]
- Battistelli, M.; Rapisarda, A.; Montano, N.; Pedicelli, A.; Valente, I.; Olivi, A.; Polli, F.M. Successful treatment of a C2 aneurysmal bone cyst with hydroxyapatite and calcium sulfate synthetic bone void filler injection: A case report. J. Spine Surg. 2024, 10, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L.D.; Anugraha, A.; Pillai, A. A novel technique for fabricating antibiotic-coated intramedullary nails using an antibiotic-loaded calcium sulphate hydroxyapatite bio-composite, Cerament-V. J. Surg. Case Rep. 2019, 2019, rjz327. [Google Scholar]
- Jahangir, N.; Niazi, N.; Aljawadi, A.; Reid, A.; Wong, J.; Drampalos, E.; Pillai, A. The use of adjuvant local antibiotic hydroxyapatite bio-composite in the management of open Gustilo Anderson type IIIB fractures. A prospective review. J. Orthop. 2019, 16, 278–282. [Google Scholar] [CrossRef]
- Kaczmarczyk, J.; Sowinski, P.; Goch, M.; Katulska, K. Complete twelve month bone remodeling with a bi-phasic injectable bone substitute in benign bone tumors: A prospective pilot study. BMC Musculoskelet. Disord. 2015, 16, 369. [Google Scholar] [CrossRef]
- Kotrych, D.; Korecki, S.; Ziętek, P.; Kruk, B.; Kruk, A.; Wechmann, M.; Kamiński, A.; Kotrych, K.; Bohatyrewicz, A. Preliminary Results of Highly Injectable Bi-Phasic Bone Substitute (CERAMENT) in the Treatment of Benign Bone Tumors and Tumor-like Lesions. Open Med. 2018, 13, 487–492. [Google Scholar] [CrossRef]
- Logoluso, N.; Drago, L.; Gallazzi, E.; George, D.A.; Morelli, I.; Romanò, C.L. Calcium-Based, Antibiotic-Loaded Bone Substitute as an Implant Coating: A Pilot Clinical Study. J. Bone Jt. Infect. 2016, 1, 59–64. [Google Scholar] [CrossRef]
- Marcia, S.; Boi, C.; Dragani, M.; Marini, S.; Marras, M.; Piras, E.; Anselmetti, G.C.; Masala, S. Effectiveness of a bone substitute (CERAMENT™) as an alternative to PMMA in percutaneous vertebroplasty: 1-year follow-up on clinical outcome. Eur. Spine J. 2012, 21 (Suppl. 1), S112–S118. [Google Scholar] [CrossRef]
- Masala, S.; Nano, G.; Marcia, S.; Muto, M.; Fucci, F.P.; Simonetti, G. Osteoporotic vertebral compression fracture augmentation by injectable partly resorbable ceramic bone substitute (Cerament™|SPINESUPPORT): A prospective nonrandomized study. Neuroradiology 2012, 54, 1245–1251. [Google Scholar] [CrossRef]
- McNally, M.A.; Ferguson, J.Y.; Lau, A.C.; Diefenbeck, M.; Scarborough, M.; Ramsden, A.J.; Atkins, B.L. Single-stage treatment of chronic osteomyelitis with a new absorbable, gentamicin-loaded, calcium sulphate/hydroxyapatite biocomposite: A prospective series of 100 cases. Bone Jt. J. 2016, 98-B, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Singh, G.; Hakobyan, H. Surgical Treatment of Clavicular Fractures, Refractures, Delayed and Non-Unions Using a Resorbable, Gentamicin-Eluting Calcium Sulphate/Hydroxyapatite Biocomposite. Ther. Clin. Risk Manag. 2022, 18, 551–560. [Google Scholar] [CrossRef]
- Rauschmann, M.; Vogl, T.; Verheyden, A.; Pflugmacher, R.; Werba, T.; Schmidt, S.; Hierholzer, J. Bioceramic vertebral augmentation with a calcium sulphate/hydroxyapatite composite (Cerament SpineSupport): In vertebral compression fractures due to osteoporosis. Eur. Spine J. 2010, 19, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Cuozzo, F.; Torsiello, E.; Spiezia, F.; Oliva, F.; Maffulli, N. Autologous Bone Grafting in Trauma and Orthopaedic Surgery: An Evidence-Based Narrative Review. J. Clin. Med. 2021, 10, 4347. [Google Scholar] [CrossRef] [PubMed]
- Jakoi, A.M.; Iorio, J.A.; Cahill, P.J. Autologous bone graft harvesting: A review of grafts and surgical techniques. Musculoskelet. Surg. 2015, 99, 171–178. [Google Scholar] [CrossRef]
- Sohn, H.S.; Oh, J.K. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater. Res. 2019, 23, 9. [Google Scholar] [CrossRef]
- Rauschmann, M.A.; Wichelhaus, T.A.; Stirnal, V.; Dingeldein, E.; Zichner, L.; Schnettler, R.; Alt, V. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials 2005, 26, 2677–2684. [Google Scholar] [CrossRef]
- Razavi, M.; Qiao, Y.; Thakor, A.S. Thakor, Three-dimensional cryogels for biomedical applications. J. Biomed. Mater. Res. Part A 2019, 107, 2736–2755. [Google Scholar] [CrossRef]
- Shen, C.; Witek, L.; Flores, R.L.; Tovar, N.; Torroni, A.; Coelho, P.G.; Kasper, F.K.; Wong, M.; Young, S. Three-Dimensional Printing for Craniofacial Bone Tissue Engineering. Tissue Eng. Part A 2020, 26, 1303–1311. [Google Scholar] [CrossRef]
- Kasravi, M.; Ahmadi, A.; Babajani, A.; Mazloomnejad, R.; Hatamnejad, M.R.; Shariatzadeh, S.; Bahrami, S.; Niknejad, H. Immunogenicity of decellularized extracellular matrix scaffolds: A bottleneck in tissue engineering and regenerative medicine. Biomater. Res. 2023, 27, 10. [Google Scholar] [CrossRef]
- Andrzejowski, P.; Giannoudis, P.V. The ‘diamond concept’ for long bone non-union management. J. Orthop. Traumatol. 2019, 20, 21. [Google Scholar] [CrossRef] [PubMed]
- Quek, J.; Vizetto-Duarte, C.; Teoh, S.H.; Choo, Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J. Funct. Biomater. 2024, 15, 145. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, J.; Li, C.; Wu, M.; Li, Y.; Cui, Y.; Xiong, W.; Yang, F.; Liu, B. Advances in the Application of Bone Transport Techniques in the Treatment of Bone Nonunion and Bone Defects. Orthop. Surg. 2023, 15, 3046–3054. [Google Scholar] [CrossRef] [PubMed]


| Authors | Year | Study Type | Patients Enrolled | Orthopedic Application | Effect of CERAMENT™ |
|---|---|---|---|---|---|
| Anugraha A et al. [17] | 2020 | Case series | 13 | End-capping of amputation stumps with chronic lower-limb osteomyelitis | All 13 healed without recurrence, no infections or hematomas |
| Asano E et al. [23] | 2025 | Retrospective cohort | 76 | Gustilo–Anderson IIIb open fractures with antibiotic–HA biocomposite | 96% union rate, 96.3% limb salvage, 3.7% deep infection |
| Battistelli M et al. [24] | 2024 | Case report | 1 | C2 aneurysmal bone cyst with HA/CaS filler injection | Complete cyst resolution |
| Drampalos E et al. [15] | 2020 | Prospective cohort | 52 | Implant-related chronic osteomyelitis | Effective dead-space management and infection resolution |
| Ferguson J et al. [18] | 2019 | Retrospective cohort | 163 | Chronic osteomyelitis | 95.7% infection eradication; histology confirmed lamellar bone formation |
| Fraga K et al. [14] | 2022 | Case report | 1 | M. fortuitum osteomyelitis in cuboid bone | Successful infection clearance |
| Hoveidaei A et al. [19] | 2024 | Case series | 21 | Chronic osteomyelitis treated with CERAMENT™ G | 95.2% infection eradication, median healing in 128 days |
| Hughes LD et al. [25] | 2019 | Case Report | 1 | Intramedullary nail coating technique | Introduced novel CERAMENT™ V coating method, enabling local antibiotic delivery |
| Jahangir N et al. [26] | 2019 | Prospective cohort | 51 | Gustilo–Anderson IIIb open fractures | Lower infection rates |
| Kaczmarczyk J et al. [27] | 2015 | Pilot study | 14 | Benign bone tumor defect reconstruction | Complete tumor bone remodeling at 12 months |
| Karr J et al. [20] | 2011 | Case report | 1 | Diabetic forefoot osteomyelitis | Ulcer healed and infection resolved |
| Kotrych D et al. [28] | 2018 | Retrospective cohort | 33 | Benign bone tumors | Complete or near-complete graft incorporation in nearly 73% of benign bone tumor lesions |
| Logoluso N et al. [29] | 2016 | Pilot study | 20 | Antibiotic-loaded implant coating in arthroplasty | Reduced periprosthetic infection |
| Marcia S et al. [30] | 2012 | Prospective cohort | 33 | Vertebroplasty | Comparable outcomes to PMMA with osteoconductive advantages |
| Masala S et al. [31] | 2012 | Prospective cohort | 80 | Osteoporotic vertebral fraction augmentation | Safe and effective structural support in compression fractures |
| McNally M et al. [32] | 2016 | Prospective cohort | 100 | Single-stage chronic osteomyelitis | 96% infection eradication at ~20 months |
| McNally M et al. [21] | 2022 | Retrospective cohort | 100 | Chronic osteomyelitis long-term follow-up | Sustained 94% eradication over 6 years |
| McPherson E et al. [7] | 2022 | Retrospective cohort | 49 | Revision hip arthroplasty with acetabular defects | Structural support and control of infection |
| Niemann M et al. [4] | 2022 | Retrospective cohort | 20 | Corticomedullary defects in chronic osteomyelitis | Clinical improvement and defect filling |
| Nusselt T et al. [3] | 2014 | Prospective cohort | 136 | Tibial plateau fractures (CERTiFy trial) | Protocol established comparing CERAMENT™ and autograft |
| Peters J et al. [33] | 2022 | Retrospective cohort | 25 | Clavicle fractures and non-unions | Successful bone healing |
| Rauschmann M et al. [34] | 2010 | Prospective cohort | 15 | Vertebral compression fracture augmentation (SpineSupport) | Pain reduction and vertebral height restoration achieved |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bove, A.; Braile, A.; Sirico, S.; Orabona, N.; Braile, M. A Scoping Review of CERAMENT™ Applications in Orthopedic Surgery. J. Clin. Med. 2025, 14, 7455. https://doi.org/10.3390/jcm14217455
Bove A, Braile A, Sirico S, Orabona N, Braile M. A Scoping Review of CERAMENT™ Applications in Orthopedic Surgery. Journal of Clinical Medicine. 2025; 14(21):7455. https://doi.org/10.3390/jcm14217455
Chicago/Turabian StyleBove, Antonio, Adriano Braile, Sabrina Sirico, Nicola Orabona, and Mariantonia Braile. 2025. "A Scoping Review of CERAMENT™ Applications in Orthopedic Surgery" Journal of Clinical Medicine 14, no. 21: 7455. https://doi.org/10.3390/jcm14217455
APA StyleBove, A., Braile, A., Sirico, S., Orabona, N., & Braile, M. (2025). A Scoping Review of CERAMENT™ Applications in Orthopedic Surgery. Journal of Clinical Medicine, 14(21), 7455. https://doi.org/10.3390/jcm14217455

