Autoimmune Type 1 Diabetes: An Early Approach Appraisal for Spain by the AGORA Diabetes Collaborative Group
Abstract
:1. Introduction: Type 1 Diabetes, an Autoimmune Disease
2. T1D Staging
2.1. Pre-Stage 1: Genetic Predisposition and Immune Activation Phase
2.2. Stage 1: Presymptomatic Autoimmunity
2.3. Stage 2: Dysglycemia and Beta-Cell Dysfunction
2.4. Stage 3: Symptomatic T1D
2.5. Stage 4: Chronic Management and Complications
3. T1D Risk Prediction
4. T1D Monitoring in Preclinical Stages
5. T1D Arrest Attempts: Clinical Trials Update
6. T1D Screening Programs Update
6.1. Targeted Population: Relatives vs. General Population
6.2. Genetic and/or Autoantibody (AA) Screening
6.3. Benefits of Screening Programs
6.4. Follow-Up and Support Post-Screening
7. Spanish Health System, Strengths and Weaknesses for a Presymptomatic T1D Screening and Management Program
7.1. Universal Health Coverage and Accessibility
7.2. The Spanish PC Pediatrician Staff
7.3. Access to Specialized Care
7.4. Experience with Other Preventive Programs
7.5. Research and Development Infrastructures
7.6. Resources for Early Intervention Programs
7.7. Engagement and Participation of At-Risk Populations
8. Conclusions and Call to Action
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Insel, R.A.; Dunne, J.L.; Atkinson, M.A.; Chiang, J.L.; Dabelea, D.; Gottlieb, P.A.; Greenbaum, C.J.; Herold, K.C.; Krischer, J.P.; Lernmark, Å.; et al. Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 2015, 38, 1964–1974. [Google Scholar] [CrossRef]
- Bottazzo, G.F.; Florin-Christensen, A.; Doniach, D. Islet-Cell Antibodies in Diabetes Mellitus with Autoimmune Polyendocrine Deficiencies. Lancet 1974, 2, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Purcell, A.W.; Sechi, S.; DiLorenzo, T.P. The Evolving Landscape of Autoantigen Discovery and Characterization in Type 1 Diabetes. Diabetes 2019, 68, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Herold, K.C.; Bundy, B.N.; Long, S.A.; Bluestone, J.A.; DiMeglio, L.A.; Dufort, M.J.; Gitelman, S.E.; Gottlieb, P.A.; Krischer, J.P.; Linsley, P.S.; et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N. Engl. J. Med. 2019, 381, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Zajec, A.; Trebušak Podkrajšek, K.; Tesovnik, T.; Šket, R.; Čugalj Kern, B.; Jenko Bizjan, B.; Šmigoc Schweiger, D.; Battelino, T.; Kovač, J. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes 2022, 13, 706. [Google Scholar] [CrossRef] [PubMed]
- Redondo, M.J.; Steck, A.K.; Pugliese, A. Genetics of Type 1 Diabetes. Pediatr. Diabetes 2018, 19, 346–353. [Google Scholar] [CrossRef]
- Norris, J.M.; Johnson, R.K.; Stene, L.C. Type 1 Diabetes-Early Life Origins and Changing Epidemiology. Lancet Diabetes Endocrinol. 2020, 8, 226–238. [Google Scholar] [CrossRef]
- Houeiss, P.; Luce, S.; Boitard, C. Environmental Triggering of Type 1 Diabetes Autoimmunity. Front. Endocrinol. 2022, 13, 933965. [Google Scholar] [CrossRef] [PubMed]
- James, E.A.; Joglekar, A.V.; Linnemann, A.K.; Russ, H.A.; Kent, S.C. The Beta Cell-Immune Cell Interface in Type 1 Diabetes (T1D). Mol. Metab. 2023, 78, 101809. [Google Scholar] [CrossRef]
- Bender, C.; Rajendran, S.; von Herrath, M.G. New Insights Into the Role of Autoreactive CD8 T Cells and Cytokines in Human Type 1 Diabetes. Front. Endocrinol. 2020, 11, 606434. [Google Scholar] [CrossRef]
- Phillip, M.; Achenbach, P.; Addala, A.; Albanese-O’Neill, A.; Battelino, T.; Bell, K.J.; Besser, R.E.J.; Bonifacio, E.; Colhoun, H.M.; Couper, J.J.; et al. Consensus Guidance for Monitoring Individuals with Islet Autoantibody-Positive Pre-Stage 3 Type 1 Diabetes. Diabetologia 2024, 67, 1731–1759. [Google Scholar] [CrossRef] [PubMed]
- Sims, E.K.; Besser, R.E.J.; Dayan, C.; Geno Rasmussen, C.; Greenbaum, C.; Griffin, K.J.; Hagopian, W.; Knip, M.; Long, A.E.; Martin, F.; et al. Screening for Type 1 Diabetes in the General Population: A Status Report and Perspective. Diabetes 2022, 71, 610–623. [Google Scholar] [CrossRef]
- Mitchell, A.M.; Alkanani, A.A.; McDaniel, K.A.; Pyle, L.; Waugh, K.; Steck, A.K.; Nakayama, M.; Yu, L.; Gottlieb, P.A.; Rewers, M.J.; et al. T-Cell Responses to Hybrid Insulin Peptides Prior to Type 1 Diabetes Development. Proc. Natl. Acad. Sci. USA 2021, 118, e2019129118. [Google Scholar] [CrossRef] [PubMed]
- Mănescu, M.; Mănescu, I.B.; Grama, A. A Review of Stage 0 Biomarkers in Type 1 Diabetes: The Holy Grail of Early Detection and Prevention? J. Pers. Med. 2024, 14, 878. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Yu, L. Understanding Islet Autoantibodies in Prediction of Type 1 Diabetes. J. Endocr. Soc. 2023, 8, bvad160. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.G.; Rewers, M.; Simell, O.; Simell, T.; Lempainen, J.; Steck, A.; Winkler, C.; Ilonen, J.; Veijola, R.; Knip, M.; et al. Seroconversion to Multiple Islet Autoantibodies and Risk of Progression to Diabetes in Children. JAMA 2013, 309, 2473–2479. [Google Scholar] [CrossRef] [PubMed]
- Dayan, C.M.; Korah, M.; Tatovic, D.; Bundy, B.N.; Herold, K.C. Changing the Landscape for Type 1 Diabetes: The First Step to Prevention. Lancet 2019, 394, 1286–1296. [Google Scholar] [CrossRef]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef]
- Rimon, M.T.I.; Hasan, M.W.; Hassan, M.F.; Cesmeci, S. Advancements in Insulin Pumps: A Comprehensive Exploration of Insulin Pump Systems, Technologies, and Future Directions. Pharmaceutics 2024, 16, 944. [Google Scholar] [CrossRef] [PubMed]
- Bluestone, J.A.; Buckner, J.H.; Herold, K.C. Immunotherapy: Building a Bridge to a Cure for Type 1 Diabetes. Science. 2021, 373, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Alberti, P.; Demartines, N.; Phillips, M.; Casey, J.; Sutherland, A. Whole-Organ Pancreas and Islets Transplantations in UK: An Overview and Future Directions. J. Clin. Med. 2023, 12, 3245. [Google Scholar] [CrossRef] [PubMed]
- Sharp, S.A.; Rich, S.S.; Wood, A.R.; Jones, S.E.; Beaumont, R.N.; Harrison, J.W.; Schneider, D.A.; Locke, J.M.; Tyrrell, J.; Weedon, M.N.; et al. Development and Standardization of an Improved Type 1 Diabetes Genetic Risk Score for Use in Newborn Screening and Incident Diagnosis. Diabetes Care 2019, 42, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Luckett, A.M.; Weedon, M.N.; Hawkes, G.; Leslie, R.D.; Oram, R.A.; Grant, S.F.A. Utility of Genetic Risk Scores in Type 1 Diabetes. Diabetologia 2023, 66, 1589–1600. [Google Scholar] [CrossRef] [PubMed]
- Lernmark, Å.; Akolkar, B.; Hagopian, W.; Krischer, J.; McIndoe, R.; Rewers, M.; Toppari, J.; Vehik, K.; Ziegler, A.-G. Possible Heterogeneity of Initial Pancreatic Islet Beta-Cell Autoimmunity Heralding Type 1 Diabetes. J. Intern. Med. 2023, 294, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Krischer, J.P.; Liu, X.; Lernmark, Å.; Hagopian, W.A.; Rewers, M.J.; She, J.-X.; Toppari, J.; Ziegler, A.-G.; Akolkar, B. Predictors of the Initiation of Islet Autoimmunity and Progression to Multiple Autoantibodies and Clinical Diabetes: The TEDDY Study. Diabetes Care 2022, 45, 2271–2281. [Google Scholar] [CrossRef]
- Pöllänen, P.M.; Lempainen, J.; Laine, A.-P.; Toppari, J.; Veijola, R.; Vähäsalo, P.; Ilonen, J.; Siljander, H.; Knip, M. Characterisation of Rapid Progressors to Type 1 Diabetes among Children with HLA-Conferred Disease Susceptibility. Diabetologia 2017, 60, 1284–1293. [Google Scholar] [CrossRef]
- Voss, M.G.; Cuthbertson, D.D.; Cleves, M.M.; Xu, P.; Evans-Molina, C.; Palmer, J.P.; Redondo, M.J.; Steck, A.K.; Lundgren, M.; Larsson, H.; et al. Time to Peak Glucose and Peak C-Peptide During the Progression to Type 1 Diabetes in the Diabetes Prevention Trial and TrialNet Cohorts. Diabetes Care 2021, 44, 2329–2336. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. TZIELD Full Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761183s000lbl.pdf (accessed on 18 April 2024).
- Kokori, E.; Olatunji, G.; Ogieuhi, I.J.; Aboje, J.E.; Olatunji, D.; Aremu, S.A.; Igwe, S.C.; Moradeyo, A.; Ajayi, Y.I.; Aderinto, N. Teplizumab’s Immunomodulatory Effects on Pancreatic β-Cell Function in Type 1 Diabetes Mellitus. Clin. diabetes Endocrinol. 2024, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Ramos, E.L.; Dayan, C.M.; Chatenoud, L.; Sumnik, Z.; Simmons, K.M.; Szypowska, A.; Gitelman, S.E.; Knecht, L.A.; Niemoeller, E.; Tian, W.; et al. Teplizumab and β-Cell Function in Newly Diagnosed Type 1 Diabetes. N. Engl. J. Med. 2023, 389, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Prevention Trial–Type 1 Diabetes Study Group Effects of Insulin in Relatives of Patients with Type 1 Diabetes Mellitus. N. Engl. J. Med. 2002, 346, 1685–1691. [CrossRef]
- Skyler, J.S.; Krischer, J.P.; Wolfsdorf, J.; Cowie, C.; Palmer, J.P.; Greenbaum, C.; Cuthbertson, D.; Rafkin-Mervis, L.E.; Chase, H.P.; Leschek, E. Effects of Oral Insulin in Relatives of Patients with Type 1 Diabetes: The Diabetes Prevention Trial–Type 1. Diabetes Care 2005, 28, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Vandemeulebroucke, E.; Gorus, F.K.; Decochez, K.; Weets, I.; Keymeulen, B.; De Block, C.; Tits, J.; Pipeleers, D.G.; Mathieu, C. Insulin Treatment in IA-2A-Positive Relatives of Type 1 Diabetic Patients. Diabetes Metab. 2009, 35, 319–327. [Google Scholar] [CrossRef]
- Bonifacio, E.; Ziegler, A.-G.; Klingensmith, G.; Schober, E.; Bingley, P.J.; Rottenkolber, M.; Theil, A.; Eugster, A.; Puff, R.; Peplow, C.; et al. Effects of High-Dose Oral Insulin on Immune Responses in Children at High Risk for Type 1 Diabetes. JAMA 2015, 313, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Krischer, J.P.; Schatz, D.A.; Bundy, B.; Skyler, J.S.; Greenbaum, C.J. Effect of Oral Insulin on Prevention of Diabetes in Relatives of Patients With Type 1 Diabetes: A Randomized Clinical Trial. JAMA 2017, 318, 1891–1902. [Google Scholar] [CrossRef]
- Elding Larsson, H.; Lundgren, M.; Jonsdottir, B.; Cuthbertson, D.; Krischer, J. Safety and Efficacy of Autoantigen-Specific Therapy with 2 Doses of Alum-Formulated Glutamate Decarboxylase in Children with Multiple Islet Autoantibodies and Risk for Type 1 Diabetes: A Randomized Clinical Trial. Pediatr. Diabetes 2018, 19, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Assfalg, R.; Knoop, J.; Hoffman, K.L.; Pfirrmann, M.; Zapardiel-Gonzalo, J.M.; Hofelich, A.; Eugster, A.; Weigelt, M.; Matzke, C.; Reinhardt, J.; et al. Oral Insulin Immunotherapy in Children at Risk for Type 1 Diabetes in a Randomised Controlled Trial. Diabetologia 2021, 64, 1079–1092. [Google Scholar] [CrossRef]
- Ludvigsson, J.; Sumnik, Z.; Pelikanova, T.; Nattero Chavez, L.; Lundberg, E.; Rica, I.; Martínez-Brocca, M.A.; Ruiz de Adana, M.; Wahlberg, J.; Katsarou, A.; et al. Intralymphatic Glutamic Acid Decarboxylase with Vitamin D Supplementation in Recent-Onset Type 1 Diabetes: A Double-Blind, Randomized, Placebo-Controlled Phase IIb Trial. Diabetes Care 2021, 44, 1604–1612. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.; Eriksson, L.; Nowak, C.; Teixeira, P.F.; Widman, M.; Lindqvist, A.; Casas, R.; Lind, M.; Hannelius, U. Phase III, Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial to Evaluate the Efficacy and Safety of RhGAD65 to Preserve Endogenous Beta Cell Function in Adolescents and Adults with Recently Diagnosed Type 1 Diabetes, Carrying the Genetic HLA. BMJ Open 2022, 12, e061776. [Google Scholar] [CrossRef]
- Gale, E.A.M.; Bingley, P.J.; Emmett, C.L.; Collier, T. European Nicotinamide Diabetes Intervention Trial (ENDIT): A Randomised Controlled Trial of Intervention before the Onset of Type 1 Diabetes. Lancet 2004, 363, 925–931. [Google Scholar] [CrossRef]
- Mastrandrea, L.; Yu, J.; Behrens, T.; Buchlis, J.; Albini, C.; Fourtner, S.; Quattrin, T. Etanercept Treatment in Children with New-Onset Type 1 Diabetes: Pilot Randomized, Placebo-Controlled, Double-Blind Study. Diabetes Care 2009, 32, 1244–1249. [Google Scholar] [CrossRef] [PubMed]
- Pescovitz, M.D.; Greenbaum, C.J.; Krause-Steinrauf, H.; Becker, D.J.; Gitelman, S.E.; Goland, R.; Gottlieb, P.A.; Marks, J.B.; McGee, P.F.; Moran, A.M.; et al. Rituximab, B-Lymphocyte Depletion, and Preservation of Beta-Cell Function. N. Engl. J. Med. 2009, 361, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Orban, T.; Bundy, B.; Becker, D.J.; DiMeglio, L.A.; Gitelman, S.E.; Goland, R.; Gottlieb, P.A.; Greenbaum, C.J.; Marks, J.B.; Monzavi, R.; et al. Co-Stimulation Modulation with Abatacept in Patients with Recent-Onset Type 1 Diabetes: A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2011, 378, 412–419. [Google Scholar] [CrossRef]
- Ambery, P.; Donner, T.W.; Biswas, N.; Donaldson, J.; Parkin, J.; Dayan, C.M. Efficacy and Safety of Low-Dose Otelixizumab Anti-CD3 Monoclonal Antibody in Preserving C-Peptide Secretion in Adolescent Type 1 Diabetes: DEFEND-2, a Randomized, Placebo-Controlled, Double-Blind, Multi-Centre Study. Diabet. Med. 2014, 31, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Aronson, R.; Gottlieb, P.A.; Christiansen, J.S.; Donner, T.W.; Bosi, E.; Bode, B.W.; Pozzilli, P. Low-Dose Otelixizumab Anti-CD3 Monoclonal Antibody DEFEND-1 Study: Results of the Randomized Phase III Study in Recent-Onset Human Type 1 Diabetes. Diabetes Care 2014, 37, 2746–2754. [Google Scholar] [CrossRef] [PubMed]
- Rigby, M.R.; Harris, K.M.; Pinckney, A.; DiMeglio, L.A.; Rendell, M.S.; Felner, E.I.; Dostou, J.M.; Gitelman, S.E.; Griffin, K.J.; Tsalikian, E.; et al. Alefacept Provides Sustained Clinical and Immunological Effects in New-Onset Type 1 Diabetes Patients. J. Clin. Invest. 2015, 125, 3285–3296. [Google Scholar] [CrossRef]
- Haller, M.J.; Long, S.A.; Blanchfield, J.L.; Schatz, D.A.; Skyler, J.S.; Krischer, J.P.; Bundy, B.N.; Geyer, S.M.; Warnock, M.V.; Miller, J.L.; et al. Low-Dose Anti-Thymocyte Globulin Preserves C-Peptide, Reduces HbA(1c), and Increases Regulatory to Conventional T-Cell Ratios in New-Onset Type 1 Diabetes: Two-Year Clinical Trial Data. Diabetes 2019, 68, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Quattrin, T.; Haller, M.J.; Steck, A.K.; Felner, E.I.; Li, Y.; Xia, Y.; Leu, J.H.; Zoka, R.; Hedrick, J.A.; Rigby, M.R.; et al. Golimumab and Beta-Cell Function in Youth with New-Onset Type 1 Diabetes. N. Engl. J. Med. 2020, 383, 2007–2017. [Google Scholar] [CrossRef] [PubMed]
- von Herrath, M.; Bain, S.C.; Bode, B.; Clausen, J.O.; Coppieters, K.; Gaysina, L.; Gumprecht, J.; Hansen, T.K.; Mathieu, C.; Morales, C.; et al. Anti-Interleukin-21 Antibody and Liraglutide for the Preservation of β-Cell Function in Adults with Recent-Onset Type 1 Diabetes: A Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. Lancet Diabetes Endocrinol. 2021, 9, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Libman, I.; Bingley, P.J.; Becker, D.; Buckner, J.H.; DiMeglio, L.A.; Gitelman, S.E.; Greenbaum, C.; Haller, M.J.; Ismail, H.M.; Krischer, J.; et al. Hydroxychloroquine in Stage 1 Type 1 Diabetes. Diabetes Care 2023, 46, 2035–2043. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.E.; Bundy, B.N.; Anderson, M.S.; Cooney, L.A.; Gitelman, S.E.; Goland, R.S.; Gottlieb, P.A.; Greenbaum, C.J.; Haller, M.J.; Krischer, J.P.; et al. Abatacept for Delay of Type 1 Diabetes Progression in Stage 1 Relatives at Risk: A Randomized, Double-Masked, Controlled Trial. Diabetes Care 2023, 46, 1005–1013. [Google Scholar] [CrossRef]
- Mathieu, C.; Wiedeman, A.; Cerosaletti, K.; Long, S.A.; Serti, E.; Cooney, L.; Vermeiren, J.; Caluwaerts, S.; Van Huynegem, K.; Steidler, L.; et al. A First-in-Human, Open-Label Phase 1b and a Randomised, Double-Blind Phase 2a Clinical Trial in Recent-Onset Type 1 Diabetes with AG019 as Monotherapy and in Combination with Teplizumab. Diabetologia 2024, 67, 27–41. [Google Scholar] [CrossRef]
- Tatovic, D.; Marwaha, A.; Taylor, P.; Hanna, S.J.; Carter, K.; Cheung, W.Y.; Luzio, S.; Dunseath, G.; Hutchings, H.A.; Holland, G.; et al. Ustekinumab for Type 1 Diabetes in Adolescents: A Multicenter, Double-Blind, Randomized Phase 2 Trial. Nat. Med. 2024, 30, 2657–2666. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, I.B.; Kjolby, M.; Hjelholt, A.J.; Madsen, M.; Christensen, A.-M.R.; Adolfsen, D.; Hjelle, J.S.; Kremke, B.; Støvring, H.; Jessen, N.; et al. INfluenza VaccInation To Mitigate TypE 1 Diabetes (INVITED): A Study Protocol for a Randomised, Double-Blind, Placebo-Controlled Clinical Trial in Children and Adolescents with Recent-Onset Type 1 Diabetes. BMJ Open 2024, 14, e084808. [Google Scholar] [CrossRef] [PubMed]
- Ovalle, F.; Grimes, T.; Xu, G.; Patel, A.J.; Grayson, T.B.; Thielen, L.A.; Li, P.; Shalev, A. Verapamil and Beta Cell Function in Adults with Recent-Onset Type 1 Diabetes. Nat. Med. 2018, 24, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Gitelman, S.E.; Bundy, B.N.; Ferrannini, E.; Lim, N.; Blanchfield, J.L.; DiMeglio, L.A.; Felner, E.I.; Gaglia, J.L.; Gottlieb, P.A.; Long, S.A.; et al. Imatinib Therapy for Patients with Recent-Onset Type 1 Diabetes: A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. Lancet Diabetes Endocrinol. 2021, 9, 502–514. [Google Scholar] [CrossRef]
- Forlenza, G.P.; McVean, J.; Beck, R.W.; Bauza, C.; Bailey, R.; Buckingham, B.; DiMeglio, L.A.; Sherr, J.L.; Clements, M.; Neyman, A.; et al. Effect of Verapamil on Pancreatic Beta Cell Function in Newly Diagnosed Pediatric Type 1 Diabetes: A Randomized Clinical Trial. JAMA 2023, 329, 990–999. [Google Scholar] [CrossRef]
- Krogvold, L.; Mynarek, I.M.; Ponzi, E.; Mørk, F.B.; Hessel, T.W.; Roald, T.; Lindblom, N.; Westman, J.; Barker, P.; Hyöty, H.; et al. Pleconaril and Ribavirin in New-Onset Type 1 Diabetes: A Phase 2 Randomized Trial. Nat. Med. 2023, 29, 2902–2908. [Google Scholar] [CrossRef] [PubMed]
- Waibel, M.; Wentworth, J.M.; So, M.; Couper, J.J.; Cameron, F.J.; MacIsaac, R.J.; Atlas, G.; Gorelik, A.; Litwak, S.; Sanz-Villanueva, L.; et al. Baricitinib and β-Cell Function in Patients with New-Onset Type 1 Diabetes. N. Engl. J. Med. 2023, 389, 2140–2150. [Google Scholar] [CrossRef]
- Ramzy, A.; Thompson, D.M.; Ward-Hartstonge, K.A.; Ivison, S.; Cook, L.; Garcia, R.V.; Loyal, J.; Kim, P.T.W.; Warnock, G.L.; Levings, M.K.; et al. Implanted Pluripotent Stem-Cell-Derived Pancreatic Endoderm Cells Secrete Glucose-Responsive C-Peptide in Patients with Type 1 Diabetes. Cell Stem Cell 2021, 28, 2047–2061.e5. [Google Scholar] [CrossRef]
- Leão, I.S.; Dantas, J.R.; Araújo, D.B.; Ramos, M.E.N.; Silva, K.R.; Batista, L.S.; Pereira, M.d.F.C.; Luiz, R.R.; da Silva, C.C.; Maiolino, A.; et al. Evaluation of Type 1 Diabetes’ Partial Clinical Remission after Three Years of Heterologous Adipose Tissue Derived Stromal/Stem Cells Transplantation Associated with Vitamin D Supplementation. Diabetol. Metab. Syndr. 2024, 16, 114. [Google Scholar] [CrossRef] [PubMed]
- Mattila, M.; Erlund, I.; Lee, H.-S.; Niinistö, S.; Uusitalo, U.; Andrén Aronsson, C.; Hummel, S.; Parikh, H.; Rich, S.S.; Hagopian, W.; et al. Plasma Ascorbic Acid and the Risk of Islet Autoimmunity and Type 1 Diabetes: The TEDDY Study. Diabetologia 2020, 63, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Mattila, M.; Takkinen, H.-M.; Peltonen, E.J.; Vuorinen, A.-L.; Niinistö, S.; Metsälä, J.; Ahonen, S.; Åkerlund, M.; Hakola, L.; Toppari, J.; et al. Fruit, Berry, and Vegetable Consumption and the Risk of Islet Autoimmunity and Type 1 Diabetes in Children-the Type 1 Diabetes Prediction and Prevention Birth Cohort Study. Am. J. Clin. Nutr. 2024, 119, 537–545. [Google Scholar] [CrossRef]
- Cherubini, V.; Mozzillo, E.; Iafusco, D.; Bonfanti, R.; Ripoli, C.; Pricci, F.; Vincentini, O.; Agrimi, U.; Silano, M.; Ulivi, F.; et al. Follow-up and Monitoring Programme in Children Identified in Early-Stage Type 1 Diabetes during Screening in the General Population of Italy. Diabetes. Obes. Metab. 2024, 26, 4197–4202. [Google Scholar] [CrossRef]
- Mathieu, C.; Lahesmaa, R.; Bonifacio, E.; Achenbach, P.; Tree, T. Immunological Biomarkers for the Development and Progression of Type 1 Diabetes. Diabetologia 2018, 61, 2252–2258. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.-G.; Kick, K.; Bonifacio, E.; Haupt, F.; Hippich, M.; Dunstheimer, D.; Lang, M.; Laub, O.; Warncke, K.; Lange, K.; et al. Yield of a Public Health Screening of Children for Islet Autoantibodies in Bavaria, Germany. JAMA 2020, 323, 339–351. [Google Scholar] [CrossRef]
- Hummel, S.; Carl, J.; Friedl, N.; Winkler, C.; Kick, K.; Stock, J.; Reinmüller, F.; Ramminger, C.; Schmidt, J.; Lwowsky, D.; et al. Children Diagnosed with Presymptomatic Type 1 Diabetes through Public Health Screening Have Milder Diabetes at Clinical Manifestation. Diabetologia 2023, 66, 1633–1642. [Google Scholar] [CrossRef]
- Chiarelli, F.; Rewers, M.; Phillip, M. Screening of Islet Autoantibodies for Children in the General Population: A Position Statement Endorsed by the European Society for Paediatric Endocrinology. Horm. Res. Paediatr. 2022, 95, 393–396. [Google Scholar] [CrossRef] [PubMed]
- So, M.; Speake, C.; Steck, A.K.; Lundgren, M.; Colman, P.G.; Palmer, J.P.; Herold, K.C.; Greenbaum, C.J. Advances in Type 1 Diabetes Prediction Using Islet Autoantibodies: Beyond a Simple Count. Endocr. Rev. 2021, 42, 584–604. [Google Scholar] [CrossRef] [PubMed]
- Alonso, G.T.; Coakley, A.; Pyle, L.; Manseau, K.; Thomas, S.; Rewers, A. Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes in Colorado Children, 2010–2017. Diabetes Care 2020, 43, 117–121. [Google Scholar] [CrossRef]
- Kordonouri, O.; Lange, K.; Boettcher, I.; Christoph, J.; Marquardt, E.; Tombois, C.; Galuschka, L.; Stiller, D.; Mueller, I.; Roloff, F.; et al. New Approach for Detection of LDL-Hypercholesterolemia in the Pediatric Population: The Fr1dolin-Trial in Lower Saxony, Germany. Atherosclerosis 2019, 280, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Steck, A.K.; Vehik, K.; Bonifacio, E.; Lernmark, A.; Ziegler, A.-G.; Hagopian, W.A.; She, J.; Simell, O.; Akolkar, B.; Krischer, J.; et al. Predictors of Progression From the Appearance of Islet Autoantibodies to Early Childhood Diabetes: The Environmental Determinants of Diabetes in the Young (TEDDY). Diabetes Care 2015, 38, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Pöllänen, P.M.; Ryhänen, S.J.; Toppari, J.; Ilonen, J.; Vähäsalo, P.; Veijola, R.; Siljander, H.; Knip, M. Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years. J. Clin. Endocrinol. Metab. 2020, 105, e4638-51. [Google Scholar] [CrossRef] [PubMed]
- Winkler, C.; Haupt, F.; Heigermoser, M.; Zapardiel-Gonzalo, J.; Ohli, J.; Faure, T.; Kalideri, E.; Hommel, A.; Delivani, P.; Berner, R.; et al. Identification of Infants with Increased Type 1 Diabetes Genetic Risk for Enrollment into Primary Prevention Trials-GPPAD-02 Study Design and First Results. Pediatr. Diabetes 2019, 20, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Guertin, K.A.; Repaske, D.R.; Taylor, J.F.; Williams, E.S.; Onengut-Gumuscu, S.; Chen, W.-M.; Boggs, S.R.; Yu, L.; Allen, L.; Botteon, L.; et al. Implementation of Type 1 Diabetes Genetic Risk Screening in Children in Diverse Communities: The Virginia PrIMeD Project. Genome Med. 2024, 16, 31. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Gemulla, G.; Kiess, W.; Berner, R.; Hommel, A. Presymptomatic Type 1 Diabetes and Disease Severity at Onset. Diabetologia 2023, 66, 2387–2388. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, U.; Steineck, I.; Gubbjornsdottir, S. A High Mean-HbA1c Value 3-15 Months after Diagnosis of Type 1 Diabetes in Childhood Is Related to Metabolic Control, Macroalbuminuria, and Retinopathy in Early Adulthood—A Pilot Study Using Two Nation-Wide Population Based Quality Registries. Pediatr. Diabetes 2014, 15, 229–235. [Google Scholar] [CrossRef] [PubMed]
- McQueen, R.B.; Geno Rasmussen, C.; Waugh, K.; Frohnert, B.I.; Steck, A.K.; Yu, L.; Baxter, J.; Rewers, M. Cost and Cost-Effectiveness of Large-Scale Screening for Type 1 Diabetes in Colorado. Diabetes Care 2020, 43, 1496–1503. [Google Scholar] [CrossRef]
- Quinn, L.M.; Narendran, P.; Bhavra, K.; Boardman, F.; Greenfield, S.M.; Randell, M.J.; Litchfield, I. Developing a General Population Screening Programme for Paediatric Type 1 Diabetes: Evidence from a Qualitative Study of the Perspectives and Attitudes of Parents. Pediatr. Diabetes 2024, 2024, 9927027. [Google Scholar] [CrossRef]
- Teixeira, P.F.; Battelino, T.; Carlsson, A.; Gudbjörnsdottir, S.; Hannelius, U.; von Herrath, M.; Knip, M.; Korsgren, O.; Elding Larsson, H.; Lindqvist, A.; et al. Assisting the Implementation of Screening for Type 1 Diabetes by Using Artificial Intelligence on Publicly Available Data. Diabetologia 2024, 67, 985–994. [Google Scholar] [CrossRef]
- Al-Gadi, I.S.; Albalawi, A.D.; Al Khalifah, R.A. The Psychometric Properties of the Type 1 Diabetes Mellitus Screening Acceptability Assessment (DMSA) Scale among General Population. Pediatr. Diabetes 2024, 2024, 1286029. [Google Scholar] [CrossRef]
Study | Design | Population | Intervention | Primary Outcome | Findings |
---|---|---|---|---|---|
Antigen-specific immune therapy (for tolerance induction) | |||||
Skyler et al., 2002 (DPT-1) [31] | Multicenter, double-blind trial | Aab+ first-degree relatives with high-risk features (n = 339) | 0.25 U/kg ultralente + annual 4-day continuous insulin infusion vs. no intervention | Time to diabetes | Follow-up: 3.7 years Insulin at the dosage used did not delay or prevent T1D |
Skyler et al., 2005 (DPT-1) [32] | Multicenter, double-blind trial | Aab+ first-degree relatives with high-risk features (n = 372) | Oral insulin (7.5 mg/day) vs. placebo | Time to diabetes | Follow-up: 4.3 years Oral insulin did not delay or prevent T1D * |
Näntö-Salonen et al., 2008 [33] | Multicenter, double-blind trial | Infants with high-risk HLA genotype and their siblings with high-risk HLA and multiple Aab+ (n = 264) | Intranasal daily recombinant human short-acting insulin vs. placebo | Time to diabetes | Follow-up: 1.7–2.0 years Intranasal insulin did not delay or prevent the development of T1D |
Vandemeulebroucke et al., 2009 [33] | Multicenter, double-blind trial | IA-2A+ relatives (n = 50) | Parenteral regular human insulin twice a day | Time to diabetes | Follow-up: 47–52 months No difference in diabetes-free survival between the two groups |
Bonifacio et al., 2015 (Pre-POINT) [34] | Unicenter, double-blind trial | Aab- children with a family history of T1D high-risk HLA haplotypes (n = 25) | 7.5 mg to 67.5 mg of oral insulin or placebo | Antibody or T cell response to insulin | Follow-up: 12 months Daily oral administration of insulin resulted in an immune response |
Krischer et al., 2017 [35] (TN07) | Multicenter, double-blind trial | Multiple Aab+ relatives with insulin Aab+ (n = 560) | 7.5 mg daily oral recombinant human insulin vs. placebo | Time to diabetes | Follow-up: 2.7 years Oral insulin did not delay or prevent the development of T1D |
EldingLarsson et al., 2018 (DiAPREV-IT) [36] | Double-blind trial | Multiple Aab+ children with GADA+ | 2 injections of 20 μg GAD-Alum or placebo, 30 days apart | Safety and cumulative incidence of diabetes | Follow-up: 4.92 years GAD-Alum did not affect progression to T1D |
Assfalg et al., 2021 (Pre-POINT early) [37] | Unicenter, double-blind trial | Aab- children with a family history of T1D high-risk HLA haplotypes (n = 44) | 7.5 mg to 67.5 mg of oral insulin or placebo | Antibody or T cell response to insulin | Follow-up: 12 months No differences in immune responses to insulin |
Lugvinsson et al., 2021 [38] | Multicenter, double-blind trial | Children and young adults with recently diagnosed T1D and GADA+ carrying HLA DR3-DQ2 (n = 48) | 3 intralymphatic injections (1 month apart) with 4 μg GAD-alum and oral vitamin D or placebo | Endogenous insulin production | Follow-up: 15 months The combination improved stimulated C-peptide levels |
Lugvinsson et al., 2022 [39] | Multicenter, double-blind trial | Children and young adults with recently diagnosed T1D and GADA+ carrying HLA DR3-DQ2 (n = 330) | 3 intralymphatic injections of rhGAD65 and oral vitamin D or placebo | Endogenous insulin production and glycemic control | Follow-up: 22 months Ongoing |
PINIT Study (NCT03182322) | Multicenter, double-blind trial | Aab- children with the HLA DR3/4-DQ8 genotype or with a first degree relative with T1D and at least one high-risk HLA haplotype | Intranasal insulin or placebo | Antibody or T cell response to insulin at any time point during treatment | Completed; pending results |
Fr1da Insulin Intervention Study (NCT02620072) | Multicenter, double-blind trial | Children with multiple Aab | 7.5 mg to 67.5 mg of oral insulin or placebo | Time to dysglycemia or diabetes | Ongoing |
Immune modulation (for restoring the balance) | |||||
Gale et al., 2004 (ENDIT) [40] | Multicenter, double-blind trial | Aab+ relatives (n = 552) | Oral nicotinamide (1.2 g/m2) or placebo | Development of diabetes | Follow-up: 5 years No differences in T1D incidence |
Mastraendrea et al., 2009 [41] | Unicenter, double-blind trial | Children and adolescents with newly diagnosed T1D (n = 18) | Etanercept or placebo | HbA1C | Follow-up: 24 weeks HbA1C values were lower in the etanercept group |
Pescovitz et al., 2009 [42] | Multicenter, double-blind trial | Children and adults with newly diagnosed T1D (n = 87) | Rituximab or placebo | Preservation of beta-cell function | Follow-up: 24 weeks Rituximab improved stimulated C-peptide levels |
Orban et al., 2011 [43] | Multicenter, double-blind trial | Children and adults with newly diagnosed T1D (n = 112) | Abatacept or placebo | Preservation of beta-cell function | Follow-up: 1 year Abatacept improved stimulated C-peptide levels |
Ambery et al., 2014 [44] | Multicenter, double-blind trial | Adolescents with newly diagnosed T1D (n = 54) | (Low-dose) otelixizumab or placebo | Endogenous insulin production | Follow-up: 12 months No improvement in stimulated C-peptide levels |
Aronson et al., 2014 [45] | Multicenter, double-blind trial | Individuals with newly diagnosed T1D (n = 218) | (Low-dose) otelixizumab or placebo | Endogenous insulin production | Follow-up: 12 months No improvement in stimulated C-peptide levels |
Rigby et al., 2015 [46] | Multicenter, double-blind trial | Individuals with newly diagnosed T1D (n = 49) | Alefacept or placebo | Endogenous insulin production | Follow-up: 15 months after last dose Alefacept improved stimulated C-peptide levels |
Haller et al., 2019 [47] | Multicenter, double-blind trial | Individuals with newly diagnosed T1D (n = 89) | Low-dose ATG ± GCSF or placebo | Endogenous insulin production | Follow-up: 2 years Only low-dose ATG improved stimulated C-peptide levels |
Herold et al., 2019 [4] | Multicenter, double-blind trial | Aab+ relatives with high-risk features (n = 76) | Teplizumab or placebo | Time to diabetes | Follow-up: more than 3 years Teplizumab delayed progression to clinical T1D |
Quattrin et al., 2020 (T1GER) [48] | Multicenter, double-blind trial | Children and young adults with newly diagnosed T1D (stage 3) (n = 84) | Golimumab or placebo | Endogenous insulin production | Follow-up: 52 weeks Golimumab improved stimulated C-peptide levels |
Keymeulen et al., 2021 [45] | Multicenter, double-blind trial | Individuals with newly diagnosed T1D (n = 30) | Otelixizumab or placebo | Endogenous insulin production | Follow-up: 24 months Otelixizumab 9 mg improved stimulated C-peptide levels |
Von Herrath et al., 2021 [49] | Multicenter, double-blind trial | Adults with recently diagnosed T1D (n = 308) | Anti-IL-21 plus liraglutide or placebo | Endogenous insulin production | Follow-up: 54 weeks The combination improved stimulated C-peptide levels |
Libman et al., 2023 [50] | Multicenter, double-blind trial | Individuals with stage 1 T1D | Hydroxychloroquine or placebo | Progression to stage 2 T1D | Follow-up: 23.3 months Prematurely stopped due to futility |
Russell et al. 2023 [51] | Multicenter, double-blind trial | Aab+ relatives (n = 212) | Abatacept or placebo | Time to glucose intolerance or diabetes | Follow-up: 36.9 months No significant delay in progression to glucose intolerance |
Ramos et al., 2023 [30] | Multicenter, double-blind trial | Children with newly diagnosed T1D (stage 3) (n = 328) | Teplizumab or placebo | Preservation of beta-cell function | Follow-up: 78 weeks Teplizumab improved stimulated C-peptide levels |
Mathieu et al., 2024 [52] | Multicenter, double-blind trial | Adolescents and adults with recently diagnosed T1D (stage 3) (n = 328) | Oral AG019 ± teplizumab | Metabolic and immune endpoints | Follow-up: 12 months AG019/teplizumab stabilized or improved metabolic variables |
Tatovik et al., 2024 [53] | Multicenter, double-blind trial | Adolescents with new-onset T1D (n = 72) | Ustekinumab or placebo | Endogenous beta-cell function | Follow-up 12 months Ustekinumab improved stimulated C-peptide levels |
Perdersen et al., 2024 [54] | Multicenter, double-blind trial | Children and adolescents with recent-onset T1D | Inactivated quadrivalent influenza vaccine or placebo | Endogenous beta-cell function | Ongoing |
NCT04524949 (IMPACT study) | Multicenter, double-blind trial | Adults with recently diagnosed T1D | IMCY-0098 or placebo | Endogenous beta-cell function | Ongoing |
Harnessing the beta-cell loss | |||||
Ovalle et al., 2018 [55] | Multicenter, double-blind trial | Adults with recent-onset clinical T1D (n = 32) | Verapamil or placebo | Endogenous beta-cell function | Follow-up: 12 months Verapamil improved stimulated C-peptide levels |
Gitelman et al., 2021 [56] | Multicenter, double-blind trial | Adults with recent-onset clinical T1D (n = 67) | Imatinib or placebo | Endogenous beta-cell function | Follow-up: 12 months Imatinib improved stimulated C-peptide levels |
Forlenza et al., 2023 [57] | Multicenter, double-blind trial | Children and adolescents with newly diagnosed T1D (n = 88) | Verapamil or placebo | Endogenous beta-cell function | Follow-up: 52 weeks Verapamil improved stimulated C-peptide levels |
Krogvold et al., 2023 [58] | Multicenter, double-blind trial | Children and adolescents with newly diagnosed T1D (n = 96) | Pleconaril and ribavirin or placebo | Endogenous beta-cell function | Follow-up: 12 months The combination improved stimulated C-peptide levels |
Waibel et al., 2023 [59] | Multicenter, double-blind trial | Children and young adults with newly diagnosed T1D (n = 91) | Baricitinib or placebo | Endogenous beta-cell function | Follow-up: 48 weeks Baricitinib improved stimulated C-peptide levels |
Cell therapy | |||||
Ramzy et al., 2021 [60] | Phase 1/2 study | Adults with established T1D (n = 15) | Subcutaneously implanted PEC | Safety and efficacy parameters | Follow-up: 1 year Reduced insulin requirement |
Leão et al., 2024 [61] | Retrospective cohorts | Patients with recent-onset T1D | Infusion of ASC + vitamin D | Partial clinical remission | Follow-up: 36 months Less insulin requirement than controls |
Program | Target Population | Location | Number Screened | Method | Positivity Rates | Remarks |
---|---|---|---|---|---|---|
Screening programs for relatives of patients with T1D | ||||||
TrialNet Pathway to Prevention (TN01) | Relatives aged 3–45 years | U.S., Canada, Europe, Australia | >250,000 | RBA: IAA and GADA, followed by IA-2A, ZnT8A, and ICA if positive | AA+: 5% ≥2 AA+: 2.5% | Main aim: identify participants eligible for clinical trials |
INNODIA | Relatives and general population | Europe | >4400 | RBA | 1 AA+: 6.0% ≥2 AA+: 2.6% >2 AA+: 1.0% 3 AA+: 0.9% 4 AA+: 0.8% | |
Bart’s Oxford (BOX) Family Study | Relatives | United Kingdom | 6000 | RBA: IAA, GADA, IA-2A, ZnT8A | 1 AA+: 6% ≥2 AA+: 2% | Family members recruited at diagnosis of a proband (<21 years old) in the study area |
Type1Screen | Relatives aged 2–30 years | Australia and New Zealand | >700 | IAA: RBA or ADAP; GADA, IA-2A, ZNT8A, ELISA, or ADAP | AA+: 5% 1 AA+: 1.9% ≥2 AA+: 3.9% | Family members recruited by health professionals, emails, and social media |
Screening programs for general population with genetic risk | ||||||
DIPP | Age 0.25–15 years with high-risk HLA genotypes | Finland | >250,000 | HLA genotyping followed by RBA: IAA, GADA, IA-2A, ZnT8A | ∼10% of screens with high-risk HLA ≥ 2 AA+: by 2 years: 2.2% by 5 years: 3.5% by 15 years: 5.0% | Follow-up for AA screening at 3- to 12-month intervals up to age 15 years |
BABY- SCREEN | Newborns to 3 years with high-risk HLA for T1D and/or celiac disease | Helsinki, Finland | Target for HLA screening: 30,000; > 9000 tested | HLA genotyping followed by RBA: IAA, GADA, IA-2A, ZnT8A, tTGA | By 1 year: 1 AA+: 5.3% ≥2 AA+: 1.8% By 2 years: 1 AA+: 6.5% ≥2 AA+: 3.7% | Newborn infants from the general population were screened at birth for HLA-conferred susceptibility to T1D and celiac disease |
GPPAD | Infants < 1 month of age | Germany, U.K., Poland, Belgium, and Sweden | >275,000 (1.72% first-degree relatives) | 47-SNP GRS to identify those with > 10% risk of ≥ 2 AA+ by age 6 years | 1.1% with increased genetic risk | At-risk infants are candidates for a primary prevention trial |
PLEDGE | Age < 6 years | North and South Dakota and Minnesota, U.S. | Intended = 33,000 | GRS, RBA | Pending results | GRS with newborn screen or study entry; AA testing at ∼2 and 5 years |
CASCADE | Age ≥ 1 year | Northwest U.S. | Intended = 60,000 | GRS, RBA: GADA, IAA, ZnT8A, tTGA; LIPS for IA-2A | Pending results | Initial GRS screen, at-risk infants followed for T1D and celiac disease |
PRiMeD | Age 2–16 years | Virginia, U.S. | 3818 | 82-SNP GRS, RBA: IAA, GADA, IA-2A, ZnT8A | 542 (14.2%) with high GRS AA testing in progress | Low rate of AA testing due to the SARS-CoV-2 pandemic |
Screening programs for general population based on AA testing | ||||||
Fr1da | Age 1.75–10.99 years | Germany | >150,000 | ELISA: GADA, IA-2A, ZnT8A/LIPS: IAA; confirmation with RBA: IAA, GADA, IA-2A, ZnT8A | ≥2 AA+: 0.3% | Follow-up for metabolic staging (OGTT) |
Fr1dolin | Age 2–6 years | Germany | >15,000 | ELISA: GADA, IA-2A, ZnT8A; confirmation with RBA: IAA, GADA, IA-2A, ZnT8A | ≥2 AA+: 0.35% | Combined screening for T1D risk and familial hypercholesterolemia Follow-up for metabolic staging (OGTT) |
T1Detect (JDRF) | Age ≥ 1 year | U.S. | Up to 2000/month | ADAP: GADA, IA-2A, IAA | Nonrelatives: 1 AA+: 12% ≥2 AA+: 5.4% Relatives: 1 AA+: 12% ≥2 AA+: 5.7% | Of the first 800 tests, 203 (25.4%) were from the general population |
ASK | Age 1–17 years (currently, also adults) | Colorado, U.S. | 25,738 | RBA with ECL confirmation: IA-2A, GADA, IAA, ZnT8A, tTGA | AA+: 3.4% ≥2 AA+: 0.52% Single high-affinity AA+: 0.58% | Screening for T1D, celiac disease, and SARS-CoV-2 Ab 4.84% with first-degree relative with T1D |
ELSA | Age 3–13 | United Kingdom | 20,000 | ELISA: GADA, IA-2A, ZnT8A; confirmation with RBA: IAA, GADA, IA-2A, ZnT8A | Pending results | All AA+ children and their families are invited to an education session about the signs and symptoms of T1D and the risk of progression to stage 3. |
T1DRA | Age 18–70 | United Kingdom | 20,000 | ELISA: GADA, IA-2A, ZnT8A | Pending results | People at high risk will be offered information about the symptoms T1D and its management, along with continued monitoring |
UNISCREEN | Age 1–100 | Milan, Italy | 1500 | LIPS: GADA, IAA, IA-2A, ZnT8A | Pending results | Part of a universal screening for early detection of chronic autoimmune, metabolic and cardiovascular diseases |
T1Early | Preschool age: 3.5–4 years | United Kingdom | N/A | LIPS: GADA, IA-2A, ZnT8A | Pending results | AA+ children will undergo metabolic staging |
ADIR | Age 9–18 months and 5 years | Israel | Up to 50,000 | ADAP: GADA, IA-2A, IAA | Pending results | AA+ children (stage 1 or 2 T1D) will be educated about the appearance of clinical signs of diabetes |
JDRF Australia General Population Screening Pilot | Newborns, infants, and 2–10 years | Australia | 3000 in each cohort | GRS, ADAP for IAA, GADA, IA-2A, ZNT8A | Pending results | Head-to-head comparison of autoantibody and genetic screening models |
Birth cohorts (relatives and general population) | ||||||
BABYDIAB | Children of parents with T1D | Germany 1989–2000 | 2364 | ICA and RBA: IAA, GADA, IA-2A, ZnT8A and TTG AA | AA+: 220 (9%) ≥ 2 AA+: 123 (5%) | From 3 years, yearly OGTT monitoring if AA+ |
DAISY | Newborn GP and relatives < 4 years | Colorado, U.S. 1993–2004 | Newborns: 32,114 | RBA and ECL: IAA, GADA, IA-2A, ZnT8A, tTGA | 1424 GP newborns and 1123 relatives identified and followed AA+: 8% ≥2 AA+: 5% | Genetically at-risk newborns based on HLA genotyping and relatives followed at 9, 15, 24 months and annually thereafter until age 20 years AA+ followed until 30 years |
DEW-IT | GP newborn | Washington, U.S. 1995–2001 2010–2012 | 42,000 blood spots tested | HLA genotyping; RBA: IAA, GADA, IA-2A, and later, ZnT8A | AA+: 173 (5%) ≥2 AA+: 170 (5%) | Consenting families received HLA genotyping of dried newborn blood spots followed by AA monitoring ofat-risk individuals |
DiPiS | GP newborns | Sweden 2000–2004 | 35,688 | HLA genotyping; RBA: IAA, GADA, IA-2A, ZnT8A | AA+: 184 (4%)≥2 AA+: 100 (2%) | Positive screens with yearly follow-up. Those with ≥ 2 AA+ followed every 3 months |
TEDDY | Newborns in both relatives and GP | U.S., Finland, Germany, Sweden 2004–2010 | 424,788 | HLA genotyping; RBA: IAA, GADA, IA-2A, tTGA | 21,589 (0.05%) of screens with high-risk HLA; 8676 parents consented to follow-up | High-risk newborns followed every 3–6 months for 15 years for AAs and T1D, with documentation of potential environmental contributors. 90% without a known relative with T1D |
Potential Advantages |
---|
Access to and development of preventive therapies |
Reduction in DKA |
Reduction of symptoms, weight loss |
Reduction in hospitalization (rate and days) |
Improved beta-cell function |
Improved quality of life, reduced psychological stress |
Smooth transition to insulin therapy at the optimal time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Peralta, F.; Pinés-Corrales, P.J.; Santos, E.; Cuesta, M.; González-Albarrán, O.; Azriel, S.; Castaño, L.; Mathieu, C.; on behalf of the AGORA Diabetes Collaborative Group. Autoimmune Type 1 Diabetes: An Early Approach Appraisal for Spain by the AGORA Diabetes Collaborative Group. J. Clin. Med. 2025, 14, 418. https://doi.org/10.3390/jcm14020418
Gómez-Peralta F, Pinés-Corrales PJ, Santos E, Cuesta M, González-Albarrán O, Azriel S, Castaño L, Mathieu C, on behalf of the AGORA Diabetes Collaborative Group. Autoimmune Type 1 Diabetes: An Early Approach Appraisal for Spain by the AGORA Diabetes Collaborative Group. Journal of Clinical Medicine. 2025; 14(2):418. https://doi.org/10.3390/jcm14020418
Chicago/Turabian StyleGómez-Peralta, Fernando, Pedro J. Pinés-Corrales, Estefanía Santos, Martín Cuesta, Olga González-Albarrán, Sharona Azriel, Luis Castaño, Chantal Mathieu, and on behalf of the AGORA Diabetes Collaborative Group. 2025. "Autoimmune Type 1 Diabetes: An Early Approach Appraisal for Spain by the AGORA Diabetes Collaborative Group" Journal of Clinical Medicine 14, no. 2: 418. https://doi.org/10.3390/jcm14020418
APA StyleGómez-Peralta, F., Pinés-Corrales, P. J., Santos, E., Cuesta, M., González-Albarrán, O., Azriel, S., Castaño, L., Mathieu, C., & on behalf of the AGORA Diabetes Collaborative Group. (2025). Autoimmune Type 1 Diabetes: An Early Approach Appraisal for Spain by the AGORA Diabetes Collaborative Group. Journal of Clinical Medicine, 14(2), 418. https://doi.org/10.3390/jcm14020418