Robotically Assisted vs. Manual Total Hip Arthroplasty in Developmental Hip Dysplasia: A Comparative Analysis of Radiological and Functional Outcomes
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Patients
2.3. Surgical Techniques
2.3.1. Robotically Assisted Surgical Technique
2.3.2. Conventional Manual Surgical Technique
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harsanyi, S.; Zamborsky, R.; Krajciova, L.; Kokavec, M.; Danisovic, L. Developmental Dysplasia of the Hip: A Review of Etiopathogenesis, Risk Factors, and Genetic Aspects. Medicina 2020, 56, 153. [Google Scholar] [CrossRef]
- Qian, H.; Wang, X.; Wang, H.; Zhang, G.; Dang, X.; Wang, K.; Liu, R. Total Hip Arthroplasty in Patients with Crowe III/IV Developmental Dysplasia of the Hip: Acetabular Morphology and Reconstruction Techniques. Orthop. Surg. 2023, 15, 1468–1476. [Google Scholar] [CrossRef] [PubMed]
- Zha, G.C.; Sun, J.Y.; Guo, K.J.; Zhao, F.C.; Pang, Y.; Zheng, X. Medial Protrusio Technique in Cementless Total Hip Arthroplasty for Developmental Dysplasia of the Hip: A Prospective 6- to 9-Year Follow-Up of 43 Consecutive Patients. J. Arthroplast. 2016, 31, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Akan, B.; Çetin, İ. Gelişimsel kalça displazisi zemininde gelişen artrozların tedavisinde total kalça artroplastisi. TOTBİD Dergisi. 2013, 12, 248–253. [Google Scholar] [CrossRef]
- Greber, E.M.; Pelt, C.E.; Gililland, J.M.; Anderson, M.B.; Erickson, J.A.; Peters, C.L. Challenges in Total Hip Arthroplasty in the Setting of Developmental Dysplasia of the Hip. J. Arthroplast. 2017, 32, S38–S44. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, Y.; Cai, L. Imageless Navigation versus Traditional Method in Total Hip Arthroplasty: A Meta-Analysis. Int. J. Surg. 2015, 21, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Nogler, M.; Kessler, O.; Prassl, A.; Donnelly, B.; Streicher, R.; Sledge, J.B.; Krismer, M. Reduced Variability of Acetabular Cup Positioning with Use of an Imageless Navigation System. Clin. Orthop. Relat. Res. 2004, 426, 159–163. [Google Scholar] [CrossRef]
- Perets, I.; Mu, B.H.; Mont, M.A.; Rivkin, G.; Kandel, L.; Domb, B.G. Current Topics in Robotic-Assisted Total Hip Arthroplasty: A Review. Hip Int. 2020, 30, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Ng, N.; Gaston, P.; Simpson, P.M.; Macpherson, G.J.; Patton, J.T.; Clement, N.D. Robotic Arm-Assisted versus Manual Total Hip Arthroplasty: A Systematic Review and Meta-Analysis. Bone Jt. J. 2021, 103, 1009–1020. [Google Scholar] [CrossRef]
- Subramanian, P.; Wainwright, T.W.; Bahadori, S.; Middleton, R.G. A Review of the Evolution of Robotic-Assisted Total Hip Arthroplasty. Hip Int. 2019, 29, 232–238. [Google Scholar] [CrossRef]
- Kouyoumdjian, P.; Mansour, J.; Assi, C.; Caton, J.; Lustig, S.; Coulomb, R. Current Concepts in Robotic Total Hip Arthroplasty. SICOT-J. 2020, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shao, H.; Huang, Y.; Deng, W.; Yang, D.; Bian, T. Does Robotic Assisted Technology Improve the Accuracy of Acetabular Component Positioning in Patients with DDH? J. Orthop. Surg. 2021, 29, 23094990211025325. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, B.R.; Anderson, P.; Khlopas, A.; Chughtai, M.; Mont, M.A.; Illgen, R.L. 2nd. Improved Functional Outcomes with Robotic Compared with Manual Total Hip Arthroplasty. Surg. Technol. Int. 2016, 29, 303–308. [Google Scholar]
- Han, P.F.; Chen, C.L.; Zhang, Z.L.; Han, Y.C.; Wei, L.; Li, P.C.; Wei, X.C. Robotics-assisted versus conventional manual approaches for total hip arthroplasty: A systematic review and meta-analysis of comparative studies. ’Int. J. Med. Robot. 2019, 15, e1990. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Hashimoto, S.; Kuroda, Y.; Nakano, N.; Matsumoto, T.; Ishida, K.; Shibanuma, N.; Kuroda, R. Robotic-Arm Assisted THA Can Achieve Precise Cup Positioning in Developmental Dysplasia of the Hip: A Case Control Study. Bone Jt. Res. 2021, 10, 629–638. [Google Scholar] [CrossRef]
- Karunaratne, S.; Duan, M.; Pappas, E.; Fritsch, B.; Boyle, R.; Gupta, S.; Stalley, P.; Horsley, M.; Steffens, D. The Effectiveness of Robotic Hip and Knee Arthroplasty on Patient-Reported Outcomes: A Systematic Review and Meta-Analysis. Int. Orthop. 2019, 43, 1283–1295. [Google Scholar] [CrossRef]
- Harada, S.; Hamai, S.; Shiomoto, K.; Hara, D.; Fujii, M.; Ikemura, S.; Motomura, G.; Nakashima, Y. Patient-Reported Outcomes after Primary or Revision Total Hip Arthroplasty: A Propensity Score-Matched Asian Cohort Study. PLoS ONE. 2021, 16, e0252112. [Google Scholar] [CrossRef] [PubMed]
- Çelik, D.; Can, C.; Aslan, Y.; Ceylan, H.H.; Bilsel, K.; Özdinçler, A.R. Translation, Cross-Cultural Adaptation, and Validation of the Turkish Version of the Harris Hip Score. Hip Int. 2014, 24, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Soysal Gündüz, Ö.; Mutlu, S.; Aslan Basli, A.; Gül, C.; Akgül, Ö.; Yilmaz, E.; Aydemir, Ö. Validation of the Turkish Form of Short Form-12 Health Survey Version 2 (SF-12v2). Arch. Rheumatol. 2021, 36, 280–286. [Google Scholar] [CrossRef]
- Kınıklı, G.İ.; Deniz, H.G.; Karahan, S.; Yüksel, E.; Kalkan, S.; Kara, D.D.; Önal, S.; Sevinç, C.; Çağlar, Ö.; Atilla, B.; et al. Validity and Reliability of Turkish Version of the Forgotten Joint Score-12. J. Exerc. Ther. Rehabil. 2017, 4, 18–25. [Google Scholar]
- Widmer, K.H. A Simplified Method to Determine Acetabular Cup Anteversion from Plain Radiographs. J. Arthroplast. 2004, 19, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Lewinnek, G.E.; Lewis, J.L.; Tarr, R.; Compere, C.L.; Zimmerman, J.R. Dislocations after Total Hip-Replacement Arthroplasties. J. Bone Jt. Surg. Am. 1978, 60, 217–220. [Google Scholar] [CrossRef]
- Sugano, N.; Takao, M.; Sakai, T.; Nishii, T.; Miki, H. Does CT-Based Navigation Improve the Long-Term Survival in Ceramic-on-Ceramic THA? Clin. Orthop. Relat. Res. 2012, 470, 3054–3059. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, S.; Ghaseminejad-Raeini, A.; Ghane, G.; Soleimani, M.; Mortazavi SM, J.; Shafiei, S.H. Total Hip Arthroplasty in Patients Who Have Crowe Type IV Developmental Dysplasia of the Hip: A Systematic Review. J. Arthroplast. 2024, 39, 2645–2660.e19. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.J.; Frampton, C.M.; Crawford, H.A. Early Results of Total Hip Arthroplasty in Patients with Developmental Dysplasia of the Hip Compared with Patients with Osteoarthritis. J. Arthroplast. 2012, 27, 386–390. [Google Scholar] [CrossRef]
- Biçici, V.; Bingöl, I.; Sazak, T. Mid-Term Results of Total Hip Arthroplasty with Subtrochanteric Z-Osteotomy in Crowe Type 3-4 Developmental Hip Dysplasia. Turk. J. Med. Sci. 2021, 51, 1976–1983. [Google Scholar] [CrossRef]
- Jin, J.Y.; Yoon, T.R.; Park, K.S.; Jin, S.Y.; Jung, D.M.; Li, Q.S. Mid-Term Results of Total Hip Arthroplasty with Modified Trochanteric Osteotomy in Crowe Type IV Developmental Dysplasia of the Hip. BMC Surg. 2021, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Domb, B.G.; El Bitar, Y.F.; Sadik, A.Y.; Stake, C.E.; Botser, I.B. Comparison of Robotic-Assisted and Conventional Acetabular Cup Placement in THA: A Matched-Pair Controlled Study. Clin. Orthop. Relat. Res. 2014, 472, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.J.; Singleton, N.; Frampton, C.M.; Muir, D. Functional Response to Total Hip Arthroplasty in Patients with Hip Dysplasia. ANZ J. Surg. 2013, 83, 554–558. [Google Scholar] [CrossRef]
- Palumbo, B.T.; Salomon, K.; Sullivan, A.; Simon, P.; Lyons, S.; Bernasek, T.L. Total Hip Arthroplasty with Subtrochanteric Osteotomy for Developmental Hip Dysplasia: A Long-Term Follow-Up Study. Arthroplast. Today 2022, 17, 101–106. [Google Scholar] [CrossRef]
- Nawabi, D.H.; Meftah, M.; Nam, D.; Ranawat, A.S.; Ranawat, C.S. Durable Fixation Achieved with Medialized, High Hip Center Cementless THAs for Crowe II and III Dysplasia. Clin. Orthop. Relat. Res. 2014, 472, 630–636. [Google Scholar] [CrossRef]
- Christodoulou, N.A.; Dialetis, K.P.; Christodoulou, A.N. High Hip Center Technique Using a Biconical Threaded Zweymüller Cup in Osteoarthritis Secondary to Congenital Hip Disease. Clin. Orthop. Relat. Res. 2010, 468, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Day, C.W.; Costi, K.; Pannach, S.; Atkins, G.J.; Hofstaetter, J.G.; Callary, S.A.; Nelson, R.; Howie, D.W.; Solomon, L.B. Long-Term Outcomes of Staged Revision Surgery for Chronic Periprosthetic Joint Infection of Total Hip Arthroplasty. J. Clin. Med. 2021, 11, 122. [Google Scholar] [CrossRef]
- Liu, T.; Wang, S.; Huang, G.; Wang, W. Treatment of Crowe IV Developmental Dysplasia of the Hip with Cementless Total Hip Arthroplasty and Shortening Subtrochanteric Osteotomy. J. Int. Med. Res. 2019, 47, 3223–3233. [Google Scholar] [CrossRef]
- Murray, D.W.; Grammatopoulos, G.; Pandit, H.; Gundle, R.; Gill, H.S.; McLardy-Smith, P. The ten-year survival of the Birmingham hip resurfacing: An independent series. J. Bone Jt. Surg. Br. 2012, 94, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Akbaba, Y.A.; Can, A.; Erdogan, F. The Outcome of Total Hip Arthroplasty in Patients with Developmental Dysplasia of the Hip. J. Back Musculoskelet. Rehabil. 2019, 32, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Perets, I.; Walsh, J.P.; Close, M.R.; Mu, B.H.; Yuen, L.C.; Domb, B.G. Robot-Assisted Total Hip Arthroplasty: Clinical Outcomes and Complication Rate. Int. J. Med. Robot. 2018, 14, e1912. [Google Scholar] [CrossRef] [PubMed]
- Masson, J.B.; Foissey, C.; Bertani, A.; Pibarot, V.; Rongieras, F. Transverse Subtrochanteric Shortening Osteotomy with Double Tension-Band Fixation during THA for Crowe III-IV Developmental Dysplasia: 12-Year Outcomes. Orthop. Traumatol. Surg. Res. 2023, 109, 103684. [Google Scholar] [CrossRef] [PubMed]
Variable | Robotically Assisted THA (n = 20) | Conventional Manual THA (n = 20) | |||
---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | P1 | |
Age (years) | 63.75 ± 6.13 | 53.99–73.50 | 61.50 ± 11.90 | 42.56–80.43 | 0.729 |
Body mass index (kg/m2) | 22.57 ± 1.67 | 19.91–25.24 | 24.59 ± 1.26 | 22.58–26.61 | 0.435 |
Number of chronic diseases | 1.25 ± 0.5 | 0.45–2.04 | 1.50 ± 0.57 | 0.58–2.41 | 0.537 |
n | % | n | % | P2 | |
Gender | |||||
Female | 18 | 90 | 18 | 90 | 1.000 |
Male | 2 | 10 | 2 | 10 | |
Crowe Types | |||||
Type III | 11 | 55 | 12 | 60 | 0.749 |
Type IV | 9 | 45 | 8 | 40 | |
Operated Extremity | |||||
Dominant | 14 | 70 | 13 | 65 | 0.736 |
Non-dominant | 6 | 30 | 7 | 35 |
Variable | Robotically Assisted THA (n = 20) | Conventional Manual THA (n = 20) | |||
---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | P | |
Acetabular inclination angle | 40.41 ± 2.67 | 39.15–41.66 | 39.96 ± 1.47 | 39.27–40.65 | 0.519 |
Acetabular anteversion angle | 19.17 ± 2.87 | 17.83–20.52 | 18.74 ± 2.98 | 17.35–20.14 | 0.640 |
Amount of femoral shortening (cm) | 2.77 ± 0.45 | 2.56–2.98 | 2.76 ± 0.48 | 2.53–2.99 | 0.947 |
VAS activity pain (cm) | 1.36 ± 0.41 | 1.16–1.55 | 1.42 ± 0.37 | 1.24–1.59 | 0.635 |
UCLA score | 22.70 ± 3.45 | 21.08–24.31 | 22.40 ± 3.21 | 20.89–23.90 | 0.778 |
Harris hip score | 73.85 ± 11.87 | 68.29–79.40 | 73.95 ± 10.60 | 68.98–78.91 | 0.978 |
Forgotten Joint Score-12 | 39.79 ± 12.91 | 33.75–45.84 | 39.89 ± 12.59 | 34.01–45.79 | 0.980 |
SF-12 physical score | 40.29 ± 3.87 | 38.47–42.11 | 40.32 ± 5.04 | 37.96–42.68 | 0.987 |
SF-12 mental score | 54.01 ± 5.20 | 51.58–56.45 | 55.88 ± 4.49 | 53.77–57.98 | 0.233 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zora, H.; Bayrak, G.; Bilgen, Ö.F. Robotically Assisted vs. Manual Total Hip Arthroplasty in Developmental Hip Dysplasia: A Comparative Analysis of Radiological and Functional Outcomes. J. Clin. Med. 2025, 14, 509. https://doi.org/10.3390/jcm14020509
Zora H, Bayrak G, Bilgen ÖF. Robotically Assisted vs. Manual Total Hip Arthroplasty in Developmental Hip Dysplasia: A Comparative Analysis of Radiological and Functional Outcomes. Journal of Clinical Medicine. 2025; 14(2):509. https://doi.org/10.3390/jcm14020509
Chicago/Turabian StyleZora, Hakan, Gökhan Bayrak, and Ömer Faruk Bilgen. 2025. "Robotically Assisted vs. Manual Total Hip Arthroplasty in Developmental Hip Dysplasia: A Comparative Analysis of Radiological and Functional Outcomes" Journal of Clinical Medicine 14, no. 2: 509. https://doi.org/10.3390/jcm14020509
APA StyleZora, H., Bayrak, G., & Bilgen, Ö. F. (2025). Robotically Assisted vs. Manual Total Hip Arthroplasty in Developmental Hip Dysplasia: A Comparative Analysis of Radiological and Functional Outcomes. Journal of Clinical Medicine, 14(2), 509. https://doi.org/10.3390/jcm14020509