Neutrophilic Asthma—From Mechanisms to New Perspectives of Therapy
Abstract
1. Introduction
2. Definition and Prevalence of Neutrophilic Asthma
2.1. Diagnosing Neutrophilic Asthma
2.2. Estimated Prevalence of Neutrophilic Asthma
2.3. Is Neutrophilic Asthma a Phenotype or a Lab Artifact?
3. Clinical Characteristics of Neutrophilic Asthma
3.1. Asthma Onset
3.2. Clinical Course of the Disease
3.3. Pulmonary Function
3.4. Resistance to ICS
3.5. Concomitant Diseases
3.5.1. Obesity
3.5.2. GERD
3.5.3. Cigarette Smoking
4. Neutrophils in Asthma
4.1. Direct Effects of Neutrophils on Bronchial Mucosa
4.2. Neutrophils-Associated Cytokines in Asthma
4.2.1. TSLP
4.2.2. IL-17
4.2.3. IL-8
4.2.4. IL-1β
4.2.5. IL-33
4.3. Smooth Muscles in Neutrophilic Asthma
5. Management of Neutrophilic Asthma—Present and Future
5.1. Anti-IL-17: Brodalumab
5.2. Anti- IL-1β
5.3. Targeting IL-8 (CXCL-8)
5.4. Targeting IL-6
5.5. Biologics Targeting the IL-33 Pathway
6. Unmet Goals and Directions of Future Studies
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BAL | brochoalveolar lavage |
BMI | body mass index |
BSM | bronchial smooth muscles |
BTK | Bruton tyrosine kinase |
CXCL1 | chemokine ligand 1 |
COPD | chronic obstructive pulmonary disease |
EA | eosinophilic asthma |
FEV1 | forced expiratory volume in 1 s |
FVC | forced vital capacity |
GERD | gastroesophageal reflux disease |
ICS | inhaled corticosteroids |
IFN | interferon |
IL | interleukin |
ILC | innate lymphoid cell |
LABA | long-acting beta-agonists |
LAMA | long-acting muscarinic antagonists |
LCN-2 | lipocalin 2 |
LTB4 | leukotriene B4 |
LTRA | leukotriene receptor antagonists |
MPO | myeloperoxidase |
NA | neutrophilic asthma |
NE | neutrophil elastase |
NET | neutrophil extracellular traps |
NETosis | formation of neutrophil extracellular traps |
NSAIDs | non-steroidal anti-inflammatory drugs |
PDE | phosphodiesterase |
PDGFR | platelet-derived growth factor receptor |
PRR | pattern recognition receptors |
ROS | reactive oxygen species |
SAA | serum amyloid A |
SABA | short-acting beta-agonists |
TGF | transforming growth factor |
TLR | toll-like receptors |
TNF | tumor necrosis factor |
TSLP | thymic stromal lymphopoietin |
VEGF | vascular endothelial growth factor |
References
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. GINA 2025 Report; Global Initiative for Asthma: Fontana, WI, USA, 2025; Available online: https://ginasthma.org/2025-gina-strategy-report/ (accessed on 6 May 2025).
- Domingo, C.; Sicras-Mainar, A.; Sicras-Navarro, A.; Sogo, A.; Mirapeix, R.M.; Engroba, C. Prevalence, T2 Biomarkers, and Cost of Severe Asthma in the Era of Biologics: The BRAVO-1 Study. J. Investig. Allergol. Clin. Immunol. 2024, 34, 97–105. [Google Scholar] [CrossRef]
- Nabe, T. Steroid-Resistant Asthma and Neutrophils. Biol. Pharm. Bull. 2020, 43, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Green, R.H.; Brightling, C.E.; Woltmann, G.; Parker, D.; Wardlaw, A.J.; Pavord, I.D. Analysis of induced sputum in adults with asthma: Identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 2002, 57, 875–879. [Google Scholar] [CrossRef]
- Simpson, J.L.; Scott, R.; Boyle, M.J.; Gibson, P.G. Inflammatory subtypes in asthma: Assessment and identification using induced sputum. Respirology 2006, 11, 54–61. [Google Scholar] [CrossRef]
- Moore, W.C.; Hastie, A.T.; Li, X.; Li, H.; Busse, W.W.; Jarjour, N.N.; Wenzel, S.E.; Peters, S.P.; Meyers, D.A.; Bleecker, E.R.; et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J. Allergy Clin. Immunol. 2014, 133, 1557–1563.e5. [Google Scholar] [CrossRef]
- Demarche, S.; Schleich, F.; Henket, M.; Paulus, V.; Van Hees, T.; Louis, R. Detailed analysis of sputum and systemic inflammation in asthma phenotypes: Are paucigranulocytic asthmatics really non-inflammatory? BMC Pulm. Med. 2016, 5, 16–46. [Google Scholar] [CrossRef] [PubMed]
- Busse, W.W. What Are Those Neutrophils Doing in Severe Asthma Anyway? J. Allergy Clin. Immunol. Pract. 2019, 7, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Grunwell, J.R.; Stephenson, S.T.; Tirouvanziam, R.; Brown, L.A.S.; Brown, M.R.; Fitzpatrick, A.M. Children with Neutrophil-Predominant Severe Asthma Have Proinflammatory Neutrophils with Enhanced Survival and Impaired Clearance. J. Allergy Clin. Immunol. Pract. 2019, 7, 516–525.e6. [Google Scholar] [CrossRef]
- Syabbalo, N. Clinical Features and Management of Neutrophilic Asthma. J. Pulm. Med. Respir. Res. 2020, 6, 036. [Google Scholar] [CrossRef]
- Bullone, M.; Carriero, V.; Bertolini, F.; Folino, A.; Mannelli, A.; Di Stefano, A.; Gnemmi, I.; Torchio, R.; Ricciardolo, F.L.M. Elevated serum IgE, oral corticosteroid dependence and IL-17/22 expression in highly neutrophilic asthma. Eur. Respir. J. 2019, 54, 1900068. [Google Scholar] [CrossRef]
- Belda, J.; Leigh, R.; Parameswaran, K.; O’Byrne, P.M.; Sears, M.R.; Hargreave, F.E. Induced sputum cell counts in healthy adults. Am. J. Respir. Crit. Care Med. 2000, 161 Pt 1, 475–478. [Google Scholar] [CrossRef]
- Brooks, C.R.; Gibson, P.G.; Douwes, J.; Van Dalen, C.J.; Simpson, J.L. Relationship between airway neutrophilia and ageing in asthmatics and non-asthmatics. Respirology 2013, 18, 857–865. [Google Scholar] [CrossRef]
- Schleich, F.N.; Manise, M.; Sele, J.; Henket, M.; Seidel, L.; Louis, R. Distribution of sputum cellular phenotype in a large asthma cohort: Predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm. Med. 2013, 13, 11. [Google Scholar] [CrossRef]
- Gibson, P.G.; Simpson, J.L.; Saltos, N. Heterogeneity of airway inflammation in persistent asthma: Evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 2001, 119, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Li, W.; Dong, H.; Xu, M.; Hao, Y.; Gao, P. Distribution of inflammatory phenotypes among patients with asthma in Jilin Province, China: A cross-sectional study. BMC Pulm. Med. 2021, 21, 364. [Google Scholar] [CrossRef]
- Wang, F.; He, X.Y.; Baines, K.J.; Gunawardhana, L.P.; Simpson, J.L.; Li, F.; Gibson, P.G. Different inflammatory phenotypes in adults and children with acute asthma. Eur. Respir. J. 2011, 38, 567–574. [Google Scholar] [CrossRef]
- Nair, P.; Aziz-Ur-Rehman, A.; Radford, K. Therapeutic implications of ‘neutrophilic asthma’. Curr. Opin. Pulm. Med. 2015, 21, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Ntontsi, P.; Loukides, S.; Bakakos, P.; Kostikas, K.; Papatheodorou, G.; Papathanassiou, E.; Hillas, G.; Koulouris, N.; Papiris, S.; Papaioannou, A.I. Clinical, functional and inflammatory characteristics in patients with paucigranulocytic stable asthma: Comparison with different sputum phenotypes. Allergy 2017, 72, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Ade, V.; Dutta, J.; Dasgupta, G. Inflammatory phenotypes of severe asthma in India. Lung India 2019, 36, 267–268. [Google Scholar]
- McGrath, K.W.; Icitovic, N.; Boushey, H.A.; Lazarus, S.C.; Sutherland, E.R.; Chinchilli, V.M.; Fahy, J.V.; Asthma Clinical Research Network of the National Heart, Lung, and Blood Institute. A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am. J. Respir. Crit. Care Med. 2012, 185, 612–619. [Google Scholar] [CrossRef]
- Guo, Y.; Zou, Y.; Zhai, J.; Li, J.; Liu, J.; Ma, C.; Jin, X.; Zhao, L. Phenotypes of the inflammatory cells in the induced sputum from young children or infants with recurrent wheezing. Pediatr. Res. 2019, 85, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Teague, W.G.; Lawrence, M.G.; Shirley, D.T.; Garrod, A.S.; Early, S.V.; Payne, J.B.; Wisniewski, J.A.; Heymann, P.W.; Daniero, J.J.; Steinke, J.W.; et al. Lung Lavage Granulocyte Patterns and Clinical Phenotypes in Children with Severe, Therapy-Resistant Asthma. J. Allergy Clin. Immunol. Pract. 2019, 7, 1803–1812.e10. [Google Scholar] [CrossRef]
- Jayaram, L.; Pizzichini, M.M.; Cook, R.J.; Boulet, L.P.; Lemière, C.; Pizzichini, E.; Cartier, A.; Hussack, P.; Goldsmith, C.H.; Laviolette, M.; et al. Determining asthma treatment by monitoring sputum cell counts: Effect on exacerbations. Eur. Respir. J. 2006, 27, 483–494. [Google Scholar] [CrossRef]
- Cowan, D.C.; Cowan, J.O.; Palmay, R.; Williamson, A.; Taylor, D.R. Effects of steroid therapy on inflammatory cell subtypes in asthma. Thorax 2010, 65, 384–390. [Google Scholar] [CrossRef]
- Otieno, S.; Altaham, A.; Karri, S.; Kaweeta, F.; Lands, L.; Wier, A. CIN or not: An approach to the evaluation and management of chronic idiopathic neutrophilia. Blood Rev. 2021, 46, 100739. [Google Scholar] [CrossRef]
- Van der Haart, H.; Postma, D.; Timens, W.; Hacken, N. Acute effects of cigarette smoke on inflammation and oxidative stress: A review. Thorax 2004, 59, 713–721. [Google Scholar] [CrossRef]
- Gibson, P.G.; Foster, P.S. Neutrophilic asthma: Welcome back! Eur. Respir. J. 2019, 54, 1901846. [Google Scholar] [CrossRef]
- Sur, S.; Crotty, T.B.; Kephart, G.M.; Hyma, B.A.; Colby, T.V.; Reed, C.E.; Hunt, L.W.; Gleich, G.J. Sudden-onset fatal asthma. A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am. Rev. Respir. Dis. 1993, 148, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Schleich, F.; Graff, S.; Guissard, F.; Henket, M.; Paulus, V.; Louis, R. Asthma in elderly is characterized by increased sputum neutrophils, lower airway caliber variability and air trapping. Respir. Res. 2021, 22, 15. [Google Scholar] [CrossRef] [PubMed]
- Rönnebjerg, L.; Axelsson, M.; Kankaanranta, H.; Backman, H.; Rådinger, M.; Lundbäck, B.; Ekerljung, L. Severe Asthma in a General Population Study: Prevalence and Clinical Characteristics. J. Asthma Allergy 2021, 14, 1105–1115. [Google Scholar] [CrossRef]
- Yasui, H.; Oishi, K.; Nihashi, F.; Furuhashi, K.; Fujisawa, T.; Inoue, Y.; Karayama, M.; Hozumi, H.; Suzuki, Y.; Enomoto, N.; et al. Factors associated with uncontrolled severe asthma in the biologic era. Respir. Med. 2025, 236, 107881. [Google Scholar] [CrossRef]
- Ricciardolo, F.L.M.; Sorbello, V.; Folino, A.; Gallo, F.; Massaglia, G.M.; Favatà, G.; Conticello, S.; Vallese, D.; Gani, F.; Malerba, M.; et al. Identification of IL-17F/frequent exacerbator endotype in asthma. J. Allergy Clin. Immunol. 2017, 140, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Jatakanon, A.; Uasuf, C.; Maziak, W.; Lim, S.; Chung, K.F.; Barnes, P.J. Neutrophilic inflammation in severe persistent asthma. Am. J. Respir. Crit. Care Med. 1999, 160 Pt 1, 1532–1539. [Google Scholar] [CrossRef] [PubMed]
- Vedel-Krogh, S.; Fallgaard Nielsen, S.; Lange, P.; Vestbo, J.; Nordestgaard, B.G. Association of Blood Eosinophil and Blood Neutrophil Counts with Asthma Exacerbations in the Copenhagen General Population Study. Clin. Chem. 2017, 63, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Zaihra, T.; Benedetti, A.; Fugère, C.; Olivenstein, R.; Lemière, C.; Hamid, Q.; Martin, J.G. Exacerbation risk in severe asthma is stratified by inflammatory phenotype using longitudinal measures of sputum eosinophils. Clin. Exp. Allergy 2016, 46, 1291–1302. [Google Scholar] [CrossRef]
- Ray, A.; Kolls, J.K. Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol. 2017, 38, 942–954. [Google Scholar] [CrossRef]
- Choi, J.S.; Jang, A.S.; Park, J.S.; Park, S.W.; Paik, S.H.; Park, J.S.; Uh, S.T.; Kim, Y.H.; Park, C.S. Role of neutrophils in persistent airway obstruction due to refractory asthma. Respirology 2012, 17, 322–329. [Google Scholar] [CrossRef]
- Shaw, D.E.; Berry, M.A.; Hargadon, B.; McKenna, S.; Shelley, M.J.; Green, R.H.; Brightling, C.E.; Wardlaw, A.J.; Pavord, I.D. Association between neutrophilic airway inflammation and airflow limitation in adults with asthma. Chest 2007, 132, 1871–1875. [Google Scholar] [CrossRef]
- Schleimer, R.; Bochner, B. The effects of glucocorticoids on human eosinophils. J. Allergy Clin. Immunol. 1994, 94 Pt 2, 1202–1213. [Google Scholar] [CrossRef]
- Tao, Z.; Zhu, H.; Zhang, J.; Huang, Z.; Xiang, Z.; Hong, T. Recent advances of eosinophils and its correlated diseases. Front. Public Health 2022, 10, 954721. [Google Scholar] [CrossRef]
- Cox, G. Glucocorticoid treatment inhibits apoptosis in human neutrophils. Separation of survival and activation outcomes. J. Immunol. 1995, 154, 4719–4725. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Lim, S.; Oates, T.; Chung, K.F. Increase in airway neutrophils after oral but not inhaled corticosteroid therapy in mild asthma. Respir. Med. 2005, 99, 200–207. [Google Scholar] [CrossRef]
- Hong, L.; Herjan, T.; Bulek, K.; Xiao, J.; Comhair, S.A.A.; Erzurum, S.C.; Li, X.; Liu, C. Mechanisms of Corticosteroid Resistance in Type 17 Asthma. J. Immunol. 2022, 209, 1860–1869. [Google Scholar] [CrossRef]
- Lee, J.; Hall, J.A.; Kroehling, L.; Wu, L.; Najar, T.; Nguyen, H.H.; Lin, W.Y.; Yeung, S.T.; Silva, H.M.; Li, D.; et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell 2020, 183, 2036–2039. [Google Scholar] [CrossRef]
- Wood, L.G.; Baines, K.J.; Fu, J.; Scott, H.A.; Gibson, P.G. The neutrophilic inflammatory phenotype is associated with systemic inflammation in asthma. Chest 2012, 142, 86–93. [Google Scholar] [CrossRef]
- Thomson, N.C.; Polosa, R.; Sin, D.D. Cigarette Smoking and Asthma. J. Allergy Clin. Immunol. Pract. 2022, 10, 2783–2797. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity and Overweight. Fact Sheet; World Health Organization: Geneva, Switzerland, 2025; Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 1 March 2024).
- Nathell, L.; Jensen, I.; Larsson, K. High prevalence of obesity in asthmatic patients on sick leave. Respir. Med. 2002, 96, 642–650. [Google Scholar] [CrossRef]
- Uribe-Querol, E.; Rosales, C. Neutrophils Actively Contribute to Obesity-Associated Inflammation and Pathological Complications. Cells 2022, 11, 1883. [Google Scholar] [CrossRef]
- Loffreda, S.; Yang, S.Q.; Lin, H.Z.; Karp, C.L.; Brengman, M.L.; Wang, D.J.; Klein, A.S.; Bulkley, G.B.; Bao, C.; Noble, P.W.; et al. Leptin regulates proinflammatory immune responses. FASEB J. 1998, 12, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Komakula, S.; Khatri, S.; Mermis, J.; Savill, S.; Haque, S.; Rojas, M.; Brown, L.; Teague, G.W.; Holguin, F. Body mass index is associated with reduced exhaled nitric oxide and higher exhaled 8-isoprostanes in asthmatics. Respir. Res. 2007, 8, 32. [Google Scholar] [CrossRef]
- Miethe, S.; Guarino, M.; Alhamdan, F.; Simon, H.U.; Renz, H.; Dufour, J.F.; Potaczek, D.P.; Garn, H. Effects of obesity on asthma: Immunometabolic links. Pol. Arch. Intern. Med. 2018, 128, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Bouloumie, A.; Marumo, T.; Lafontan, M.; Busse, R. Leptin induces oxidative stress in human endothelial cells. FASEB J. 1999, 13, 1231–1238. [Google Scholar] [CrossRef]
- Caldefie-Chezet, F.; Poulin, A.; Tridon, A.; Sion, B.; Vasson, M.P. Leptin: A potential regulator of polymorphonuclear neutrophil bactericidal action? J. Leukoc. Biol. 2001, 69, 414–418. [Google Scholar] [CrossRef]
- Kim, J.A.; Park, H.S. White blood cell count and abdominal fat distribution in female obese adolescents. Metabolism 2008, 57, 1375–1379. [Google Scholar] [CrossRef]
- Rhee, H.; Love, T.; Harrington, D. Blood Neutrophil Count is Associated with Body Mass Index in Adolescents with Asthma. JSM Allergy Asthma 2018, 3, 1019. [Google Scholar]
- Scott, H.A.; Gibson, P.G.; Garg, M.L.; Wood, L.G. Airway inflammation is augmented by obesity and fatty acids in asthma. Eur. Respir. J. 2011, 38, 594–602. [Google Scholar] [CrossRef]
- Winsa-Lindmark, S.; Stridsman, C.; Sahlin, A.; Hedman, L.; Stenfors, N.; Myrberg, T.; Lindberg, A.; Rönmark, E.; Backman, H. Severity of adult-onset asthma—A matter of blood neutrophils and severe obesity. Respir. Med. 2023, 219, 107418. [Google Scholar] [CrossRef] [PubMed]
- Backman, H.; Winsa Lindmark, S.; Hedman, L.; Kankaanranta, H.; Warm, K.; Lindberg, A.; Bossios, A.; Rönmark, E.; Stridsman, C. The interplay between obesity and blood neutrophils in adult-onset asthma. Respir. Med. 2024, 222, 107529. [Google Scholar] [CrossRef]
- Tay, T.R.; Hew, M. Comorbid “treatable traits” in difficult asthma: Current evidence and clinical evaluation. Allergy 2018, 73, 1369–1382. [Google Scholar] [CrossRef]
- Kiljander, T.O.; Salomaa, E.R.; Hietanen, E.K.; Terho, E.O. Gastroesophageal reflux in asthmatics: A double-blind, placebo-controlled crossover study with omeprazole. Chest 1999, 116, 1257–1264. [Google Scholar] [CrossRef]
- Bor, S.; Kitapcioglu, G.; Solak, Z.A.; Ertilav, M.; Erdinc, M. Prevalence of gastroesophageal reflux disease in patients with asthma and chronic obstructive pulmonary disease. J. Gastroenterol. Hepatol. 2010, 25, 309–313. [Google Scholar] [CrossRef]
- Leggett, J.J.; Johnston, B.T.; Mills, M.; Gamble, J.; Heaney, L.G. Prevalence of gastroesophageal reflux in difficult asthma: Relationship to asthma outcome. Chest 2005, 127, 1227–1231. [Google Scholar] [CrossRef]
- Simpson, J.L.; Baines, K.J.; Ryan, N.; Gibson, P.G. Neutrophilic asthma is characterised by increased rhinosinusitis with sleep disturbance and GERD. Asian Pac. J. Allergy Immunol. 2014, 32, 66–74. [Google Scholar] [CrossRef]
- Paoletti, G.; Melone, G.; Ferri, S.; Puggioni, F.; Baiardini, I.; Racca, F.; Canonica, G.W.; Heffler, E.; Malipiero, G. Gastroesophageal reflux and asthma: When, how, and why. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 52–58. [Google Scholar] [CrossRef]
- Takeda, N.; Takemura, M.; Kanemitsu, Y.; Hijikata, H.; Fukumitsu, K.; Asano, T.; Yamaba, Y.; Suzuki, M.; Kubota, E.; Kamiya, T.; et al. Effect of anti-reflux treatment on gastroesophageal reflux-associated chronic cough: Implications of neurogenic and neutrophilic inflammation. J. Asthma 2020, 57, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Woodruff, P.G.; Zhou, X. Advances in non-type 2 severe asthma: From molecular insights to novel treatment strategies. Eur. Respir. J. 2024, 64, 2300826. [Google Scholar] [CrossRef]
- Shimoda, T.; Obase, Y.; Kishikawa, R.; Iwanaga, T. Influence of cigarette smoking on airway inflammation and inhaled corticosteroid treatment in patients with asthma. Allergy Asthma Proc. 2016, 37, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Siew, L.Q.C.; Wu, S.Y.; Ying, S.; Corrigan, C.J. Cigarette smoking increases bronchial mucosal IL-17A expression in asthmatics, which acts in concert with environmental aeroallergens to engender neutrophilic inflammation. Clin. Exp. Allergy 2017, 47, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Belvisi, M.G.; Baker, K.; Malloy, N.; Raemdonck, K.; Dekkak, B.; Pieper, M.; Nials, A.T.; Birrell, M.A. Modelling the asthma phenotype: Impact of cigarette smoke exposure. Respir. Res. 2018, 19, 89. [Google Scholar] [CrossRef]
- Turan, N.; van der Veen, T.A.; Draijer, C.; Fattahi, F.; Ten Hacken, N.H.; Timens, W.; van Oosterhout, A.J.; van den Berge, M.; Melgert, B.N. Neutrophilic Asthma Is Associated With Smoking, High Numbers of IRF5+, and Low Numbers of IL10+ Macrophages. Front. Allergy 2021, 2, 676930. [Google Scholar] [CrossRef]
- Deng, K.; Zhang, X.; Liu, Y.; Zhang, L.; Wang, G.; Feng, M.; Oliver, B.G.; Wang, L.; Hansbro, P.M.; Qin, L.; et al. Heterogeneity of Paucigranulocytic Asthma: A Prospective Cohort Study with Hierarchical Cluster Analysis. J. Allergy Clin. Immunol. Pract. 2021, 9, 2344–2355. [Google Scholar] [CrossRef]
- Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef]
- Papaioannou, A.I.; Fouka, E.; Ntontsi, P.; Stratakos, G.; Papiris, S. Paucigranulocytic Asthma: Potential Pathogenetic Mechanisms, Clinical Features and Therapeutic Management. J. Pers. Med. 2022, 12, 850. [Google Scholar] [CrossRef]
- Siwicki, M.; Kubes, P. Neutrophils in host defense, healing, and hypersensitivity: Dynamic cells within a dynamic host. J. Allergy Clin. Immunol. 2023, 151, 634–655. [Google Scholar] [CrossRef] [PubMed]
- Nathan, C. Neutrophils and immunity: Challenges and opportunities. Nat. Rev. Immunol. 2006, 6, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Segal, A.W. How neutrophils kill microbes. Annu. Rev. Immunol. 2005, 23, 197–223. [Google Scholar] [CrossRef] [PubMed]
- Rosazza, T.; Warner, J.; Sollberger, G. NET formation—Mechanisms and how they relate to other cell death pathways. FEBS J. 2021, 288, 3334–3350. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Lämmermann, T.; Afonso, P.V.; Angermann, B.R.; Wang, J.M.; Kastenmüller, W.; Parent, C.A.; Germain, R.N. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 2013, 498, 371–375. [Google Scholar] [CrossRef]
- Uderhardt, S.; Martins, A.J.; Tsang, J.S.; Lämmermann, T.; Germain, R.N. Resident Macrophages Cloak Tissue Microlesions to Prevent Neutrophil-Driven Inflammatory Damage. Cell 2019, 177, 541–555.e17. [Google Scholar] [CrossRef]
- Christoffersson, G.; Vågesjö, E.; Vandooren, J.; Lidén, M.; Massena, S.; Reinert, R.B.; Brissova, M.; Powers, A.C.; Opdenakker, G.; Phillipson, M. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 2012, 120, 4653–4662. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, I.; Rubio-Ponce, A.; Genua, M.; Lusito, E.; Kwok, I.; Fernández-Calvo, G.; Khoyratty, T.E.; van Grinsven, E.; González-Hernández, S.; Nicolás-Ávila, J.Á.; et al. Co-option of neutrophil fates by tissue environments. Cell 2020, 183, 1282–1297.e18. [Google Scholar] [CrossRef]
- Kurimoto, T.; Yin, Y.; Habboub, G.; Gilbert, H.Y.; Li, Y.; Nakao, S.; Hafezi-Moghadam, A.; Benowitz, L.I. Neutrophils express oncomodulin and promote optic nerve regeneration. J. Neurosci. 2013, 33, 14816–14824. [Google Scholar] [CrossRef]
- Kunkel, S.L.; Standiford, T.; Kasahara, K.; Strieter, R.M. Interleukin-8 (IL-8): The major neutrophil chemotactic factor in the lung. Exp. Lung Res. 1991, 17, 17–23. [Google Scholar] [CrossRef]
- Chapman, R.W.; Phillips, J.E.; Hipkin, R.W.; Curran, A.K.; Lundell, D.; Fine, J.S. CXCR2 antagonists for the treatment of pulmonary disease. Pharmacol. Ther. 2009, 121, 55–68. [Google Scholar] [CrossRef]
- Varricchi, G.; Modestino, L.; Poto, R.; Cristinziano, L.; Gentile, L.; Postiglione, L.; Spadaro, G.; Galdiero, M.R. Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma. Clin. Exp. Med. 2022, 22, 285–300. [Google Scholar] [CrossRef]
- Crisford, H.; Sapey, E.; Stockley, R.A. Proteinase 3; a potential target in chronic obstructive pulmonary disease and other chronic inflammatory diseases. Respir. Res. 2018, 19, 180. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Huang, C.; Chen, G.; Kong, W.; Zhao, L.; Jie, H.; Zhen, G. The role of extracellular traps released by neutrophils, eosinophils, and macrophages in asthma. Respir. Res. 2024, 25, 290. [Google Scholar] [CrossRef] [PubMed]
- Papayannopoulos, V.; Metzler, K.D.; Hakkim, A.; Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 2010, 191, 677–691. [Google Scholar] [CrossRef]
- Lewis, B.W.; Ford, M.L.; Rogers, L.K.; Britt, R.D., Jr. Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants 2021, 10, 1335. [Google Scholar] [CrossRef]
- Metzler, K.D.; Fuchs, T.A.; Nauseef, W.M.; Reumaux, D.; Roesler, J.; Schulze, I.; Wahn, V.; Papayannopoulos, V.; Zychlinsky, A. Myeloperoxidase is required for neutrophil extracellular trap formation: Implications for innate immunity. Blood 2011, 117, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Postma, D.S.; Renkema, T.E.; Noordhoek, J.A.; Faber, H.; Sluiter, H.J.; Kauffman, H. Association between nonspecific bronchial hyperreactivity and superoxide anion production by polymorphonuclear leukocytes in chronic air-flow obstruction. Am. Rev. Respir. Dis. 1988, 137, 57–61. [Google Scholar] [CrossRef]
- Sanders, S.P. Nitric oxide in asthma. Pathogenic, therapeutic, or diagnostic? Am. J. Respir. Cell Mol. Biol. 1999, 21, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Comhair, S.A.; Bhathena, P.R.; Farver, C.; Thunnissen, F.B.; Erzurum, S.C. Extracellular glutathione peroxidase induction in asthmatic lungs: Evidence for redox regulation of expression in human airway epithelial cells. FASEB J. 2001, 15, 70–78. [Google Scholar] [CrossRef]
- Makena, P.; Kikalova, T.; Prasad, G.L.; Baxter, S.A. Oxidative Stress and Lung Fibrosis: Towards an Adverse Outcome Pathway. Int. J. Mol. Sci. 2023, 24, 12490. [Google Scholar] [CrossRef] [PubMed]
- Gentile, F.; Arcaro, A.; Pizzimenti, S.; Daga, M.; Cetrangolo, G.P.; Dianzani, C.; Lepore, A.; Graf, M.; Ames, P.R.J.; Barrera, G. DNA damage by lipid peroxidation products: Implications in cancer, inflammation and autoimmunity. AIMS Genet. 2017, 4, 103–137. [Google Scholar] [CrossRef]
- Hawkins, C.L.; Davies, M.J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem. 2019, 294, 19683–19708. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Kettritz, R.; Choi, M.; Rolle, S.; Wellner, M.; Luft, F.C. Integrins and cytokines activate nuclear transcription factor-kappaB in human neutrophils. J. Biol. Chem. 2004, 279, 2657–2665. [Google Scholar] [CrossRef]
- Barnabas, M.; Awakan, O.J.; Rotimi, D.E.; Akanji, M.A.; Adeyemi, O.S. Exploring redox imbalance and inflammation for asthma therapy. Mol. Biol. Rep. 2023, 50, 7851–7865. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.K.; Gibson, P.G.; Simpson, J.L.; McDonald, V.M.; Wood, L.G.; Baines, K.J. Neutrophil extracellular traps are associated with inflammation in chronic airway disease. Respirology 2016, 21, 467–475. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Gan, T.; Zhou, J.; Hu, F.; Hao, N.; Yuan, B.; Chen, Y.; Zhang, M. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps. Int. J. Oncol. 2019, 55, 69–80. [Google Scholar] [CrossRef]
- Pham, D.L.; Ban, G.Y.; Kim, S.H.; Shin, Y.S.; Ye, Y.M.; Chwae, Y.J.; Park, H.S. Neutrophil autophagy and extracellular DNA traps contribute to airway inflammation in severe asthma. Clin. Exp. Allergy 2017, 47, 57–70. [Google Scholar] [CrossRef]
- Liang, Y.; Hou, C.; Kong, J.; Wen, H.; Zheng, X.; Wu, L.; Huang, H.; Chen, Y. HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol. Cell Biochem. 2015, 405, 63–71. [Google Scholar] [CrossRef]
- Hosoki, K.; Ying, S.; Corrigan, C.; Qi, H.; Kurosky, A.; Jennings, K.; Sun, Q.; Boldogh, I.; Sur, S. Analysis of a Panel of 48 Cytokines in BAL Fluids Specifically Identifies IL-8 Levels as the Only Cytokine that Distinguishes Controlled Asthma from Uncontrolled Asthma, and Correlates Inversely with FEV1. PLoS ONE 2015, 10, e0126035. [Google Scholar] [CrossRef]
- Huang, A.X.; Lu, L.W.; Liu, W.J.; Huang, M. Plasma Inflammatory Cytokine IL-4, IL-8, IL-10, and TNF-α Levels Correlate with Pulmonary Function in Patients with Asthma-Chronic Obstructive Pulmonary Disease (COPD) Overlap Syndrome. Med. Sci. Monit. 2016, 22, 2800–2808. [Google Scholar] [CrossRef]
- Parnes, J.R.; Molfino, N.A.; Colice, G.; Martin, U.; Corren, J.; Menzies-Gow, A. Targeting TSLP in Asthma. J. Asthma Allergy 2022, 15, 749–765. [Google Scholar] [CrossRef]
- Ying, S.; O’Connor, B.; Ratoff, J.; Meng, Q.; Mallett, K.; Cousins, D.; Robinson, D.; Zhang, G.; Zhao, J.; Lee, T.H.; et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J. Immunol. 2005, 174, 8183–8190. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.; O’Connor, B.; Ratoff, J.; Meng, Q.; Fang, C.; Cousins, D.; Zhang, G.; Gu, S.; Gao, Z.; Shamji, B.; et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J. Immunol. 2008, 181, 2790–2798. [Google Scholar] [CrossRef] [PubMed]
- Allakhverdi, Z.; Comeau, M.R.; Jessup, H.K.; Yoon, B.R.; Brewer, A.; Chartier, S.; Paquette, N.; Ziegler, S.F.; Sarfati, M.; Delespesse, G. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med. 2007, 204, 253–258. [Google Scholar] [CrossRef]
- Ito, T.; Wang, Y.H.; Duramad, O.; Hori, T.; Delespesse, G.J.; Watanabe, N.; Qin, F.X.; Yao, Z.; Cao, W.; Liu, Y.J. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 2005, 202, 1213–1223. [Google Scholar] [CrossRef]
- Gilliet, M.; Soumelis, V.; Watanabe, N.; Hanabuchi, S.; Antonenko, S.; de Waal-Malefyt, R.; Liu, Y.J. Human dendritic cells activated by TSLP and CD40L induce proallergic cytotoxic T cells. J. Exp. Med. 2003, 197, 1059–1063. [Google Scholar] [CrossRef]
- Tanaka, J.; Watanabe, N.; Kido, M.; Saga, K.; Akamatsu, T.; Nishio, A.; Chiba, T. Human TSLP and TLR3 ligands promote differentiation of Th17 cells with a central memory phenotype under Th2-polarizing conditions. Clin. Exp. Allergy 2009, 39, 89–100. [Google Scholar] [CrossRef]
- Uddin, M.; Seumois, G.; Lau, L.C.; Rytila, P.; Davies, D.E.; Djukanovic, R. Enhancement of neutrophil function by the bronchial epithelium stimulated by epidermal growth factor. Eur. Respir. J. 2008, 31, 714–724. [Google Scholar] [CrossRef]
- Yamasaki, A.; Okazaki, R.; Harada, T. Neutrophils and Asthma. Diagnostics 2022, 12, 1175. [Google Scholar] [CrossRef] [PubMed]
- Al-Ramli, W.; Préfontaine, D.; Chouiali, F.; Martin, J.G.; Olivenstein, R.; Lemière, C.; Hamid, Q. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J. Allergy Clin. Immunol. 2009, 123, 1185–1187. [Google Scholar] [CrossRef] [PubMed]
- Bullens, D.M.; Truyen, E.; Coteur, L.; Dilissen, E.; Hellings, P.W.; Dupont, L.J.; Ceuppens, J.L. IL-17 mRNA in sputum of asthmatic patients: Linking T cell driven inflammation and granulocytic influx? Respir. Res. 2006, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Tello, A.; Semlali, A.; Chakir, J.; Martin, J.G.; Leung, D.Y.; Eidelman, D.H.; Hamid, Q. Induction of glucocorticoid receptor-beta expression in epithelial cells of asthmatic airways by T-helper type 17 cytokines. Clin. Exp. Allergy 2010, 40, 1312–1322. [Google Scholar] [CrossRef]
- Altieri, A.; Piyadasa, H.; Hemshekhar, M.; Osawa, N.; Recksiedler, B.; Spicer, V.; Hiemstra, P.S.; Halayko, A.J.; Mookherjee, N. Combination of IL-17A/F and TNF-α uniquely alters the bronchial epithelial cell proteome to enhance proteins that augment neutrophil migration. J. Inflamm. 2022, 19, 26. [Google Scholar] [CrossRef]
- Mukaida, N. Interleukin-8: An expanding universe beyond neutrophil chemotaxis and activation. Int. J. Hematol. 2000, 72, 391–398. [Google Scholar] [PubMed]
- Charrad, R.; Kaabachi, W.; Rafrafi, A.; Berraies, A.; Hamzaoui, K.; Hamzaoui, A. IL-8 Gene Variants and Expression in Childhood Asthma. Lung 2017, 195, 749–757. [Google Scholar] [CrossRef]
- Dimitrova, D.; Youroukova, V.; Ivanova-Todorova, E.; Tumangelova-Yuzeir, K.; Velikova, T. Serum levels of IL-5, IL-6, IL-8, IL-13 and IL-17A in pre-defined groups of adult patients with moderate and severe bronchial asthma. Respir. Med. 2019, 154, 144–154. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, C. Elevated Serum Interleukin-8 Level as a Preferable Biomarker for Identifying Uncontrolled Asthma and Glucocorticosteroid Responsiveness. Tanaffos 2017, 16, 260–269. [Google Scholar]
- Nocker, R.E.; Schoonbrood, D.F.; van de Graaf, E.A.; Hack, C.E.; Lutter, R.; Jansen, H.M.; Out, T.A. Interleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease. Int. Arch. Allergy Immunol. 1996, 109, 183–191. [Google Scholar] [CrossRef]
- Norzila, M.Z.; Fakes, K.; Henry, R.L.; Simpson, J.; Gibson, P.G. Interleukin-8 secretion and neutrophil recruitment accompanies induced sputum eosinophil activation in children with acute asthma. Am. J. Respir. Crit. Care Med. 2000, 161 Pt 1, 769–774. [Google Scholar] [CrossRef]
- Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef]
- Thornberry, N.A.; Bull, H.G.; Calaycay, J.R.; Chapman, K.T.; Howard, A.D.; Kostura, M.J.; Miller, D.K.; Molineaux, S.M.; Weidner, J.R.; Aunins, J.; et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992, 356, 768–774. [Google Scholar] [CrossRef]
- Kim, R.Y.; Pinkerton, J.W.; Essilfie, A.T.; Robertson, A.A.B.; Baines, K.J.; Brown, A.C.; Mayall, J.R.; Ali, M.K.; Starkey, M.R.; Hansbro, N.G.; et al. Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma. Am. J. Respir. Crit. Care Med. 2017, 196, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Gibson, P.G. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J. Allergy Clin. Immunol. 2011, 127, 153–160.e9. [Google Scholar] [CrossRef] [PubMed]
- Saikumar Jayalatha, A.K.; Hesse, L.; Ketelaar, M.E.; Koppelman, G.H.; Nawijn, M.C. The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. Pharmacol. Ther. 2021, 225, 107847. [Google Scholar] [CrossRef] [PubMed]
- Calderon, A.A.; Dimond, C.; Choy, D.F.; Pappu, R.; Grimbaldeston, M.A.; Mohan, D.; Chung, K.F. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. Eur. Respir. Rev. 2023, 32, 220144. [Google Scholar] [CrossRef]
- Griesenauer, B.; Paczesny, S. The ST2/IL-33 Axis in Immune Cells during Inflammatory Diseases. Front. Immunol. 2017, 8, 475. [Google Scholar] [CrossRef]
- Quoc, Q.L.; Cao, T.B.T.; Jang, J.H.; Shin, Y.S.; Choi, Y.; Park, H.S. ST2-Mediated Neutrophilic Airway Inflammation: A Therapeutic Target for Patients with Uncontrolled Asthma. Allergy Asthma Immunol. Res. 2024, 16, 22–41. [Google Scholar] [CrossRef]
- Lefrançais, E.; Roga, S.; Gautier, V.; Gonzalez-de-Peredo, A.; Monsarrat, B.; Girard, J.P.; Cayrol, C. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc. Natl. Acad. Sci. USA 2012, 109, 1673–1678. [Google Scholar] [CrossRef]
- Van Nevel, S.; van Ovost, J.; Holtappels, G.; DeRuyck, N.; Zhang, N.; Braun, H.; Maes, T.; Bachert, C.; Krysko, O. Neutrophils affect IL-33 processing in response to the respiratory allergen Alternaria. Front. Immunol. 2021, 12, 677848. [Google Scholar] [CrossRef]
- Curren, B.; Ahmed, T.; Howard, D.R.; Ashik Ullah, M.; Sebina, I.; Rashid, R.B.; Al Amin Sikder, M.; Namubiru, P.; Bissell, A.; Ngo, S.; et al. IL-33-induced neutrophilic inflammation and NETosis underlie rhinovirus-triggered exacerbations of asthma. Mucosal Immunol. 2023, 16, 671–684. [Google Scholar] [CrossRef]
- Syabbalo, N. Role of IL-17 and IL-23 in the Pathogenesis of Neutrophilic Asthma. Int. J. Immunol. Immunother. 2020, 7, 049. [Google Scholar] [CrossRef]
- Xiong, D.J.P.; Martin, J.G.; Lauzon, A.M. Airway smooth muscle function in asthma. Front. Physiol. 2022, 13, 993406. [Google Scholar] [CrossRef] [PubMed]
- Cundall, M.; Sun, Y.; Miranda, C.; Trudeau, J.B.; Barnes, S.; Wenzel, S.E. Neutrophil-derived matrix metalloproteinase-9 is increased in severe asthma and poorly inhibited by glucocorticoids. J. Allergy Clin. Immunol. 2003, 112, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Nadel, J.A. Role of enzymes from inflammatory cells on airway submucosal gland secretion. Respiration 1991, 58 (Suppl. S1), 3–5. [Google Scholar] [CrossRef]
- Vignola, A.M.; Bonanno, A.; Mirabella, A.; Riccobono, L.; Mirabella, F.; Profita, M.; Bellia, V.; Bousquet, J.; Bonsignore, G. Increased levels of elastase and alpha1-antitrypsin in sputum of asthmatic patients. Am. J. Respir. Crit. Care Med. 1998, 157, 505–511. [Google Scholar] [CrossRef]
- Chang, Y.; Al-Alwan, L.; Risse, P.A.; Roussel, L.; Rousseau, S.; Halayko, A.J.; Martin, J.G.; Hamid, Q.; Eidelman, D.H. TH17 cytokines induce human airway smooth muscle cell migration. J. Allergy Clin. Immunol. 2011, 127, 1046–1053.e2. [Google Scholar] [CrossRef]
- Gaffen, S.L.; Jain, R.; Garg, A.V.; Cua, D.J. The IL-23-IL-17 immune axis: From mechanisms to therapeutic testing. Nat. Rev. Immunol. 2014, 14, 585–600. [Google Scholar] [CrossRef]
- Halwani, R.; Al-Muhsen, S.; Al-Jahdali, H.; Hamid, Q. Role of transforming growth factor-β in airway remodeling in asthma. Am. J. Respir. Cell Mol. Biol. 2011, 44, 127–133. [Google Scholar] [CrossRef]
- Chu, H.W.; Trudeau, J.B.; Balzar, S.; Wenzel, S.E. Peripheral blood and airway tissue expression of transforming growth factor beta by neutrophils in asthmatic subjects and normal control subjects. J. Allergy Clin. Immunol. 2000, 106, 1115–1123. [Google Scholar] [CrossRef]
- Klironomou, A.; Papaiakovou, G.; Bakakos, A.; Anagnostopoulos, N.; Koukaki, E.; Theofani, E.; Semitekolou, M.; Rovina, N. Tezepelumab: A promising therapy for severe uncontrolled asthma. Explor. Asthma Allergy 2024, 2, 485–501. [Google Scholar] [CrossRef]
- Busse, W.W.; Holgate, S.; Kerwin, E.; Chon, Y.; Feng, J.; Lin, J.; Lin, S.L. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 2013, 188, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Amgen. A Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Safety and Efficacy of Brodalumab in Subjects with Inadequately Controlled Asthma and High Bronchodilator Reversibility; Report No.: NCT01902290; ClinicalTrials.gov: Bethesda, MD, USA, 2022. Available online: https://clinicaltrials.gov/study/NCT01902290 (accessed on 21 September 2022).
- Pujol, J.L.; Cosso, B.; Daurès, J.P.; Clot, J.; Michel, F.B.; Godard, P. Interleukin-1 release by alveolar macrophages in asthmatic patients and healthy subjects. Int. Arch. Allergy Appl. Immunol. 1990, 91, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.L.; Mills, K.; Almond, M.; Todoric, K.; Aleman, M.M.; Zhang, H.; Zhou, H.; Peden, D.B. IL-1 receptor antagonist reduces endotoxin-induced airway inflammation in healthy volunteers. J. Allergy Clin. Immunol. 2015, 135, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Ulich, T.R.; Yin, S.M.; Guo, K.Z.; del Castillo, J.; Eisenberg, S.P.; Thompson, R.C. The intratracheal administration of endotoxin and cytokines. III. The interleukin-1 (IL-1) receptor antagonist inhibits endotoxin- and IL-1-induced acute inflammation. Am. J. Pathol. 1991, 138, 521–524. [Google Scholar]
- Sabroe, I.; Lloyd, C.M.; Whyte, M.K.; Dower, S.K.; Williams, T.J.; Pease, J.E. Chemokines, innate and adaptive immunity, and respiratory disease. Eur. Respir. J. 2002, 19, 350–355. [Google Scholar] [CrossRef]
- Leaker, B.R.; Barnes, P.J.; O’Connor, B. Inhibition of LPS-induced airway neutrophilic inflammation in healthy volunteers with an oral CXCR2 antagonist. Respir. Res. 2013, 14, 137. [Google Scholar] [CrossRef]
- Nair, P.; Gaga, M.; Zervas, E.; Alagha, K.; Hargreave, F.E.; O’Byrne, P.M.; Stryszak, P.; Gann, L.; Sadeh, J.; Chanez, P.; et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: A randomized, placebo-controlled clinical trial. Clin. Exp. Allergy 2012, 42, 1097–1103. [Google Scholar] [CrossRef]
- O’Byrne, P.M.; Metev, H.; Puu, M.; Richter, K.; Keen, C.; Uddin, M.; Larsson, B.; Cullberg, M.; Nair, P. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: A randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2016, 4, 797–806. [Google Scholar] [CrossRef]
- Chu, D.K.; Al-Garawi, A.; Llop-Guevara, A.; Pillai, R.A.; Radford, K.; Shen, P.; Walker, T.D.; Goncharova, S.; Calhoun, W.J.; Nair, P.; et al. Therapeutic potential of anti-IL-6 therapies for granulocytic airway inflammation in asthma. Allergy Asthma Clin. Immunol. 2015, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Revez, J.A.; Bain, L.M.; Watson, R.M.; Towers, M.; Collins, T.; Killian, K.J.; O’Byrne, P.M.; Gauvreau, G.M.; Upham, J.W.; Ferreira, M.A. Effects of interleukin-6 receptor blockade on allergen-induced airway responses in mild asthmatics. Clin. Transl. Immunol. 2019, 8, e1044. [Google Scholar] [CrossRef]
- University of North Carolina. PrecISE (Precision Interventions for Severe and/or Exacerbation-Prone Asthma) Network Study; ClinicalTrials.gov: Bethesda, MD, USA, 2025. Available online: https://www.clinicaltrials.gov/study/NCT04129931 (accessed on 19 June 2025).
- Kelsen, S.G.; Agache, I.O.; Soong, W.; Israel, E.; Chupp, G.L.; Cheung, D.S.; Theess, W.; Yang, X.; Staton, T.L.; Choy, D.F.; et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. J. Allergy Clin. Immunol. 2021, 148, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, M.E.; Ruddy, M.K.; Pavord, I.D.; Israel, E.; Rabe, K.F.; Ford, L.B.; Maspero, J.F.; Abdulai, R.M.; Hu, C.C.; Martincova, R.; et al. Efficacy and Safety of Itepekimab in Patients with Moderate-to-Severe Asthma. N. Engl. J. Med. 2021, 385, 1656–1668. [Google Scholar] [CrossRef]
- Rabe, K.F.; Martinez, F.J.; Bhatt, S.P.; Kawayama, T.; Cosio, B.G.; Mroz, R.M.; Boomsma, M.M.; Goulaouic, H.; Nivens, M.C.; Djandji, M.; et al. AERIFY-1/2: Two phase 3, randomised, controlled trials of itepekimab in former smokers with moderate-to-severe COPD. ERJ Open Res. 2024, 10, 00718–02023. [Google Scholar] [CrossRef] [PubMed]
- Kosloski, M.P.; Guttman-Yassky, E.; Cork, M.J.; Worm, M.; Nahm, D.H.; Zhu, X.; Ruddy, M.K.; Harel, S.; Kamal, M.A.; Goulaouic, H.; et al. Pharmacokinetics and pharmacodynamics of itepekimab in adults with moderate-to-severe atopic dermatitis: Results from two terminated phase II trials. Clin. Transl. Sci. 2024, 17, e13874. [Google Scholar] [CrossRef]
- Corren, J.; Reid, F.; Moate, R.; Jimenez, E.; Sadiq, M.; Williams, A.; Rytelewski, M.; Muthas, D.; Brooks, D.; Lindqist, E.; et al. Frontier-3: A randomized, phase 2a study to evaluate the efficacy and safety of torozakimab (an interleukin-33 monoclonal antibody) in early-onset asthma. Thorax 2024, 79 (Suppl. S2), A65. [Google Scholar]
- Kere, M.; Klevebro, S.; Hernandez-Pacheco, N.; Ödling, M.; Ekström, S.; Mogensen, I.; Janson, C.; Palmberg, L.; van Hage, M.; Georgelis, A.; et al. Exploring proteomic plasma biomarkers in eosinophilic and neutrophilic asthma. Clin. Exp. Allergy 2023, 53, 186–197. [Google Scholar] [CrossRef]
- Quoc, Q.L.; Choi, Y.; Thi Bich, T.C.; Yang, E.M.; Shin, Y.S.; Park, H.S. S100A9 in adult asthmatic patients: A biomarker for neutrophilic asthma. Exp. Mol. Med. 2021, 53, 1170–1179. [Google Scholar] [CrossRef]
- Bich, T.; Quoc, Q.; Choi, Y.; Yang, E.; Trinh, H.; Shin, Y.; Park, H.S. Serum amyloid a1: A biomarker for neutrophilic airway inflammation in adult asthmatic patients. Allergy Asthma Immunol. Res. 2022, 14, 40–58. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Ni, H.; Zhong, J.; Zheng, Z.; Nie, H. Identification of hub genes and potential biomarkers of neutrophilic asthma: Evidence from a bioinformatics analysis. J. Asthma 2022, 60, 348–359. [Google Scholar] [CrossRef]
- Specjalski, K.; Romantowski, J.; Niedoszytko, M. YKL-40 as a possible marker of neutrophilic asthma. Front. Med. 2023, 10, 1115938. [Google Scholar] [CrossRef] [PubMed]
Study | Population Included | Material Assessed | Neutrophilic Asthma Diagnostic Criteria |
---|---|---|---|
Green et al. [4] | 259 patients with asthma 34 healthy controls | induced sputum | neutrophilia > 65% |
Moore et al. [6] | 423 severe asthma patients | induced sputum | neutrophilia > 40% |
Simpson et al. [5] | 93 patients with asthma 42 healthy controls | induced sputum | neutrophilia > 61% |
Bullone et al. [11] | 70 patients with mild-to-severe asthma | bronchial biopsies | 47.17 neutrophils/mm2 |
Belda et al. [12] | 118 healthy non-smokers | induced sputum | repeated neutrophilia > 65% or ≥5 × 109/L (at least twice) |
Demarche et al. [7] | 833 patients with asthma 94 healthy subjects | induced sputum | neutrophil count ≥ 76% |
Grunwell et al. [9] | 68 children with severe asthma | BAL | neutrophil count ≥ 5% |
Brooks et al. [13] | 194 patients with asthma 243 non-asthmatics | induced sputum | neutrophilia 62–76% depending on age |
Schleich et al. [14] | 508 patients with asthma | induced sputum | neutrophil count ≥ 76% |
Gibson et al. [15] | 56 non-smoking patients with asthma | induced sputum | neutrophilia > 64%, 283 × 106/mL |
Shi et al. [16] | 232 patients with asthma | induced sputum blood | neutrophilia > 61% blood neutrophil rate > 69% |
Neutrophilic Asthma | Eosinophilic Asthma | |
---|---|---|
Asthma onset | In adults, often after the age of 40 | Mostly before the age of 40, very often in children and young adults |
Asthma triggers | Infections, air pollution, smoking | Allergens |
Immunological mechanism | T2-low | T2-high, often IgE-mediated |
Response to ICS | Poor | Very good |
Clinical course | Quite often severe, exacerbation-prone | In most patients easy to control with standard therapy |
Biomarkers used in practice | None | Blood eosinophilia FeNO tIgE |
Concomitant Diseases | Obesity Smoking GERD | Allergic rhinitis Atopic dermatitis Chronic sinusitis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwaszko, I.; Specjalski, K.; Chełmińska, M.; Niedoszytko, M. Neutrophilic Asthma—From Mechanisms to New Perspectives of Therapy. J. Clin. Med. 2025, 14, 7137. https://doi.org/10.3390/jcm14207137
Iwaszko I, Specjalski K, Chełmińska M, Niedoszytko M. Neutrophilic Asthma—From Mechanisms to New Perspectives of Therapy. Journal of Clinical Medicine. 2025; 14(20):7137. https://doi.org/10.3390/jcm14207137
Chicago/Turabian StyleIwaszko, Ilona, Krzysztof Specjalski, Marta Chełmińska, and Marek Niedoszytko. 2025. "Neutrophilic Asthma—From Mechanisms to New Perspectives of Therapy" Journal of Clinical Medicine 14, no. 20: 7137. https://doi.org/10.3390/jcm14207137
APA StyleIwaszko, I., Specjalski, K., Chełmińska, M., & Niedoszytko, M. (2025). Neutrophilic Asthma—From Mechanisms to New Perspectives of Therapy. Journal of Clinical Medicine, 14(20), 7137. https://doi.org/10.3390/jcm14207137