Artificial Intelligence for the Identification of Vascular Imaging Biomarkers in COPD: Redefining Phenotypes and Enabling Precision Care
Author Contributions
Funding
Conflicts of Interest
References
- Chen, S.; Kuhn, M.; Prettner, K.; Yu, F.; Yang, T.; Barnighausen, T.; Bloom, D.E.; Wang, C. The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020-50: A health-augmented macroeconomic modelling study. Lancet Glob. Health 2023, 11, e1183–e1193. [Google Scholar] [CrossRef] [PubMed]
- Klimczak, M.K.; Krzepkowski, H.A.; Piotrowski, W.J.; Bialas, A.J. The Short-Term Efficacy of a Three-Week Pulmonary Rehabilitation Program among Patients with Obstructive Lung Diseases. J. Clin. Med. 2024, 13, 2576. [Google Scholar] [CrossRef] [PubMed]
- Spielmanns, M.; Schulze, S.T.; Guenes, E.; Pekacka-Falkowska, K.; Windisch, W.; Pekacka-Egli, A.M. Clinical Effects of Pulmonary Rehabilitation in Very Old Patients with COPD. J. Clin. Med. 2023, 12, 2513. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Chronic Obstructive Lung Disease. 2025 GOLD Report. Available online: https://goldcopd.org/2025-gold-report/ (accessed on 18 July 2024).
- Kim, N.E.; Kang, E.H.; Jung, J.Y.; Lee, C.Y.; Lee, W.Y.; Lim, S.Y.; Park, D.I.; Yoo, K.H.; Jung, K.S.; Lee, J.H. Subtypes of Patients with Mild to Moderate Airflow Limitation as Predictors of Chronic Obstructive Pulmonary Disease Exacerbation. J. Clin. Med. 2023, 12, 6643. [Google Scholar] [CrossRef]
- Nakamura, K.; Akagi, S.; Ejiri, K.; Taya, S.; Saito, Y.; Kuroda, K.; Takaya, Y.; Toh, N.; Nakayama, R.; Katanosaka, Y.; et al. Pathophysiology of Group 3 Pulmonary Hypertension Associated with Lung Diseases and/or Hypoxia. Int. J. Mol. Sci. 2025, 26, 835. [Google Scholar] [CrossRef]
- Rea, G.; Sverzellati, N.; Bocchino, M.; Lieto, R.; Milanese, G.; D’Alto, M.; Bocchini, G.; Maniscalco, M.; Valente, T.; Sica, G. Beyond Visual Interpretation: Quantitative Analysis and Artificial Intelligence in Interstitial Lung Disease Diagnosis “Expanding Horizons in Radiology”. Diagnostics 2023, 13, 2333. [Google Scholar] [CrossRef]
- Grana-Castro, O.; Izquierdo, E.; Pinas-Mesa, A.; Menasalvas, E.; Chivato-Perez, T. Assessing the Impact of New Technologies on Managing Chronic Respiratory Diseases. J. Clin. Med. 2024, 13, 6913. [Google Scholar] [CrossRef]
- Ambrosino, P.; Molino, A.; Calcaterra, I.; Formisano, R.; Stufano, S.; Spedicato, G.A.; Motta, A.; Papa, A.; Di Minno, M.N.D.; Maniscalco, M. Clinical Assessment of Endothelial Function in Convalescent COVID-19 Patients Undergoing Multidisciplinary Pulmonary Rehabilitation. Biomedicines 2021, 9, 614. [Google Scholar] [CrossRef]
- Ambrosino, P.; Candia, C.; Merola, C.; Lombardi, C.; Mancusi, C.; Matera, M.G.; Cazzola, M.; Maniscalco, M. Exploring the Impact of Inhaled Corticosteroids on Endothelial Function in Chronic Obstructive Pulmonary Disease Patients Undergoing Pulmonary Rehabilitation. J. Clin. Med. 2024, 13, 5749. [Google Scholar] [CrossRef]
- Hsia, C.C.W.; Bates, J.H.T.; Driehuys, B.; Fain, S.B.; Goldin, J.G.; Hoffman, E.A.; Hogg, J.C.; Levin, D.L.; Lynch, D.A.; Ochs, M.; et al. Quantitative Imaging Metrics for the Assessment of Pulmonary Pathophysiology: An Official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann. Am. Thorac. Soc. 2023, 20, 161–195. [Google Scholar] [CrossRef]
- Smith, L.A.; Oakden-Rayner, L.; Bird, A.; Zeng, M.; To, M.S.; Mukherjee, S.; Palmer, L.J. Machine learning and deep learning predictive models for long-term prognosis in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. Lancet Digit. Health 2023, 5, e872–e881. [Google Scholar] [CrossRef]
- Moll, M.; Qiao, D.; Regan, E.A.; Hunninghake, G.M.; Make, B.J.; Tal-Singer, R.; McGeachie, M.J.; Castaldi, P.J.; San Jose Estepar, R.; Washko, G.R.; et al. Machine Learning and Prediction of All-Cause Mortality in COPD. Chest 2020, 158, 952–964. [Google Scholar] [CrossRef]
- Estepar, R.S.; Kinney, G.L.; Black-Shinn, J.L.; Bowler, R.P.; Kindlmann, G.L.; Ross, J.C.; Kikinis, R.; Han, M.K.; Come, C.E.; Diaz, A.A.; et al. Computed tomographic measures of pulmonary vascular morphology in smokers and their clinical implications. Am. J. Respir. Crit. Care Med. 2013, 188, 231–239. [Google Scholar] [CrossRef]
- Cajigas, H.R.; Lavon, B.; Harmsen, W.; Muchmore, P.; Costa, J.; Mussche, C.; Pulsipher, S.; De Backer, J. Quantitative CT measures of pulmonary vascular volume distribution in pulmonary hypertension associated with COPD: Association with clinical characteristics and outcomes. Pulm. Circ. 2023, 13, e12321. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xia, S.; Liang, Z.; Chen, R.; Qi, S. Artificial intelligence in COPD CT images: Identification, staging, and quantitation. Respir. Res. 2024, 25, 319. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.D.; Norajitra, T.; Luth, C.T.; Wald, T.; Weru, V.; Nolden, M.; Jager, P.F.; von Stackelberg, O.; Heussel, C.P.; Weinheimer, O.; et al. Prediction of disease severity in COPD: A deep learning approach for anomaly-based quantitative assessment of chest CT. Eur. Radiol. 2024, 34, 4379–4392. [Google Scholar] [CrossRef] [PubMed]
- Alexander, K.C.; Ikonomidis, J.S.; Akerman, A.W. New Directions in Diagnostics for Aortic Aneurysms: Biomarkers and Machine Learning. J. Clin. Med. 2024, 13, 818. [Google Scholar] [CrossRef]
- Duus, L.S.; Vesterlev, D.; Nielsen, A.B.; Lassen, M.H.; Sivapalan, P.; Ulrik, C.S.; Lapperre, T.; Browatzki, A.; Estepar, R.S.J.; Nardelli, P.; et al. COPD: Pulmonary vascular volume associated with cardiac structure and function. Int. J. Cardiovasc. Imaging 2024, 40, 579–589. [Google Scholar] [CrossRef]
- Park, S.; Lee, S.M.; Hwang, H.J.; Oh, S.Y.; Choe, J.; Seo, J.B. Quantitative CT Imaging in Chronic Obstructive Pulmonary Disease. Br. J. Radiol. 2025, tqaf105, Online ahead of print. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallieres, M.; Abdalah, M.A.; Aerts, H.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Langlotz, C.P.; Allen, B.; Erickson, B.J.; Kalpathy-Cramer, J.; Bigelow, K.; Cook, T.S.; Flanders, A.E.; Lungren, M.P.; Mendelson, D.S.; Rudie, J.D.; et al. A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology 2019, 291, 781–791. [Google Scholar] [CrossRef]
- Thrall, J.H.; Li, X.; Li, Q.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. J. Am. Coll. Radiol. 2018, 15, 504–508. [Google Scholar] [CrossRef]
- Finnegan, S.L.; Browning, M.; Duff, E.; Harmer, C.J.; Reinecke, A.; Rahman, N.M.; Pattinson, K.T.S. Brain activity measured by functional brain imaging predicts breathlessness improvement during pulmonary rehabilitation. Thorax 2023, 78, 852–859. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rea, G.; Ambrosino, P.; Candia, C.; Maniscalco, M. Artificial Intelligence for the Identification of Vascular Imaging Biomarkers in COPD: Redefining Phenotypes and Enabling Precision Care. J. Clin. Med. 2025, 14, 7134. https://doi.org/10.3390/jcm14207134
Rea G, Ambrosino P, Candia C, Maniscalco M. Artificial Intelligence for the Identification of Vascular Imaging Biomarkers in COPD: Redefining Phenotypes and Enabling Precision Care. Journal of Clinical Medicine. 2025; 14(20):7134. https://doi.org/10.3390/jcm14207134
Chicago/Turabian StyleRea, Gaetano, Pasquale Ambrosino, Claudio Candia, and Mauro Maniscalco. 2025. "Artificial Intelligence for the Identification of Vascular Imaging Biomarkers in COPD: Redefining Phenotypes and Enabling Precision Care" Journal of Clinical Medicine 14, no. 20: 7134. https://doi.org/10.3390/jcm14207134
APA StyleRea, G., Ambrosino, P., Candia, C., & Maniscalco, M. (2025). Artificial Intelligence for the Identification of Vascular Imaging Biomarkers in COPD: Redefining Phenotypes and Enabling Precision Care. Journal of Clinical Medicine, 14(20), 7134. https://doi.org/10.3390/jcm14207134