Impact of Computed Tomography-Defined Osteopenia on Outcomes of Transcatheter Aortic Valve Implantation: A Single-Center Retrospective Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CT-Based Assessments of BMD
2.3. Assessment of Clinical Outcomes
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Procedural Parameters
3.2. Early Clinical Outcomes
3.3. Long-Term Clinical Outcomes
3.4. Comparison with the General Japanese Population
3.5. Mortality Predictors After TAVI
3.6. Severity of Low BMD and Long-Term Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMD | Bone mineral density |
CI | Confidence interval |
HU | Hounsfield units |
HR | Hazard ratio |
ICU | Intensive care unit |
JTVT | Japan Transcatheter Valve Therapies |
RANKL | Receptor activator of nuclear factor κB ligand |
SAVR | Surgical aortic valve replacement |
TAVI | Transcatheter aortic valve implantation |
VARC-3 | Valve Academic Research Consortium 3 |
References
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Pibarot, P.; Hahn, R.T.; Genereux, P.; Kodali, S.K.; Kapadia, S.R.; Cohen, D.J.; Pocock, S.J.; et al. Transcatheter aortic-valve replacement in low-risk patients at five years. N. Engl. J. Med. 2023, 389, 1949–1960. [Google Scholar] [CrossRef]
- He, H.; Liu, Y.; Tian, Q.; Papasian, C.J.; Hu, T.; Deng, H.W. Relationship of sarcopenia and body composition with osteoporosis. Osteoporos. Int. 2016, 27, 473–482. [Google Scholar] [CrossRef]
- Johansson, H.; Odén, A.; Kanis, J.; McCloskey, E.; Lorentzon, M.; Ljunggren, Ö.; Karlsson, M.K.; Orwoll, E.; Tivesten, Å.; Ohlsson, C.; et al. Low bone mineral density is associated with increased mortality in elderly men: MrOS Sweden. Osteoporos. Int. 2011, 22, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.J.; Scott, D.; Hodge, A.; English, D.R.; Giles, G.G.; Ebeling, P.R. Associations between hip bone mineral density, aortic calcification and cardiac workload in community-dwelling older Australians. Osteoporos. Int. 2017, 28, 2239–2245. [Google Scholar] [CrossRef] [PubMed]
- Izumi, C.; Eishi, K.; Ashihara, K.; Arita, T.; Otsuji, Y.; Kunihara, T.; Komiya, T.; Shibata, T.; Seo, Y.; Daimon, M.; et al. JCS/JSCS/JATS/JSVS 2020 guidelines on the management of valvular heart disease. Circ J 2020, 84, 2037–2119. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Pooler, B.D.; Lauder, T.; del Rio, A.M.; Bruce, R.J.; Binkley, N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann. Intern. Med. 2013, 158, 588–595. [Google Scholar] [CrossRef]
- Mamane, S.; Mullie, L.; Lok Ok Choo, W.; Piazza, N.; Martucci, G.; Morais, J.A.; Kim, D.H.; Lauck, S.; Webb, J.G.; Afilalo, J.; et al. Sarcopenia in older adults undergoing transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2019, 74, 3178–3180. [Google Scholar] [CrossRef]
- VARC-3 WRITING COMMITTEE; Généreux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; et al. Valve Academic Research Consortium 3: Updated endpoint definitions for aortic valve clinical research. Eur. Heart J. 2021, 42, 1825–1857. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare of Japan: Abridged Life Tables for Japan 2022. Available online: https://www.mhlw.go.jp/english/database/db-hw/lifetb22/ (accessed on 29 December 2024).
- Machin, D.; Cheung, Y.B.; Parmar, M. Chapter 2: Survival curves. In Survival Analysis: A Practical Approach, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 40–41. [Google Scholar]
- Yoshimura, N.; Iidaka, T.; Horii, C.; Muraki, S.; Oka, H.; Kawaguchi, H.; Nakamura, K.; Akune, T.; Tanaka, S. Trends in osteoporosis prevalence over a 10-year period in Japan: The ROAD study 2005–2015. J. Bone Miner. Metab. 2022, 40, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Committee for Scientific Affairs; The Japanese Association for Thoracic Surgery; Yoshimura, N.; Sato, Y.; Takeuchi, H.; Abe, T.; Yoshikawa, T.F.; Hirata, Y.; Ishida, M.; Iwata, H.; et al. Thoracic and cardiovascular surgeries in Japan during 2022: Annual report by the Japanese Association for Thoracic Surgery. Gen. Thorac. Cardiovasc. Surg. 2025, 73, 254–294. [Google Scholar] [CrossRef] [PubMed]
- Bertschi, D.; Kiss, C.M.; Schoenenberger, A.W.; Stuck, A.E.; Kressig, R.W. Sarcopenia in patients undergoing transcatheter aortic valve implantation (TAVI): A systematic review of the literature. J. Nutr. Health Aging 2021, 25, 64–70. [Google Scholar] [CrossRef]
- Saji, M.; Nanasato, M.; Higuchi, R.; Izumi, Y.; Takamisawa, I.; Iguchi, N.; Shimizu, J.; Shimokawa, T.; Takayama, M.; Ikeda, T.; et al. Impact of osteoporotic risk in women undergoing transcatheter aortic valve replacement. Cardiovasc. Interv. Ther. 2024, 39, 57–64. [Google Scholar] [CrossRef]
- Funaki, T.; Saji, M.; Higuchi, R.; Takamisawa, I.; Nanasato, M.; Tamura, H.; Sato, K.; Yokoyama, H.; Doi, S.; Okazaki, S.; et al. Impact of osteoporotic risk in men undergoing transcatheter aortic valve replacement: A report from the LAPLACE-TAVI registry. Cardiovasc. Interv. Ther. 2024, 39, 460–467. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, J.; Haarhaus, M.; Barany, P.; Wennberg, L.; Ripsweden, J.; Brismar, T.B.; Lindholm, B.; Wernerson, A.; Söderberg, M.; et al. Bone mineral density of extremities is associated with coronary calcification and biopsy-verified vascular calcification in living-donor renal transplant recipients. J. Bone Miner. Metab. 2017, 35, 536–543. [Google Scholar] [CrossRef]
- Wang, L.; Manson, J.E.; Song, Y.; Sesso, H.D. Systematic review: Vitamin D and calcium supplementation in prevention of cardiovascular events. Ann. Intern. Med. 2010, 152, 315–323. [Google Scholar] [CrossRef]
- Apostolakis, M.; Armeni, E.; Bakas, P.; Lambrinoudaki, I. Vitamin D and cardiovascular disease. Maturitas 2018, 115, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Bolland, M.J.; Grey, A.; Avenell, A.; Gamble, G.D.; Reid, I.R. Calcium supplements with or without vitamin D and risk of cardiovascular events: Reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ 2011, 342, d2040. [Google Scholar] [CrossRef]
- Yang, C.; Shi, X.; Xia, H.; Yang, X.; Liu, H.; Pan, D.; Sun, G. The evidence and controversy between dietary calcium intake and calcium supplementation and the risk of cardiovascular disease: A systematic review and meta-analysis of cohort studies and randomized controlled trials. J. Am. Coll. Nutr. 2020, 39, 352–370. [Google Scholar] [CrossRef]
- Yan, Y.; Tan, B.; Fu, F.; Chen, Q.; Li, W.; Chen, W.; He, H. Exercise vs conventional treatment for treatment of primary osteoporosis: A systematic review and meta-analysis of randomized controlled trials. Orthop. Surg. 2021, 13, 1474–1487. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Yuan, J.; Liu, J.; Geng, Q. Impact of cardiac rehabilitation on pre- and post-operative transcatheter aortic valve replacement prognoses. Front. Cardiovasc. Med. 2023, 10, 1164104. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall (n = 411) | With Osteopenia (n = 342) | Without Osteopenia (n = 69) | p-Value |
---|---|---|---|---|
Age, years | 85.4 ± 4.9 | 85.9 ± 4.7 | 84.5 ± 5.7 | 0.0897 |
Female sex n (%) | 273 (66.4) | 247 (72.2) | 26 (37.6) | <0.0001 |
Height, cm | 149 ± 9 | 148 ± 9 | 154 ± 9 | <0.0001 |
Weight, kg | 50.0 ± 9.5 | 49.4 ± 9.6 | 53.1 ± 8.5 | 0.0031 |
BSA, kg/m2 | 1.42 ± 0.16 | 1.41 ± 0.15 | 1.49 ± 0.15 | <0.0001 |
Medical history | ||||
Hypertension, n (%) | 350 (85.1) | 289 (84.5) | 61 (88.4) | 0.3929 |
Dyslipidemia, n (%) | 234 (56.9) | 196 (57.3) | 38 (55.0) | 0.7324 |
Diabetes mellitus, n (%) | 93 (22.6) | 73 (21.3) | 20 (28.9) | 0.1764 |
Cerebral vascular disease, n (%) | 81 (19.7) | 67 (19.5) | 14 (20.2) | 0.5718 |
Ischemic heart disease, n (%) | 130 (31.6) | 99 (28.9) | 31 (44.9) | 0.0109 |
Previous cardiac surgery | 26 (6.3) | 17 (4.9) | 9 (13.0) | 0.0221 |
Permanent pacemaker, n (%) | 31 (7.5) | 22 (6.4) | 9 (13.0) | 0.0779 |
Atrial fibrillation, n (%) | 51 (12.4) | 43 (12.5) | 8 (11.5) | 0.8206 |
COPD, n (%) | 38 (9.2) | 29 (8.4) | 9 (13.0) | 0.2524 |
Hemodialysis, n (%) | 6 (1.4) | 3 (0.9) | 3 (4.3) | 0.0413 |
Malignancy, n (%) | 11 (2.6) | 10 (2.9) | 1 (1.4) | 0.6992 |
Sarcopenia, n (%) | 284 (69.0) | 233 (68.1) | 51 (73.9) | 0.3367 |
Calculated risk scores | ||||
JapanSCORE, % | 8.3 ± 7.5 | 8.2 ± 7.2 | 9.1 ± 9.0 | 0.3750 |
STS-PROM, % | 8.3 ± 5.9 | 8.4 ± 6.1 | 7.9 ± 4.8 | 0.5571 |
EuroSCORE II, % | 5.4 ± 5.2 | 5.4 ± 5.0 | 5.5 ± 6.1 | 0.8324 |
Clinical frailty scale | 4.0 ± 1.0 | 4.0 ± 1.0 | 3.8 ± 0.9 | 0.0836 |
NYHA class | 2.3 ± 0.6 | 2.3 ± 0.6 | 2.2 ± 0.5 | 0.7041 |
Echo parameters (Pre-TAVI) | ||||
Aortic valve area, cm2 | 0.64 ± 0.16 | 0.64 ± 0.16 | 0.66 ± 0.17 | 0.3477 |
Aortic valve mean PG, mmHg | 50.0 ± 17.2 | 50.0 ± 17.7 | 48.2 ± 14.3 | 0.3358 |
Peak systolic velocity, m/s | 4.6 ± 0.7 | 4.6 ± 0.7 | 4.5 ± 0.5 | 0.3724 |
LVEF, % | 61.5 ± 12.6 | 62.0 ± 12.3 | 59.3 ± 13.7 | 0.1104 |
AR ≥ moderate, n (%) | 50 (12.1) | 43 (12.5) | 7 (10.1) | 0.5682 |
Laboratory data | ||||
eGFR, mL/min/1.73 m2 | 49.1 ± 17.2 | 49.5 ± 17.1 | 46.8 ± 17.4 | 0.2572 |
Hemoglobin, g/dL | 11.0 ± 1.5 | 10.9 ± 1.5 | 11.4 ± 1.5 | 0.0116 |
Albumin, g/dL | 3.6 ± 0.4 | 3.6 ± 0.4 | 3.6 ± 0.4 | 0.7943 |
BNP, pg/mL | 418 ± 631 | 417 ± 624 | 421 ± 670 | 0.9666 |
Factors related to bone health | ||||
BMD of L1 trabecular bone (HU) | 89.7 ± 45.6 | 74.7 ± 31.7 | 164.1 ± 27.2 | <0.0001 |
History of vertebral fracture, n (%) | 144 (35.0) | 137 (40.0) | 7 (10.1) | <0.0001 |
Steroid use, n (%) | 36 (8.7) | 28 (8.1) | 8 (11.5) | 0.3776 |
Bisphosphonate agent use, n (%) | 29 (7.0) | 26 (7.6) | 3 (4.3) | 0.4448 |
Vitamin D drug use, n (%) | 62 (15.0) | 54 (15.7) | 8 (11.5) | 0.3609 |
Variables | Overall (n = 411) | With Osteopenia (n = 342) | Without Osteopenia (n = 171) | p-Value |
---|---|---|---|---|
Approach site, n (%) | ||||
Femoral | 328 (79.8) | 270 (78.9) | 58 (84.0) | |
Non-femoral | 83 (20.2) | 72 (21.1) | 11 (16.0) | 0.3347 |
Details of non-femoral, n | ||||
Apical | 31 | 27 | 4 | |
Aorta | 26 | 24 | 2 | |
Subclavian | 14 | 11 | 3 | |
Iliac | 12 | 10 | 2 | |
Type of THV, n (%) | ||||
Balloon expandable | 219 (53.3) | 177 (51.8) | 42 (60.9) | |
Self-expandable | 192 (46.7) | 165 (48.2) | 27 (39.1) | 0.1662 |
Operation time, min | 130 ± 44 | 131 ± 46 | 124 ± 36 | 0.2367 |
Contrast medium, min | 98 ± 50 | 98 ± 48 | 101 ± 60 | 0.6290 |
Fluoroscopy time, min | 42 ± 15 | 42 ± 15 | 42 ± 15 | 0.6921 |
Blood loss, g | 120 ± 156 | 124 ± 164 | 100 ± 104 | 0.2348 |
Blood transfusion, n (%) | 140 (34.0) | 121 (35.3) | 19 (27.5) | 0.2089 |
PCPS use, n (%) | 16 (3.8) | 12 (3.5) | 4 (5.7) | 0.3229 |
Variables | Overall (n = 411) | With Osteopenia (n = 342) | Without Osteopenia (n = 69) | p-Value |
---|---|---|---|---|
30-day outcome, n (%) | ||||
In-hospital death | 1 (0.2) | 1 (0.3) | 0 | >0.999 |
All-cause mortality | 2 (0.4) | 2 (0.5) | 0 | >0.999 |
Cardiovascular mortality | 1 (0.2) | 1 (0.3) | 0 | >0.999 |
Conversion to open surgery | 2 (0.4) | 2 (0.5) | 0 | >0.999 |
Annulus rupture | 1 (0.2) | 1(0.3) | 0 | >0.999 |
Aortic dissection | 4 (0.9) | 4 (1.1) | 0 | >0.999 |
Access-related minor vascular complication | 2 (0.4) | 1 (0.3) | 1 (1.4) | 0.3079 |
Peri-procedural MI | 1 (0.2) | 1 (0.2) | 0 | >0.999 |
Second THV | 3 (0.7) | 2 (0.5) | 1 (1.4) | 0.4247 |
Unplanned use of PCPS | 4 (0.9) | 3 (0.8) | 1 (1.4) | 0.5220 |
Life-threatening bleeding | 8 (1.9) | 8 (2.3) | 0 | 0.2425 |
Cardiac tamponade requiring drainage | 2 (0.4) | 1 (0.3) | 1 (1.4) | 0.3079 |
Stroke | 9 (2.1) | 9 (2.1) | 0 | 0.3702 |
Disabling stroke | 5 (1.2) | 5 (1.4) | 0 | 0.5950 |
Acute kidney injury—stage 2 or 3 | 1 (0.2) | 1 (0.3) | 0 | >0.999 |
New pacemaker implantation | 33 (8.0) | 30 (8.7) | 3 (4.3) | 0.3296 |
Prosthesis-patient mismatch (≥severe) | 15 (3.6) | 12 (3.5) | 3 (4.3) | 0.7250 |
Paravalvular leakage (≥moderate) | 36 (8.7) | 31 (9.0) | 5 (7.2) | 0.6261 |
Hospital stay, days | 10.0 ± 12.0 | 11.1 ± 12.9 | 8.2 ± 5.0 | 0.0652 |
ICU stay, days | 1.7 ± 2.1 | 1.8 ± 2.2 | 1.4 ± 0.9 | 0.0451 |
Composite endpoint defined by VARC-3 criteria, n (%) | ||||
Technical success | 403 (98.0) | 335 (97.9) | 68 (98.5) | >0.999 |
Device success | 348 (84.6) | 290 (84.7) | 58 (84.0) | 0.8768 |
Early safety | 271 (65.6) | 219 (64.0) | 52 (75.3) | 0.0701 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | Hazard Ratio | (95% Confidence Interval) | p-Value | Hazard Ratio | (95% Confidence Interval) | p-Value |
Age | 1.018 | (0.983–1.056) | 0.312 | |||
Male sex | 1.542 | (1.029–2.238) | 0.022 | 2.540 | (1.623–3.976) | <0.0001 |
STS-PROM | 1.009 | (0.973–1.042) | 0.570 | |||
EuroSCORE II | 0.970 | (0.921–1.008) | 0.189 | |||
JapanSCORE | 0.990 | (0.960–1.016) | 0.542 | |||
NYHA class | 1.176 | (0.884–1.541) | 0.250 | |||
Clinical frailty scale | 1.144 | (0.973–1.338) | 0.101 | |||
LVEF | 1.012 | (0.960–1.028) | 0.107 | |||
BNP | 1.000 | (0.999–1.000) | 0.820 | |||
Serum albumin | 0.461 | (0.298–0.717) | 0.0006 | 0.701 | (0.424–1.167) | 0.170 |
Hemoglobin | 0.816 | (0.722–0.920) | 0.001 | 0.888 | (0.770–1.022) | 0.101 |
eGFR | 0.982 | (0.969–0.995) | 0.007 | 0.985 | (0.972–0.998) | 0.030 |
Hypertension | 0.630 | (0.369–1.076) | 0.091 | |||
Dyslipidemia | 0.639 | (0.444–0.919) | 0.015 | 0.749 | (0.509–1.102) | 0.142 |
Diabetes Mellitus | 0.8326 | (0.554–1.311) | 0.468 | |||
Hemodialysis | 6.875 | (0.897–52.667) | 0.063 | 6.481 | (0.741–56.657) | 0.091 |
ASO | 1.569 | (0.999–2.464) | 0.051 | 1.276 | (0.772–2104) | 0.340 |
COPD | 1.125 | (0.546–2.316) | 0.749 | |||
CVD | 1.770 | (1.106–2.481) | 0.014 | 1.770 | (1.110–2.825) | 0.016 |
Sarcopenia | 1.536 | (1.024–2.302) | 0.037 | 1.223 | (0.780–1.918) | 0.380 |
Osteopenia | 5.253 | (2.424–11.385) | <0.0001 | 6.752 | (2.964–15.380) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurazumi, H.; Suzuki, R.; Nakashima, T.; Nawata, R.; Yokoyama, T.; Matsunaga, K.; Miyazaki, Y.; Yamashita, A.; Okamura, T.; Mikamo, A.; et al. Impact of Computed Tomography-Defined Osteopenia on Outcomes of Transcatheter Aortic Valve Implantation: A Single-Center Retrospective Study. J. Clin. Med. 2025, 14, 7182. https://doi.org/10.3390/jcm14207182
Kurazumi H, Suzuki R, Nakashima T, Nawata R, Yokoyama T, Matsunaga K, Miyazaki Y, Yamashita A, Okamura T, Mikamo A, et al. Impact of Computed Tomography-Defined Osteopenia on Outcomes of Transcatheter Aortic Valve Implantation: A Single-Center Retrospective Study. Journal of Clinical Medicine. 2025; 14(20):7182. https://doi.org/10.3390/jcm14207182
Chicago/Turabian StyleKurazumi, Hiroshi, Ryo Suzuki, Takato Nakashima, Ryosuke Nawata, Toshiki Yokoyama, Kazumasa Matsunaga, Yosuke Miyazaki, Atsuo Yamashita, Takayuki Okamura, Akihito Mikamo, and et al. 2025. "Impact of Computed Tomography-Defined Osteopenia on Outcomes of Transcatheter Aortic Valve Implantation: A Single-Center Retrospective Study" Journal of Clinical Medicine 14, no. 20: 7182. https://doi.org/10.3390/jcm14207182
APA StyleKurazumi, H., Suzuki, R., Nakashima, T., Nawata, R., Yokoyama, T., Matsunaga, K., Miyazaki, Y., Yamashita, A., Okamura, T., Mikamo, A., Sano, M., & Hamano, K. (2025). Impact of Computed Tomography-Defined Osteopenia on Outcomes of Transcatheter Aortic Valve Implantation: A Single-Center Retrospective Study. Journal of Clinical Medicine, 14(20), 7182. https://doi.org/10.3390/jcm14207182