Analysis of Body Composition and Levels of Antimicrobial Peptides in Patients with Basal Cell Carcinoma: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duren, D.L.; Sherwood, R.J.; Czerwinski, S.A.; Lee, M.; Choh, A.C.; Siervogel, R.M.; Cameron Chumlea, W. Body composition methods: Comparisons and interpretation. J. Diabetes Sci. Technol. 2008, 2, 1139–1146. [Google Scholar] [CrossRef]
- Gómez-Ambrosi, J.; González-Crespo, I.; Catalán, V.; Rodríguez, A.; Moncada, R.; Valentí, V.; Romero, S.; Ramírez, B.; Silva, C.; Gil, M.J.; et al. Clinical usefulness of abdominal bioimpedance (ViScan) in the determination of visceral fat and its application in the diagnosis and management of obesity and its comorbidities. Clin. Nutr. 2018, 37, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Ain, K.; Wibowo, R.A.; Soelistiono, S.; Muniroh, L.; Ariwanto, B. Design and Development of a Low-Cost Arduino-Based Electrical BioImpedance Spectrometer. J. Med. Signals Sens. 2020, 10, 125–133. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Szczygiel, K. Bioelectrical Impedance Analysis and Body Composition in Cardiovascular Diseases. Curr. Probl. Cardiol. 2023, 48, 101911. [Google Scholar] [CrossRef]
- Nishikawa, H.; Kim, S.K.; Asai, A. Body Composition in Chronic Liver Disease. Int. J. Mol. Sci. 2024, 25, 964. [Google Scholar] [CrossRef]
- Ding, N.S.; Tassone, D.; Al Bakir, I.; Wu, K.; Thompson, A.J.; Connell, W.R.; Malietzis, G.; Lung, P.; Singh, S.; Choi, C.R.; et al. Systematic Review: The Impact and Importance of Body Composition in Inflammatory Bowel Disease. J. Crohns Colitis 2022, 16, 1475–1492. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, J.; Sobolewski, P.; Zieliński, R.; Kabała, M. Body Composition in Women after Radical Mastectomy. Int. J. Environ. Res. Public Health 2020, 17, 8991. [Google Scholar] [CrossRef] [PubMed]
- Surov, A.; Thormann, M.; Hinnerichs, M.; Seidensticker, M.; Seidensticker, R.; Öcal, O.; Schütte, K.; Zech, C.J.; Loewe, C.; van Delden, O.; et al. Impact of body composition in advanced hepatocellular carcinoma: A subanalysis of the SORAMIC trial. Hepatol. Commun. 2023, 7, e0165. [Google Scholar] [CrossRef] [PubMed]
- Branco, M.G.; Mateus, C.; Capelas, M.L.; Pimenta, N.; Santos, T.; Mäkitie, A.; Ganhão-Arranhado, S.; Trabulo, C.; Ravasco, P. Bioelectrical Impedance Analysis (BIA) for the Assessment of Body Composition in Oncology: A Scoping Review. Nutrients 2023, 15, 4792. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. Body fatness and cancer—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef]
- Olsen, C.M.; Hughes, M.C.; Pandeya, N.; Green, A.C. Anthropometric measures in relation to basal cell carcinoma: A longitudinal study. BMC Cancer 2006, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Pothiawala, S.; Qureshi, A.A.; Li, Y.; Han, J. Obesity and the incidence of skin cancer in US Caucasians. Cancer Causes Control 2012, 23, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Friedenreich, C.M.; Ryder-Burbidge, C.; McNeil, J. Physical activity, obesity and sedentary behavior in cancer etiology: Epidemiologic evidence and biologic mechanisms. Mol. Oncol. 2021, 15, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Monk, J.M.; Robinson, L.E.; Mourtzakis, M. The integrative role of leptin, oestrogen and the insulin family in obesity-associated breast cancer: Potential effects of exercise. Obes. Rev. 2015, 16, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Pandya, P.H.; Murray, M.E.; Pollok, K.E.; Renbarger, J.L. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J. Immunol. Res. 2016, 2016, 4273943. [Google Scholar] [CrossRef]
- Choi, K.Y.; Chow, L.N.; Mookherjee, N. Cationic host defence peptides: Multifaceted role in immune modulation and inflammation. J. Innate Immun. 2012, 4, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Hemshekhar, M.; Anaparti, V.; Mookherjee, N. Functions of Cationic Host Defense Peptides in Immunity. Pharmaceuticals 2016, 9, 40. [Google Scholar] [CrossRef]
- Fijałkowska, M.; Koziej, M.; Antoszewski, B.; Sitek, A. Correlations between antimicrobial peptides and spectrophotometric skin color parameters in patients with basal cell carcinoma. J. Cancer Res. Clin. Oncol. 2023, 149, 5697–5704. [Google Scholar] [CrossRef]
- Gambini, D.; Passoni, E.; Nazzaro, G.; Beltramini, G.; Tomasello, G.; Ghidini, M.; Kuhn, E.; Garrone, O. Basal Cell Carcinoma and Hedgehog Pathway Inhibitors: Focus on Immune Response. Front. Med. 2022, 9, 893063. [Google Scholar] [CrossRef] [PubMed]
- Omland, S.H.; Nielsen, P.S.; Gjerdrum, L.M.; Gniadecki, R. Immunosuppressive environment in basal cell carcinoma: The role of regulatory T cells. Acta Derm. Venereol. 2016, 96, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Omland, S.H. Local immune response in cutaneous basal cell carcinoma. Dan. Med. J. 2017, 64, B5412. [Google Scholar]
- Chan, A.A.; Noguti, J.; Pak, Y.; Qi, L.; Caan, B.; Going, S.; Han, J.; Chlebowski, R.T.; Lee, D.J. Interaction of body mass index or waist-to-hip ratio and sun exposure associated with nonmelanoma skin cancer: A prospective study from the Women’s Health Initiative. Cancer 2019, 125, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Præstegaard, C.; Kjær, S.K.; Christensen, J.; Tjønneland, A.; Halkjær, J.; Jensen, A. Obesity and risks for malignant melanoma and non-melanoma skin cancer: Results from a large Danish prospective cohort study. J. Investig. Dermatol. 2015, 135, 901–904. [Google Scholar] [CrossRef]
- Cai, H.; Sobue, T.; Kitamura, T.; Sawada, N.; Iwasaki, M.; Shimazu, T.; Tsugane, S. Epidemiology of nonmelanoma skin cancer in Japan: Occupational type, lifestyle, and family history of cancer. Cancer Sci. 2020, 111, 4257–4265. [Google Scholar] [CrossRef]
- Ayeser, T.; Basak, M.; Arslan, K.; Sayan, I. Investigating the correlation of the number of diagnostic criteria to serum adiponectin, leptin, resistin, TNF-alpha, EGFR levels and abdominal adipose tissue. Diabetes Metab. Syndr. 2016, 10 (Suppl. S1), S165–S169. [Google Scholar] [CrossRef] [PubMed]
- Sukkriang, N.; Chanprasertpinyo, W.; Wattanapisit, A.; Punsawad, C.; Thamrongrat, N.; Sangpoom, S. Correlation of body visceral fat rating with serum lipid profile and fasting blood sugar in obese adults using a noninvasive machine. Heliyon 2021, 7, e06264. [Google Scholar] [CrossRef]
- Fernandez-Garcia, J.C.; Alcaide, J.; Santiago-Fernandez, C.; Roca-Rodriguez, M.M.; Aguera, Z.; Baños, R.; Botella, C.; de la Torre, R.; Fernandez-Real, J.M.; Fruhbeck, G.; et al. An increase in visceral fat is associated with a decrease in the taste and olfactory capacity. PLoS ONE 2017, 12, e0171204. [Google Scholar]
- Benachour, H.; Zaiou, M.; Samara, A.; Herbeth, B.; Pfister, M.; Lambert, D.; Siest, G.; Visvikis-Siest, S. Association of human cathelicidin (hCAP-18/LL-37) gene expression with cardiovascular disease risk factors. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 720–728. [Google Scholar] [CrossRef]
- Kozłowska, E.; Wysokiński, A.; Brzezińska-Błaszczyk, E. Serum levels of peptide cathelicidin LL-37 in elderly patients with depression. Psychiatry Res. 2017, 255, 156–160. [Google Scholar] [CrossRef]
- Szczepocka, E.; Kozłowska, E.; Brzezińska-Błaszczyk, E.; Wysokiński, A. Body composition does not affect serum levels of cathelicidin LL-37 in elderly women with unipolar depression. Nord. J. Psychiatry 2018, 72, 45–50. [Google Scholar] [CrossRef] [PubMed]
BCC | Control | p | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Weight [kg] | 75.4 | 13.2 | 78.2 | 20.6 | 0.825 |
Height [cm] | 165.0 | 8.6 | 167.3 | 9.6 | 0.365 |
BMI | 27.8 | 4.1 | 27.2 | 4.6 | 0.321 |
% of fat | 32.5 | 8.1 | 32.3 | 9.1 | 0.956 |
Fat mass | 25.0 | 8.4 | 25.0 | 10.2 | 0.899 |
Muscle mass | 48.3 | 9.5 | 48.8 | 11.2 | 0.909 |
Bone mass | 2.6 | 0.5 | 2.6 | 0.6 | 1.000 |
TBW [kg] | 1023.7 | 6989.9 | 35.5 | 8.0 | 0.890 |
TBW [%] | 46.4 | 5.1 | 46.7 | 5.4 | 0.804 |
Ideal mass | 60.1 | 6.4 | 61.8 | 7.3 | 0.347 |
Visceral fat rating | 11.7 | 3.7 | 10.1 | 4.0 | 0.035 |
Obesity level in % | 26.4 | 18.5 | 23.4 | 21.1 | 0.292 |
Cathelicidin | 1022.6 | 1259.9 | 428.4 | 187.5 | 0.026 |
Defensin-1 | 5.6 | 17.8 | 4.3 | 15.2 | 0.866 |
Defensin-2 | 1.2 | 1.6 | 0.4 | 0.2 | 0.036 |
Age | 68.7 | 11.4 | 62.4 | 10.1 | 0.004 |
Fat/muscle | 0.53 | 0.19 | 0.53 | 0.22 | 0.926 |
Visceral fat/muscle | 0.24 | 0.06 | 0.21 | 0.07 | 0.005 |
BCC | Control | |||||||
---|---|---|---|---|---|---|---|---|
Cathelicidin | Defensin-2 | Cathelicidin | Defensin-2 | |||||
R | p | R | p | R | p | R | p | |
Age | −0.14 | 0.378 | −0.30 | 0.036 | 0.33 | 0.037 | −0.18 | 0.203 |
Weight [kg] | 0.09 | 0.579 | −0.08 | 0.558 | 0.68 | 0.000 | 0.65 | 0.000 |
Height [cm] | 0.25 | 0.113 | 0.24 | 0.098 | 0.14 | 0.390 | 0.28 | 0.049 |
BMI | −0.11 | 0.506 | −0.22 | 0.131 | 0.81 | 0.000 | 0.65 | 0.000 |
% of fat | −0.19 | 0.236 | −0.25 | 0.075 | 0.19 | 0.224 | 0.21 | 0.152 |
Fat mass | −0.09 | 0.589 | −0.19 | 0.193 | 0.44 | 0.004 | 0.45 | 0.001 |
Muscle mass | 0.17 | 0.290 | 0.08 | 0.569 | 0.51 | 0.001 | 0.55 | 0.000 |
Bone mass | 0.18 | 0.271 | 0.07 | 0.615 | 0.49 | 0.001 | 0.53 | 0.000 |
TBW [kg] | 0.15 | 0.361 | 0.08 | 0.560 | 0.52 | 0.000 | 0.58 | 0.000 |
TBW [%] | 0.15 | 0.336 | 0.20 | 0.154 | −0.19 | 0.235 | −0.16 | 0.270 |
Ideal mass | 0.25 | 0.114 | 0.24 | 0.099 | 0.14 | 0.371 | 0.28 | 0.050 |
Visceral fat rating | 0.08 | 0.621 | −0.16 | 0.258 | 0.68 | 0.000 | 0.34 | 0.015 |
Obesity level in % | −0.10 | 0.516 | −0.22 | 0.134 | 0.80 | 0.000 | 0.64 | 0.000 |
Fat/muscle | −0.18 | 0.258 | −0.24 | 0.086 | 0.19 | 0.231 | 0.20 | 0.160 |
Visceral fat/muscle | −0.01 | 0.962 | −0.25 | 0.082 | 0.51 | 0.001 | 0.12 | 0.423 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fijałkowska, M.; Antoszewski, B.; Koziej, M. Analysis of Body Composition and Levels of Antimicrobial Peptides in Patients with Basal Cell Carcinoma: A Preliminary Study. J. Clin. Med. 2025, 14, 419. https://doi.org/10.3390/jcm14020419
Fijałkowska M, Antoszewski B, Koziej M. Analysis of Body Composition and Levels of Antimicrobial Peptides in Patients with Basal Cell Carcinoma: A Preliminary Study. Journal of Clinical Medicine. 2025; 14(2):419. https://doi.org/10.3390/jcm14020419
Chicago/Turabian StyleFijałkowska, Marta, Bogusław Antoszewski, and Mateusz Koziej. 2025. "Analysis of Body Composition and Levels of Antimicrobial Peptides in Patients with Basal Cell Carcinoma: A Preliminary Study" Journal of Clinical Medicine 14, no. 2: 419. https://doi.org/10.3390/jcm14020419
APA StyleFijałkowska, M., Antoszewski, B., & Koziej, M. (2025). Analysis of Body Composition and Levels of Antimicrobial Peptides in Patients with Basal Cell Carcinoma: A Preliminary Study. Journal of Clinical Medicine, 14(2), 419. https://doi.org/10.3390/jcm14020419