Circulatory Disturbances in Acute Coronary Syndrome Patients Undergoing Percutaneous Coronary Intervention: Mechanisms, Management, and Outcomes
Abstract
1. Background
2. Hypotension
2.1. Vasovagal Reflexes
2.2. Allergic/Anaphylactoid Reaction
2.3. Cardiac Arrhythmias
2.4. Acute Ischemia, No-Reflow and Myocardial Stunning
2.5. Procedural Complications
3. Cardiogenic Shock
3.1. Assessment and Prognostication
3.2. Coronary Revascularization
4. Pre-Shock State: Recognition and Management
5. Mechanical Circulatory Support in Cardiogenic Shock
5.1. Rationale and Pathophysiologic Targets
5.2. Intra-Aortic Balloon Pump (IABP)
5.3. Impella
5.4. Veno-Arterial Extracorporeal Membrane Oxygenation (VA-ECMO)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, S.V.; O’Donoghue, M.L.; Ruel, M.; Rab, T.; Tamis-Holland, J.E.; Alexander, J.H.; Baber, U.; Baker, H.; Cohen, M.G.; Cruz-Ruiz, M.; et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI Guideline for the Management of Patients with Acute Coronary Syndromes. Circulation 2025, 85, 2135–2237. [Google Scholar] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [PubMed]
- Thiele, H.; de Waha-Thiele, S.; Freund, A.; Zeymer, U.; Desch, S.; Fitzgerald, S. Management of cardiogenic shock. EuroIntervention 2021, 17, 451–465. [Google Scholar] [CrossRef]
- Baran, D.A.; Grines, C.L.; Bailey, S.; Burkhoff, D.; Hall, S.A.; Henry, T.D.; Hollenberg, S.M.; Kapur, N.K.; O’Neil, W.; Ornato, J.P.; et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock. Catheter. Cardiovasc. Interv. 2019, 94, 29–37. [Google Scholar] [CrossRef]
- Berg, D.D.; Morrow, D.A.; Bohula, E.A. Epidemiology and causes of cardiogenic shock. Curr. Opin. Crit. Care 2021, 27, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, M.; Metra, M.; Latronico, N.; Mebazaa, A.; Adamo, M.; Cotter, G.; Tomasoni, D.; Chioncel, O.; Gustafsson, F.; Latronico, N.; et al. Medical therapy of cardiogenic shock: Contemporary use of inotropes and vasopressors. Eur. J. Heart Fail. 2024, 26, 411–431. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Sakakura, K.; Sumitsuji, S.; Hyodo, M.; Yamaguchi, J.; Hirase, H.; Yamashita, T.; Kadota, K.; Kobayashi, Y.; Kozuma, K. Clinical expert consensus document on bailout algorithms for complications in percutaneous coronary intervention from the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc. Interv. Ther. 2024, 40, 1–32. [Google Scholar] [CrossRef]
- Holland, E.M.; Stouffer, G.A. Bezold-Jarisch Reflex. J. Soc. Cardiovasc. Angiogr. Interv. 2022, 1, 100029. [Google Scholar] [CrossRef]
- Keeble, W.; Tymchak, W.J. Triggering of the Bezold Jarisch Reflex by reperfusion during primary PCI with maintenance of consciousness by cough CPR: A case report and review of pathophysiology. J. Invasive Cardiol. 2008, 20, E239–E242. [Google Scholar] [PubMed]
- Li, H.Y.; Guo, Y.T.; Tian, C.; Song, C.Q.; Mu, Y.; Li, Y.; Chen, Y.D. Vasovagal reflex syndrome after percutaneous coronary intervention: A single-center study. Medicine 2017, 96, e7920. [Google Scholar] [PubMed]
- American College of Radiology Committee on Drugs and Contrast Media. ACR Manual on Contrast Media, Version 2025; American College of Radiology: Reston, VA, USA, 2025. [Google Scholar]
- Fukushima, Y.; Taketomi-Takahashi, A.; Suto, T.; Hirasawa, H.; Tsushima, Y. Clinical features and risk factors of iodinated contrast media (ICM)-induced anaphylaxis. Eur. J. Radiol. 2023, 164, 110880. [Google Scholar] [CrossRef] [PubMed]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Firld, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS Guideline for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Circulation 2018, 138, e272–e391. [Google Scholar] [PubMed]
- Rymer, J.A.; Wegermann, Z.K.; Wang, T.Y.; Li, S.; Smilowitz, N.R.; Wilson, B.H.; Jneid, H.; Tamis-Holland, J.E. Ventricular Arrhythmias After Primary Percutaneous Coronary Intervention for STEMI. JAMA Netw. Open 2024, 7, e2417835. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, G.; Burzotta, F.; Galiuto, L.; Crea, F. Myocardial no-reflow in humans. J. Am. Coll. Cardiol. 2009, 54, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, J.J.; Ruan, G.J.; Zhan, Y.Y.; Qiu, A.H.; Ye, M.S.; Xiang, Q.W.; Fang, H.C. Prediction models for no-reflow phenomenon after PCI in acute coronary syndrome patients: A systematic review. Int. J. Cardiol. 2025, 439, 133603. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, F.; Li, Y.; Liu, L.; Song, X.; Wang, J.; Dang, Y.; Qi, X. The HALP score predicts no-reflow phenomenon and long-term prognosis in patients with ST-segment elevation myocardial infarction after primary percutaneous coronary intervention. Coron. Artery Dis. 2025, 36, 273–280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vaidya, Y.; Cavanaugh, S.M.; Dhamoon, A.S. Myocardial Stunning and Hibernation. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Das, J.; Sah, A.K.; Choudhary, R.K.; Elshaikh, R.H.; Bhui, U.; Chowdhury, S.; Abbas, A.M.; Shalabi, M.G.; Siddique, N.A.; Alshammari, R.R.; et al. Network pharmacology approaches to myocardial infarction reperfusion injury: Exploring mechanisms, pathophysiology, and novel therapies. Biomedicines 2025, 13, 1532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guaricci, A.I.; Bulzis, G.; Pontone, G.; Scicchitano, P.; Carbonara, R.; Rabbat, M.; De Santis, D.; Ciccone, M.M. Current interpretation of myocardial stunning. Trends Cardiovasc. Med. 2018, 28, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Namana, V.; Gupta, S.S.; Abbasi, A.A.; Raheja, H.; Shani, J.; Hollander, G. Right ventricular infarction. Cardiovasc. Revasc. Med. 2018, 19 Pt A, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.G.; Ajluni, S.; Arnold, A.Z.; Popma, J.J.; Bittl, J.A.; Eigler, N.L.; Cowley, M.J.; Raymond, R.E.; Safian, R.D.; Whitlow, P.L. Increased coronary perforation in the new device era: Incidence, classification, management, and outcome. Circulation 1994, 90, 2725–2730. [Google Scholar] [CrossRef] [PubMed]
- Shimony, A.; Joseph, L.; Mottillo, S.; Eisenberg, M.J. Coronary artery perforation during percutaneous coronary intervention: A systematic review and meta-analysis. Can. J. Cardiol. 2011, 27, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Kontopantelis, E.; Kinnaird, T.; Potts, J.; Rashid, M.; Shoaib, A.; Nolan, J.; Bagur, R.; de Belder, M.A.; Ludman, P.; et al. Retroperitoneal Hemorrhage After Percutaneous Coronary Intervention: Temporal Trends, Predictors, and Outcomes. Circ. Cardiovasc. Interv. 2018, 11, e005866. [Google Scholar] [CrossRef] [PubMed]
- Tiwana, J.; Kearney, K.E.; Lombardi, W.L.; Azzalini, L. Challenges in the diagnosis and management of dry tamponade. Catheter. Cardiovasc. Interv. 2024, 104, 1228–1240. [Google Scholar] [CrossRef] [PubMed]
- Klein, L.W.; Korpu, D. Damped and ventricularized coronary pressure waveforms. J. Invasive Cardiol. 2017, 29, 387–389. [Google Scholar] [PubMed]
- Klaudel, J.; Glaza, M.; Klaudel, B.; Trenkner, W.; Pawłowski, K.; Szołkiewicz, M. Catheter-induced coronary artery and aortic dissections: A study of mechanisms, risk factors and propagation causes. Cardiol. J. 2024, 31, 398–408. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jung, R.G.; Stotts, C.; Gupta, A.; Prosperi-Porta, G.; Dhaliwal, S.; Motazedian, P.; Abdel-Razek, O.; Di Santo, P.; Parlow, S.; Belley-Cote, E.; et al. Prognostic Factors Associated with Mortality in Cardiogenic Shock—A Systematic Review and Meta-Analysis. NEJM Evid. 2024, 3, EVIDoa2300323. [Google Scholar] [CrossRef] [PubMed]
- Zweck, E.; Thayer, K.L.; Helgestad, O.K.L.; Kanwar, M.; Ayouty, M.; Garan, A.R.; Hernandez-Montfort, J.; Mahr, C.; Wencker, D.; Sinha, S.S.; et al. Phenotyping Cardiogenic Shock. J. Am. Heart Assoc. 2021, 10, e020085. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Atta, A.; Zaidan, M.; Abdalwahab, A.; Asswad, A.G.; Egred, M.; Zaman, A.; Alkhalil, M. Mechanical circulatory support in acute myocardial infarction complicated by cardiogenic shock. Rev. Cardiovasc. Med. 2022, 23, 71. [Google Scholar] [CrossRef] [PubMed]
- Sarma, D.; Jentzer, J.C. Cardiogenic Shock: Pathogenesis, Classification, and Management. Crit. Care Clin. 2024, 40, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Alviar, C.L.; Li, B.K.; Keller, N.M.; Bohula-May, E.; Barnett, C.; Berg, D.D.; Burke, J.A.; Chaudhry, S.P.; Daniels, L.B.; DeFilippis, A.P.; et al. CCCTN Investigators. Prognostic performance of the IABP-SHOCK II Risk Score among cardiogenic shock subtypes in the critical care cardiology trials network registry. Am. Heart J. 2024, 270, 1–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; Richardt, G.; Hennersdof, M.; Empen, K.; Fuernau, G.; et al. IABP-SHOCK II Trial Investigators. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Naidu, S.S.; Baran, D.A.; Jentzer, J.C.; Hollenberg, S.M.; van Diepen, S.; Basir, M.B.; Grines, C.L.; Diercks, D.B.; Hall, S.; Kapur, N.K.; et al. SCAI SHOCK Stage Classification Expert Consensus Update. J. Am. Coll. Cardiol. 2022, 79, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Sanborn, T.A.; White, H.D.; Talley, J.D.; Buller, C.E.; Jacobs, A.K.; Slater, J.N.; Dol, J.; et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. N. Engl. J. Med. 1999, 341, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Dzavik, V.; Buller, C.E.; Aylward, P.; Col, J.; White, H.D. SHOCK Investigators. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA 2006, 295, 2511–2515. [Google Scholar] [CrossRef] [PubMed]
- Scholz, K.H.; Maier, S.K.G.; Maier, L.S.; Lengenfelder, B.; Jacobshagen, C.; Jung, J.; Fleischmann, C.; Werner, G.S.; Olbrich, H.G.; Ott, R.; et al. Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: Results from the German prospective, multicentre FITT-STEMI trial. Eur. Heart J. 2018, 39, 1065–1074. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thiele, H.; Akin, I.; Sandri, M.; Fuernau, G.; De Waha, S.; Meyer-Saraei, R.; Nordbeck, P.; Geisler, T.; Landmesser, U.; Skurk, C.; et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N. Engl. J. Med. 2017, 377, 2419–2432. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Akin, I.; Sandri, M.; De Waha-Thiele, S.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Nordbeck, P.; Geisler, T.; Landmesser, U.; et al. One-Year Outcomes after PCI Strategies in Cardiogenic Shock. N. Engl. J. Med. 2018, 379, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Damluji, A.A.; Bandeen-Roche, K.; Berkower, C.; Boyd, C.M.; Al-Damluji, M.S.; Cohen, M.G.; Forman, D.E.; Chaudhary, R.; Gerstenblith, G.; Walston, J.D.; et al. Percutaneous Coronary Intervention in Older Patients With ST-Segment Elevation Myocardial Infarction and Cardiogenic Shock. J. Am. Coll. Cardiol. 2019, 73, 1890–1900. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barthélémy, O.; Rouanet, S.; Brugier, D.; Vignolles, N.; Bertin, B.; Zeitouni, M.; Guedeney, P.; Hauguel-Moreau, M.; Hage, G.; Overtchouk, P.; et al. Predictive Value of the Residual SYNTAX Score in Patients with Cardiogenic Shock. J. Am. Coll. Cardiol. 2021, 77, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Alviar, C.L.; Katz, S.D.; Hochman, J.S. Coronary artery bypass grafting versus percutaneous coronary intervention for myocardial infarction complicated by cardiogenic shock. Am. Heart J. 2020, 226, 255–263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Viana-Tejedor, A.; Fernández-Ortiz, A.; Fernández-Avilés, F.; Gutiérrez-Ibanes, E.; Macaya, C.; Ibáñez, B.; Sánchez-Brunete, V.; Galeote, G.; Gómez-Hernández, A.; Pérez de Prado, A.; et al. Culprit-Only versus Immediate Multivessel Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction and Cardiogenic Shock: A Systematic Review and Meta-Analysis. Heart 2018, 104, 1761–1768. [Google Scholar] [PubMed]
- Basir, M.B.; Kapur, N.K.; Patel, K.; Salam, M.A.; Schreiber, T.; Kaki, A.; Hanson, I.; Almany, S.; Timmis, S.; Dixon, S.; et al. Improved outcomes associated with the use of shock protocols: Updates from the National Cardiogenic Shock Initiative. Catheter. Cardiovasc. Interv. 2019, 93, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Thelemann, N.; Neumann, F.J.; Hausleiter, J.; Abdel-Wahab, M.; Fuernau, G.; Eitel, I.; Hambrecht, R.; Böhm, M.; et al. Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial. Circulation. 2019, 139, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Ouweneel, D.M.; Eriksen, E.; Sjauw, K.D.; van Dongen, I.M.; Hirsch, A.; Packer, E.J.; Vis, M.M.; Wykrzykowska, J.J.; Koch, K.T.; de Winter, R.J.; et al. Impella CP versus intra-aortic balloon pump in acute myocardial infarction complicated by cardiogenic shock: The IMPRESS trial. J. Am. Coll. Cardiol. 2017, 69, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Ouweneel, D.M.; Eriksen, E.; Sjauw, K.D.; van Dongen, I.M.; Hirsch, A.; Packer, E.J.; Vis, M.M.; Wykrzykowska, J.J.; Koch, K.T.; Baan, J., Jr.; et al. Long-Term 5-Year Outcome of the Randomized IMPRESS in Severe Shock Trial. Eur. Heart J. Acute Cardiovasc. Care. 2021, 10, 500–507. [Google Scholar] [PubMed]
- Thiele, H.; Sick, P.; Boudriot, E.; Diederich, K.W.; Hambrecht, R.; Niebauer, J.; Schuler, G. Randomized comparison of intra-aortic balloon support versus a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur. Heart J. 2005, 26, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Burkhoff, D.; Cohen, H.; Brunckhorst, C.; O’Neill, W.W.; TandemHeart Investigators. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intra-aortic balloon pumping for treatment of cardiogenic shock. Am. Heart J. 2006, 152, e1–e469. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmidt, M.; Friis-Hansen, L.; Kaltoft, A.; Helqvist, S.; Saunamäki, K.; Nielsen, P.H.; Ravn, H.B.; Terkelsen, C.J.; Madsen, M.; Lassen, J.F.; et al. DanGer Shock Investigators. Mechanical circulatory support with Impella CP in acute myocardial infarction complicated by cardiogenic shock. N. Engl. J. Med. 2024, 390, 537–547. [Google Scholar] [PubMed]
- Thiele, H.; Zeymer, U.; Thelemann, N.; Neumann, F.J.; Hausleiter, J.; Abdel-Wahab, M.; Meyer-Saraei, R.; Fuernau, G.; Pöss, J.; Desch, S.; et al. ECLS-SHOCK Investigators. Extracorporeal life support in infarct-related cardiogenic shock. N. Engl. J. Med. 2023, 389, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Ostadal, P.; Rokyta, R.; Karasek, J.; Kruger, A.; Vondrakova, D.; Janotka, M.; Naar, J.; Smalcova, J.; Hubatova, M.; Hromadka, M.; et al. Extracorporeal membrane oxygenation in the therapy of cardiogenic shock: Results of the ECMO-CS randomized clinical trial. Circulation 2023, 147, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Ostadal, P.; Rokyta, R.; Karasek, J.; Kruger, A.; Vondrakova, D.; Janotka, M.; Naar, J.; Smalcova, J.; Hubatova, M.; Hromadka, M.; et al. Extracorporeal membrane oxygenation in the therapy of cardiogenic shock: 1-year outcomes of the multicentre, randomized ECMO-CS trial. Eur. J. Heart Fail. 2025, 27, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Rihal, C.S.; Naidu, S.S.; Givertz, M.M.; Szeto, W.Y.; Burke, J.A.; Kapur, N.K.; Kern, M.; Garratt, K.N.; Goldstein, J.A.; Dimas, V.; et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care: Endorsed by the American Heart Assocation, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d’intervention. J. Am. Coll. Cardiol. 2015, 65, e7–e26. [Google Scholar] [CrossRef] [PubMed]
- Putowski, Z.; Pluta, M.P.; Rachfalska, N.; Krzych, Ł.J.; De Backer, D. Sublingual Microcirculation in Temporary Mechanical Circulatory Support: A Current State of Knowledge. J. Cardiothorac. Vasc. Anesth. 2023, 37, 2065–2072. [Google Scholar] [CrossRef] [PubMed]
- Banning, A.S.; Sabaté, M.; Orban, M.; Gracey, J.; López-Sobrino, T.; Massberg, S.; Kastrati, A.; Bogaerts, K.; Adriaenssens, T.; Berry, C.; et al. Venoarterial extracorporeal membrane oxygenation or standard care in patients with cardiogenic shock complicating acute myocardial infarction: The multicentre, randomised EURO SHOCK trial. EuroIntervention 2023, 19, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Ouweneel, D.M.; Schotborgh, J.V.; Limpens, J.; Sjauw, K.D.; Engström, A.E.; Lagrand, W.K.; Cherpanath, T.G.V.; Driessen, A.H.; de Mol, B.A.J.; Henriques, J.P.S. Extracorporeal life support during cardiac arrest and cardiogenic shock: A systematic review and meta-analysis. Int. J. Cardiol. 2016, 231, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Burzotta, F.; Trani, C.; Doshi, S.N.; Townend, J.; van Geuns, R.J.; Hunziker, P.; Shieffer, B.; Karatolios, K.; Moller, J.E.; Ribichini, F.L.; et al. Impella ventricular support in clinical practice: Collaborative viewpoint from a European expert user group. Int. J. Cardiol. 2015, 201, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Schrage, B.; Becher, P.M.; Bernhardt, A.; Bezerra, H.; Blankenberg, S.; Brunner, S.; Colson, P.; Deseda, G.C.; Dabboura, S.; Eckner, D.; et al. Left ventricular unloading is associated with lower mortality in patients with cardiogenic shock treated with venoarterial extracorporeal membrane oxygenation: Results from an international, multicenter cohort study. Circulation 2020, 142, 2095–2106. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.B.; Goldstein, J.; Milano, C.; Morris, L.D.; Kormos, R.L.; Bhama, J.; Kapur, N.K.; Bansal, A.; Garcia, J.; Baker, J.N.; et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device. J. Heart Lung Transplant. 2015, 34, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Seyfarth, M.; Sibbing, D.; Bauer, I.; Fröhlich, G.; Bott-Flügel, L.; Byrne, R.; Dirschinger, J.; Kastrati, A.; Schömig, A. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J. Am. Coll. Cardiol. 2008, 52, 1584–1588. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.; Byrne, J.; Rathod, K.; Jain, A.K.; Ludman, P.F.; Williams, I.M.; Bogle, R.G.; Whitbourn, R.; Lim, H.S.; Kharbanda, R.; et al. CHIP-BCIS3 (Randomized Trial of Elective Insertion of Percutaneous Left Ventricular Support Device [Impella] in High-Risk PCI). ClinicalTrials.gov Identifier: NCT05003817. Available online: https://clinicaltrials.gov/ct2/show/NCT05003817 (accessed on 5 October 2025).
- PROTECT IV (Impella Support in High-Risk PCI). ClinicalTrials.gov Identifier: NCT04763200. Available online: https://clinicaltrials.gov/ct2/show/NCT04763200 (accessed on 5 October 2025).
- O’Neill, W.W.; Kleiman, N.S.; Moses, J.; Henriques, J.P.; Dixon, S.; Massaro, J.; Palacios, I.; Maini, B.; Muilukutla, S.; Džavík, V.; et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk PCI: The PROTECT II study. Circulation 2012, 126, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
Stage | Label | Clinical Features | Hemodynamics/Biomarkers | Prognosis/Notes |
---|---|---|---|---|
A | At risk | Patients at risk for shock but without current evidence of hypoperfusion (e.g., large anterior MI, severe valvular disease). | Normal BP, lactate, perfusion; stable hemodynamics. | Lowest risk; early recognition important. |
B | Beginning | Early signs of hemodynamic instability; borderline hypotension or rising lactate, but without hypoperfusion. | SBP 90–100 mmHg, narrow pulse pressure, rising lactate (>2 mmol/L). | “Pre-shock” phase; early intervention may prevent progression. |
C | Classic | Hypotension with evidence of hypoperfusion (cold extremities, oliguria, altered mentation). | SBP < 90 mmHg or MAP < 60 mmHg, elevated filling pressures, cardiac index ≤2.2 L/min/m2, lactate elevated. | Typical shock; requires urgent intervention, inotropes, or MCS. |
D | Deteriorating | Failure to stabilize despite initial therapy (inotropes, fluids, vasopressors). | Worsening hemodynamics, escalating support, rising lactate. | Poor prognosis; signals need for escalation (Impella, VA-ECMO). |
E | Extremis | Profound shock, often with ongoing CPR, refractory to maximal therapy. | Severe acidosis, hyperlactatemia, minimal or absent cardiac output. | Highest mortality; salvage therapies or palliation considered. |
Study/Source | Design | Population | Strategy | Key Outcomes |
---|---|---|---|---|
SHOCK Trial (NEJM 1999; JAMA 2006), [35,36] | Multicenter RCT, AMI-CS (n ≈ 300) | AMI with CS within 36 h, eligible for PCI or CABG | Early revascularization (PCI/CABG) vs. initial medical stabilization | No 30-day mortality reduction, but significant survival benefit at 6–12 mo and sustained long-term |
CULPRIT-SHOCK (NEJM 2017; Circulation 2018), [38,39] | Multicenter RCT, n = 706 | AMI-CS with multivessel disease | Culprit-only PCI (with staged PCI as needed) vs. immediate multivessel PCI | 30d death/RRT lower with culprit-only (45.9% vs. 55.4%). At 1 yr: no mortality diff, but higher rehosp/revascularization with culprit-only |
Meta-analysis (2018, EuroIntervention/Heart), [43] | Systematic review & meta-analysis of RCT + registry data | AMI-CS with multivessel CAD | Culprit-only vs immediate complete revascularization | Culprit-only safer at index; staged PCI after stabilization reasonable |
Observational CABG vs. PCI (Am Heart J 2020; others), [42] | Retrospective registry comparisons | AMI-CS with LM or complex 3-vessel CAD | Primary CABG vs. PCI | CABG associated with lower in-hospital mortality (confounded); no RCT evidence |
Guidelines (ESC 2023 ACS; ACC/AHA 2025 ACS), [1,2] | Consensus guidelines | AMI-CS | Culprit-only PCI urgent; avoid routine non-culprit PCI; staged PCI after stabilization; CABG in LM/complex | Class I: culprit PCI; Class III (ACC/AHA): avoid routine complete revasc in shock |
NCSI/Shock team protocols, [44] | Observational, system-based care | AMI-CS in networked care models | Early PCI with structured use of temporary MCS + shock team | Improved survival compared with historical cohorts; non-randomized |
IABP-SHOCK II (NEJM 2012; 6-yr Circulation 2019), [33,45] | Multicenter RCT, n = 600 | AMI-related cardiogenic shock planned for early revascularization | Routine IABP vs. no IABP (guideline-directed care incl. PCI/CABG) | No reduction in 30-day mortality; no difference at 12 months or 6 years; supports avoiding routine IABP use |
IMPRESS in Severe Shock (Lancet 2017; 5-yr follow-up 2021), [46,47] | Open-label RCT, n = 48 | Severe AMI-CS undergoing primary PCI | Impella CP vs. IABP | No mortality difference at 30 days or long-term (5 years); higher device-related complications with Impella in small sample |
TandemHeart vs IABP (Thiele 2005; Burkhoff 2006), [48,49] | Two RCTs (single- & multicenter), n ≈ 41 and n ≈ 42 | Cardiogenic shock (≈70% AMI) within 24 h; many undergoing PCI | TandemHeart pVAD vs. IABP | Greater hemodynamic improvement with TandemHeart; no 30-day survival benefit; more bleeding/vascular complications |
DanGer Shock (NEJM 2024), [50] | Multicenter RCT, n = 355 | STEMI-related cardiogenic shock | Impella CP + standard care (pre/during/≤12 h post cath) vs. standard care alone | Lower 180-day all-cause mortality with Impella CP (HR ≈ 0.74; p ≈ 0.04); higher major bleeding/limb ischemia/hemolysis |
ECLS-SHOCK (NEJM 2023), [51] | Multicenter RCT, n = 420 | AMI-related cardiogenic shock after PCI or during MI care | Early routine VA-ECMO + usual care vs. usual care alone (with rescue ECMO allowed) | No reduction in 30-day mortality (~48–49% both groups); more bleeding and vascular complications with ECMO |
ECMO-CS (Circulation 2023; 1-yr Eur J Heart Fail 2025), [52,53] | Multicenter RCT, n = 117 | Rapidly deteriorating or severe cardiogenic shock (majority AMI) | Immediate VA-ECMO vs. early conservative care (bailout ECMO allowed) | Primary composite at 30 days not reduced (HR ≈ 0.72; p = 0.21); no difference in mortality; neutral 1-yr outcomes; safety concerns similar |
Device | Flow Support | Hemodynamic Effects | Advantages | Limitations | Best Suited For |
---|---|---|---|---|---|
IABP | <1 L/min | ↑ Diastolic pressure, mild ↓ afterload | Easy insertion, few complications | Minimal support, no mortality benefit | Mild LV failure, bridge in centers lacking advanced MCS |
Impella CP | 3.5–4 L/min | Direct LV unloading, ↑ CO | Improved hemodynamics, RCT mortality benefit (DanGer-shock) | Bleeding, hemolysis, vascular injury | STEMI-CS with severe LV failure, high-risk PCI |
VA-ECMO | 4–6 L/min (full CP support) | Biventricular + oxygenation | Life-saving in refractory arrest/hypoxemia | ↑ Afterload, bleeding, limb ischemia, no RCT mortality benefit | Profound shock, cardiac arrest, severe hypoxemia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdeldayem, T.; Gunarathne, A.; Farag, M.; Alkhalil, M.; Egred, M. Circulatory Disturbances in Acute Coronary Syndrome Patients Undergoing Percutaneous Coronary Intervention: Mechanisms, Management, and Outcomes. J. Clin. Med. 2025, 14, 7250. https://doi.org/10.3390/jcm14207250
Abdeldayem T, Gunarathne A, Farag M, Alkhalil M, Egred M. Circulatory Disturbances in Acute Coronary Syndrome Patients Undergoing Percutaneous Coronary Intervention: Mechanisms, Management, and Outcomes. Journal of Clinical Medicine. 2025; 14(20):7250. https://doi.org/10.3390/jcm14207250
Chicago/Turabian StyleAbdeldayem, Tarek, Ashan Gunarathne, Mohamed Farag, Mohammad Alkhalil, and Mohaned Egred. 2025. "Circulatory Disturbances in Acute Coronary Syndrome Patients Undergoing Percutaneous Coronary Intervention: Mechanisms, Management, and Outcomes" Journal of Clinical Medicine 14, no. 20: 7250. https://doi.org/10.3390/jcm14207250
APA StyleAbdeldayem, T., Gunarathne, A., Farag, M., Alkhalil, M., & Egred, M. (2025). Circulatory Disturbances in Acute Coronary Syndrome Patients Undergoing Percutaneous Coronary Intervention: Mechanisms, Management, and Outcomes. Journal of Clinical Medicine, 14(20), 7250. https://doi.org/10.3390/jcm14207250