The Association Between Cardiorespiratory Fitness Directly Assessed by the Cardiopulmonary Stress Test and the Perception of Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Assessment
- Medical history, a standard physical examination, and anthropometric data were collected, including weight, height, waist circumference (WC), body mass index (BMI), and resting hemodynamic parameters. BMI was calculated according to the standard formula [58]. Blood pressure and heart rate were measured in a seated position after at least 5 min of rest, using a validated automated oscillometric device (Omron Healthcare, Kyoto, Japan). The mean of the two consecutive measurements was reported.
- Venous blood samples were collected in the morning after an overnight fast (≥8 h) and analyzed for total cholesterol, HDL cholesterol, triglycerides, and fasting glucose, using standard enzymatic colorimetric assays (Roche Diagnostics, Mannheim, Germany).
- BIA (Bioelectrical Impedance Analysis; BodyStat Quadscan 4000, BodystatR Quadscan 4000, Body Stat Ltd., Isle of Man, British Isles, UK) was employed to estimate the percentage of fat mass (FM) and of free fat mass (FFM) using the proprietary equation provided by the manufacturer [59]. Measures were obtained under standardized conditions (fasting state, voided bladder, no exercise in the preceding 12 h), as recommended in the BIA assessment protocols [60].
2.3. Aerobic Fitness
- -
- Respiratory exchange ratio (RER) ≥ 1.10;
- -
- Plateau in VO2 despite increased workload;
- -
- Attainment of age-predicted maximum heart rate [62].
2.4. Assessment of Physical Activity, Smoking, and Stress Perception
- Physical activity (weekly physical activity volume) was assessed by the short version of the International Physical Activity Questionnaire [48,57,59,63,64], which focuses on intensity (nominally estimated in metabolic equivalents—METs—according to the type of activity) and duration (in minutes) of physical activity. We considered the following levels: brisk walking (≈3.3 METs), activities of moderate intensity (≈4.0 METs) and activities of vigorous intensity (≈8.0 METs). In accordance with current guidelines [49], these levels were used to assess exercise volume, using the following equations:
- -
- Brisk walking (MET·min/week) = 3.3 × min of brisk walking × days of brisk walking;
- -
- Moderate intensity (MET·min/week) = 4.0 × min of moderate intensity activity × days of moderate intensity activities;
- -
- Vigorous intensity: (MET·min/week) = 8.0 × min of vigorous intensity activity × days of vigorous intensity activity;
- -
- METsTOT (Total weekly physical activity volume) (MET·min/week) = sum of brisk walking + moderate + vigorous MET·min/week scores;
- -
- METsMV (Total weekly physical activity volume of moderate and vigorous exercise) (MET·min/week) = sum of moderate + vigorous MET·min/week scores.
- Perception of somatic symptoms (short 4SQ), fatigue, and stress were guessed using a self-administered questionnaire [30,31,32,65,66] providing ordinal self-rated Likert scales from 0 (“very good”) to 10 (“very bad”) for each measure. The short 4SQ considers four somatic symptoms; thus, the total score, equal to the sum of the 0–10 scores on the single somatic symptom scales, ranged from 0 to 40.
- Smoke behavior: all subjects who reported having never smoked or had stopped smoking for more than one year were considered non-smokers.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AU | Arbitrary Units |
BIA | Bioelectrical Impedance Analysis |
BMI | Body Mass Index |
CI | Confidence Interval |
CNCD | Chronic Non-Communicable Diseases |
CRF | Cardio Respiratory Fitness |
CPX | Cardiopulmonary exercise test |
DAP | Diastolic Arterial Pressure |
ECG | Electrocardiogram |
FM | Fat Mass |
FFM | Free Fat Mass |
GLM | General Linear Model |
HDL | High Density Lipoprotein |
HR | Heart Rate |
IPAQ | International Physical Activity Questionnaire |
IRCCS | Istituto di Ricovero e Cura a Carattere Scientifico (Scientific Institute for Research, Hospitalization and Healthcare) |
LDL | Low Density Lipoprotein |
METs | Metabolic Equivalents |
METsMV | Moderate and Vigorous Physical Activity Volume Expressed in METs |
SAP | Systolic Arterial Pressure |
SD | Standard Deviation |
4SQ | Short Somatic symptoms Stress-related Questionnaire |
RQ | Respiratory Quotient |
VE/VCO2 | Ratio of Minute Ventilation (VE) to Carbon Dioxide Production (VCO2) |
VO2 | Oxygen Consumption |
VO2max | Maximum Rate of Oxygen Consumption per Kilogram of Body Mass |
References
- Cumming, G.R. Physical Fitness and Cardiovascular Health. Circulation 1968, 37, 4–7. [Google Scholar] [CrossRef]
- Lang, J.J.; Prince, S.A.; Merucci, K.; Cadenas-Sanchez, C.; Chaput, J.P.; Fraser, B.J.; Manyanga, T.; McGrath, R.; Ortega, F.B.; Singh, B.; et al. Cardiorespiratory Fitness Is a Strong and Consistent Predictor of Morbidity and Mortality among Adults: An Overview of Meta-Analyses Representing over 20.9 Million Observations from 199 Unique Cohort Studies. Br. J. Sports Med. 2024, 58, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, P.; Faselis, C.; Samuel, I.B.H.; Pittaras, A.; Doumas, M.; Murphy, R.; Heimall, M.S.; Sui, X.; Zhang, J.; Myers, J. Cardiorespiratory Fitness and Mortality Risk Across the Spectra of Age, Race, and Sex. J. Am. Coll. Cardiol. 2022, 80, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, P.; Faselis, C.; Samuel, I.B.H.; Lavie, C.J.; Zhang, J.; Vargas, J.D.; Pittaras, A.; Doumas, M.; Karasik, P.; Moore, H.; et al. Changes in Cardiorespiratory Fitness and Survival in Patients with or Without Cardiovascular Disease. J. Am. Coll. Cardiol. 2023, 81, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory Fitness as a Quantitative Predictor of All-Cause Mortality and Cardiovascular Events in Healthy Men and Women: A Meta-Analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef]
- Ballin, M.; Nordström, A.; Nordström, P.; Ahlqvist, V.H. Cardiorespiratory Fitness in Adolescence and Premature Mortality: Widespread Bias Identified Using Negative Control Outcomes and Sibling Comparisons. Eur. J. Prev. Cardiol. 2025, zwaf267. [Google Scholar] [CrossRef]
- Weeldreyer, N.R.; De Guzman, J.C.; Paterson, C.; Allen, J.D.; Gaesser, G.A.; Angadi, S.S. Cardiorespiratory Fitness, Body Mass Index and Mortality: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2025, 59, 339–346. [Google Scholar] [CrossRef]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Després, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef]
- Wasserman, K.; Van Kessel, A.L.; Burton, G.G. Interaction of Physiological Mechanisms during Exercise. J. Appl. Physiol. 1967, 22, 71–85. [Google Scholar] [CrossRef]
- Robsahm, T.E.; Falk, R.S.; Heir, T.; Sandvik, L.; Vos, L.; Erikssen, J.; Tretli, S. Cardiorespiratory Fitness and Risk of Site-Specific Cancers: A Long-Term Prospective Cohort Study. Cancer Med. 2017, 6, 865–873. [Google Scholar] [CrossRef]
- Åberg, M.A.I.; Waern, M.; Nyberg, J.; Pedersen, N.L.; Bergh, Y.; Åberg, N.D.; Nilsson, M.; Kuhn, H.G.; Torén, K. Cardiovascular Fitness in Males at Age 18 and Risk of Serious Depression in Adulthood: Swedish Prospective Population-Based Study. Br. J. Psychiatry 2012, 201, 352–359. [Google Scholar] [CrossRef]
- Groarke, J.D.; Payne, D.L.; Claggett, B.; Mehra, M.R.; Gong, J.; Caron, J.; Mahmood, S.S.; Hainer, J.; Neilan, T.G.; Partridge, A.H.; et al. Association of Post-Diagnosis Cardiorespiratory Fitness with Cause-Specific Mortality in Cancer. Eur. Heart J. Qual. Care Clin. Outcomes 2020, 6, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Peterman, J.E.; Arena, R.; Myers, J.; Marzolini, S.; Ades, P.A.; Savage, P.D.; Lavie, C.J.; Kaminsky, L.A. Reference Standards for Cardiorespiratory Fitness by Cardiovascular Disease Category and Testing Modality: Data from Friend. J. Am. Heart Assoc. 2021, 10, 22336. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Flórez, L.; Ramos-Campo, D.J.; Clemente-Suárez, V.J. Relationship between Physical Fitness and Academic Performance in University Students. Int. J. Environ. Res. Public Health 2022, 19, 14750. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise Standards for Testing and Training: A Scientific Statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef]
- Nes, B.M.; Vatten, L.J.; Nauman, J.; Janszky, I.; WislØff, U. A Simple Nonexercise Model of Cardiorespiratory Fitness Predicts Long-Term Mortality. Med. Sci. Sports Exerc. 2014, 46, 1159–1165. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, X.; Sun, Z.; Wu, T.; Schumann, U. Is Estimated Cardiorespiratory Fitness an Effective Predictor for Cardiovascular and All-Cause Mortality? A Meta-Analysis. Atherosclerosis 2021, 330, 22–28. [Google Scholar] [CrossRef]
- Strath, S.J.; Kaminsky, L.A.; Ainsworth, B.E.; Ekelund, U.; Freedson, P.S.; Gary, R.A.; Richardson, C.R.; Smith, D.T.; Swartz, A.M. Guide to the Assessment of Physical Activity: Clinical and Research Applications: A Scientific Statement from the American Heart Association. Circulation 2013, 128, 2259–2279. [Google Scholar] [CrossRef]
- Aadahl, M.; Kjær, M.; Kristensen, J.H.; Mollerup, B.; Jørgensen, T. Self-Reported Physical Activity Compared with Maximal Oxygen Uptake in Adults. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 422–428. [Google Scholar] [CrossRef]
- Bouchard, C.; Warwick Daw, E.; Rice, T.; Pérusse, L.; Gagnon, J.; Province, M.A.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Wilmore, J.H. Familial Resemblance for VO2max in the Sedentary State: The HERITAGE Family Study. Med. Sci. Sports Exerc. 1998, 30, 252–258. [Google Scholar] [CrossRef]
- Yook, Y.S. Firefighters’ Occupational Stress and Its Correlations with Cardiorespiratory Fitness, Arterial Stiffness, Heart Rate Variability, and Sleep Quality. PLoS ONE 2019, 14, e0226739. [Google Scholar] [CrossRef]
- Kettunen, O.; Kyröläinen, H.; Santtila, M.; Vuorimaa, T.; Vasankari, T.J. Greater Levels of Cardiorespiratory and Muscular Fitness Are Associated with Low Stress and High Mental Resources in Normal but Not Overweight Men. BMC Public Health 2016, 16, 788. [Google Scholar] [CrossRef]
- Jeoung, B. Correlation of Physical Fitness with Psychological Well-Being, Stress, and Depression in Korean Adults. J. Exerc. Rehabil. 2020, 16, 351. [Google Scholar] [CrossRef]
- Gerber, M.; Lindwall, M.; Lindegård, A.; Börjesson, M.; Jonsdottir, I.H. Cardiorespiratory Fitness Protects against Stress-Related Symptoms of Burnout and Depression. Patient Educ. Couns. 2013, 93, 146–152. [Google Scholar] [CrossRef]
- Bhandare, S.A.; Athole, Y.N.; Kataria, K.N. Correlation Between Burnout Syndrome and Estimation of Aerobic Capacity in Resident Doctors. Int. J. Health Sci. Res. 2024, 14, 2249–9571. [Google Scholar] [CrossRef]
- Lindegård, A.; Wastensson, G.; Hadzibajramovic, E.; Grimby-Ekman, A. Longitudinal Associations between Cardiorespiratory Fitness and Stress-Related Exhaustion, Depression, Anxiety and Sleep Disturbances. BMC Public Health 2019, 19, 1726. [Google Scholar] [CrossRef] [PubMed]
- Helge, T.; Windahl, M.; Björkman, F. Observational Study of the Effects of Maximal Oxygen Uptake on Cognitive Function and Performance during Prolonged Military Exercise. BMJ Mil. Health 2024, e002757. [Google Scholar] [CrossRef] [PubMed]
- Teychenne, M.; Stephens, L.D.; Costigan, S.A.; Olstad, D.L.; Stubbs, B.; Turner, A.I. The Association between Sedentary Behaviour and Indicators of Stress: A Systematic Review. BMC Public Health 2019, 19, 1357. [Google Scholar] [CrossRef]
- Hachenberger, J.; Teuber, Z.; Li, Y.M.; Abkai, L.; Wild, E.; Lemola, S. Investigating Associations between Physical Activity, Stress Experience, and Affective Wellbeing during an Examination Period Using Experience Sampling and Accelerometry. Sci. Rep. 2023, 13, 8808. [Google Scholar] [CrossRef]
- Lucini, D.; Luconi, E.; Giovanelli, L.; Marano, G.; Bernardelli, G.; Guidetti, R.; Morello, E.; Cribellati, S.; Brambilla, M.M.; Biganzoli, E.M. Assessing Lifestyle in a Large Cohort of Undergraduate Students: Significance of Stress, Exercise and Nutrition. Nutrients 2024, 16, 4339. [Google Scholar] [CrossRef]
- Lucini, D.; Pagani, E.; Capria, F.; Galliano, M.; Marchese, M.; Cribellati, S. Evidence of Better Psychological Profile in Working Population Meeting Current Physical Activity Recommendations. Int. J. Environ. Res. Public Health 2021, 18, 8991. [Google Scholar] [CrossRef]
- Lucini, D.; Malacarne, M.; Gatzemeier, W.; Pagani, E.; Bernardelli, G.; Parati, G.; Pagani, M. Evidence of Better Autonomic, Metabolic and Psychological Profile in Breast Cancer Survivors Meeting Current Physical Activity Recommendations: An Observational Study. J. Pers. Med. 2022, 12, 273. [Google Scholar] [CrossRef]
- Osborne, M.T.; Shin, L.M.; Mehta, N.N.; Pitman, R.K.; Fayad, Z.A.; Tawakol, A. Disentangling the Links Between Psychosocial Stress and Cardiovascular Disease. Circ. Cardiovasc. Imaging 2020, 13, E010931. [Google Scholar] [CrossRef]
- Eckerling, A.; Ricon-Becker, I.; Sorski, L.; Sandbank, E.; Ben-Eliyahu, S. Stress and Cancer: Mechanisms, Significance and Future Directions. Nat. Rev. Cancer 2021, 21, 767–785. [Google Scholar] [CrossRef]
- Kumar, R.; Rizvi, M.R.; Saraswat, S. Obesity and Stress: A Contingent Paralysis. Int. J. Prev. Med. 2022, 13, 375–380. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Akil, H. Revisiting the Stress Concept: Implications for Affective Disorders. J. Neurosci. 2020, 40, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Vaccarino, V.; Bremner, J.D. Stress and Cardiovascular Disease: An Update. Nat. Rev. Cardiol. 2024, 21, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Perkins, S.E.; Spears, G.M.; Ashrani, A.A.; Leibson, C.L.; Boos, C.M.; Harmsen, W.S.; Jenkins, D.H.; Bailey, K.R.; Ballman, K.V.; et al. Risk Factors for Venous Thromboembolism after Acute Trauma: A Population-Based Case-Cohort Study. Thromb. Res. 2016, 144, 40–45. [Google Scholar] [CrossRef]
- Schilling, R.; Colledge, F.; Pühse, U.; Gerber, M. Stress-Buffering Effects of Physical Activity and Cardiorespiratory Fitness on Metabolic Syndrome: A Prospective Study in Police Officers. PLoS ONE 2020, 15, e0236526. [Google Scholar] [CrossRef]
- Schuch, F.B.; Stubbs, B.; Meyer, J.; Heissel, A.; Zech, P.; Vancampfort, D.; Rosenbaum, S.; Deenik, J.; Firth, J.; Ward, P.B.; et al. Physical Activity Protects from Incident Anxiety: A Meta-Analysis of Prospective Cohort Studies. Depress. Anxiety 2019, 36, 846–858. [Google Scholar] [CrossRef]
- Eather, N.; Wade, L.; Pankowiak, A.; Eime, R. The Impact of Sports Participation on Mental Health and Social Outcomes in Adults: A Systematic Review and the ‘Mental Health through Sport’ Conceptual Model. Syst. Rev. 2023, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Szmodis, M.; Zsákai, A.; Blaskó, G.; Fehér, P.; Annár, D.; Sziráki, Z.; Almási, G.; Kemper, H.C.G. Effects of Regular Sport Activities on Stress Level in Sporting and Non-Sporting University Students. Physiol. Int. 2022, 109, 293–304. [Google Scholar] [CrossRef]
- Chekroud, S.R.; Gueorguieva, R.; Zheutlin, A.B.; Paulus, M.; Krumholz, H.M.; Krystal, J.H.; Chekroud, A.M. Association between Physical Exercise and Mental Health in 1·2 Million Individuals in the USA between 2011 and 2015: A Cross-Sectional Study. Lancet Psychiatry 2018, 5, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.S.; So, W.Y.; Jang, S. Association between Perceived Psychological Stress and Exercise Behaviors: A Cross-Sectional Study Using the Survey of National Physical Fitness. Life 2023, 13, 2059. [Google Scholar] [CrossRef]
- Algren, M.H.; Ekholm, O.; Nielsen, L.; Ersbøll, A.K.; Bak, C.K.; Andersen, P.T. Associations between Perceived Stress, Socioeconomic Status, and Health-Risk Behaviour in Deprived Neighbourhoods in Denmark: A Cross-Sectional Study. BMC Public Health 2018, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Sharon-David, H.; Tenenbaum, G. The Effectiveness of Exercise Interventions on Coping with Stress: Research Synthesis. Stud. Sport. Humanit. 2017, 22, 19–29. [Google Scholar] [CrossRef]
- Genç, N.; Taştan, Z.; Demirli, A.; Yılmaz, G.; Güvendi, B.; Baikoğlu, S.B.; Güllü, S.; Akkaya, C.C. The Effect of Applied Dance Therapy on Life Satisfaction and Fear of Happiness Among Turkish Board High School Students. Healthcare 2025, 13, 392. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Lucini, D.; Riva, S.; Pizzinelli, P.; Pagani, M. Stress Management at the Worksite: Reversal of Symptoms Profile and Cardiovascular Dysregulation. Hypertension 2007, 49, 291–297. [Google Scholar] [CrossRef]
- Pagani, E.; Gavazzoni, N.; Bernardelli, G.; Malacarne, M.; Solaro, N.; Giusti, E.; Castelnuovo, G.; Volpi, P.; Carimati, G.; Lucini, D. Psychological Intervention Based on Mental Relaxation to Manage Stress in Female Junior Elite Soccer Team: Improvement in Cardiac Autonomic Control, Perception of Stress and Overall Health. Int. J. Environ. Res. Public Health 2023, 20, 942. [Google Scholar] [CrossRef]
- Lochbaum, M.; Stoner, E.; Hefner, T.; Cooper, S.; Lane, A.M.; Terry, P.C. Sport Psychology and Performance Meta-Analyses: A Systematic Review of the Literature. PLoS ONE 2022, 17, e0263408. [Google Scholar] [CrossRef] [PubMed]
- Fricchione, G. Stress Management: Enhance Your Well-Being by Reducing Stress and Building Resilience; Harvard Health Publishing: Boston, MA, USA, 2020. [Google Scholar]
- Stress. Available online: https://www.who.int/news-room/questions-and-answers/item/stress (accessed on 17 July 2025).
- Blumenthal, J.A.; Sherwood, A.; Babyak, M.A.; Watkins, L.L.; Waugh, R.; Georgiades, A.; Bacon, S.L.; Hayano, J.; Coleman, R.E.; Hinderliter, A. Effects of Exercise and Stress Management Training on Markers of Cardiovascular Risk in Patients with Ischemic Heart Disease: A Randomized Controlled Trial. JAMA 2005, 293, 1626–1634. [Google Scholar] [CrossRef] [PubMed]
- Moses, J.; Steptoe, A.; Mathews, A.; Edwards, S. The Effects of Exercise Training on Mental Well-Being in the Normal Population: A Controlled Trial. J. Psychosom. Res. 1989, 33, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Stults-Kolehmainen, M.A.; Sinha, R. The Effects of Stress on Physical Activity and Exercise. Sports Med. 2014, 44, 81–121. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- WHO. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation; WHO Technical Report Series; WHO: Geneva, Switzerland, 2000; Volume 894. [Google Scholar]
- Benton, M.J.; Swan, P.D.; Schlairet, M.C.; Sanderson, S. Comparison of Body Composition Measurement with Whole Body Multifrequency Bioelectrical Impedance and Air Displacement Plethysmography in Healthy Middle-Aged Women. Health Care Women Int. 2011, 32, 1068–1078. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical Impedance Analysis—Part I: Review of Principles and Methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Wasserman, K. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications; Wolters Kluwer, Lippicott & Wilkins: Philadelphia, PA, USA, 2004; 592p. [Google Scholar]
- Karvonen, M.; Kentala, E.; Mustala, O. The Effects of Training on Heart Rate. A Longitudinal Study. Ann. Med. Exp. Biol. Fenn. 1957, 35, 307–315. Available online: https://www.scirp.org/reference/referencespapers?referenceid=835840 (accessed on 20 September 2025).
- Arena, R.; Myers, J.; Williams, M.A.; Gulati, M.; Kligfield, P.; Balady, G.J.; Collins, E.; Fletcher, G. Assessment of Functional Capacity in Clinical and Research Settings: A Scientific Statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Clinical Cardiology and the Council on Cardiovascular Nursing. Circulation 2007, 116, 329–343. [Google Scholar] [CrossRef]
- Minetto, M.A.; Motta, G.; Gorji, N.E.; Lucini, D.; Biolo, G.; Pigozzi, F.; Portincasa, P.; Maffiuletti, N.A. Reproducibility and Validity of the Italian Version of the International Physical Activity Questionnaire in Obese and Diabetic Patients. J. Endocrinol. Investig. 2018, 41, 343–349. [Google Scholar] [CrossRef]
- Lucini, D.; Zanuso, S.; Blair, S.; Pagani, M. A Simple Healthy Lifestyle Index as a Proxy of Wellness: A Proof of Concept. Acta Diabetol. 2015, 52, 81–89. [Google Scholar] [CrossRef]
- Lucini, D.; Solaro, N.; Lesma, A.; Gillet, V.B.; Pagani, M. Health Promotion in the Workplace: Assessing Stress and Lifestyle with an Intranet Tool. J. Med. Internet Res. 2011, 13, e88. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect Size Estimates: Current Use, Calculations, and Interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef]
- Lazarus, R.S. How Emotions Influence Performance in Competitive Sports. Sport. Psychol. 2000, 14, 229–252. [Google Scholar] [CrossRef]
- Lucini, D.; Pagani, M. Stress Management and Behavior: From Cardiac Patient to Worksite Intervention. In Stress and Cardiovascular Disease; Springer-Verlag: London, UK, 2015; pp. 299–316. [Google Scholar] [CrossRef]
- Park, S.; Jang, M.K. Associations Between Workplace Exercise Interventions and Job Stress Reduction: A Systematic Review. Workplace Health Saf. 2019, 67, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, C.A.; Lindwall, M.; Ekblom, Ö.; Nyberg, J.; Åberg, M.I.; Paulsson, S.; Ekblom-Bak, E. Change in Cardiorespiratory Fitness and Risk of Depression, Anxiety, and Cerebrovascular Disease. Am. J. Prev. Med. 2024, 67, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, P.L.; Ruilope, L.M.; Santos-Lozano, A.; Wilhelm, M.; Kränkel, N.; Fiuza-Luces, C.; Lucia, A. Exercise Benefits in Cardiovascular Diseases: From Mechanisms to Clinical Implementation. Eur. Heart J. 2023, 44, 1874–1889. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Green, D.J. Exercise Protects the Cardiovascular System: Effects beyond Traditional Risk Factors. J. Physiol. 2009, 587, 5551. [Google Scholar] [CrossRef]
- Phd, T.; Huuha, A.M.; Tari, A.R.; Walker, T.L.; Huuha, A.M.; Sando, S.B.; Wisloff, U. Neuroprotective Mechanisms of Exercise and the Importance of Fitness for Healthy Brain Ageing. Lancet 2025, 405, 1093–1118. [Google Scholar] [CrossRef]
- Silverman, M.N.; Deuster, P.A. Biological Mechanisms Underlying the Role of Physical Fitness in Health and Resilience. Interface Focus. 2014, 4, 20140040. [Google Scholar] [CrossRef]
- Lucini, D.; Pagani, M. Exercise Prescription to Foster Health and Well-Being: A Behavioral Approach to Transform Barriers into Opportunities. Int. J. Environ. Res. Public Health 2021, 18, 968. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, P.; Zipfel, S.; Herzog, W. Management of Functional Somatic Syndromes. Lancet 2007, 369, 946–955. [Google Scholar] [CrossRef]
- España-Irla, G.; Morris, T.P.; Albu, S.; Cabello-Toscano, M.; Redondo-Camós, M.; Delgado-Gallén, S.; Mulet-Pons, L.; Roca-Ventura, A.; Bargalló, N.; Cattaneo, G.; et al. Functional Connectivity Mediates the Relationship between Cardiorespiratory Fitness and Stress in Midlife. Ment. Health Phys. Act. 2023, 25, 100552. [Google Scholar] [CrossRef]
- Hermans, E.J.; Henckens, M.J.A.G.; Joëls, M.; Fernández, G. Dynamic Adaptation of Large-Scale Brain Networks in Response to Acute Stressors. Trends Neurosci. 2014, 37, 304–314. [Google Scholar] [CrossRef]
- Menon, V. Large-Scale Brain Networks and Psychopathology: A Unifying Triple Network Model. Trends Cogn. Sci. 2011, 15, 483–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hashemi, M.M.; Kaldewaij, R.; Koch, S.B.J.; Beckmann, C.; Klumpers, F.; Roelofs, K. Acute Stress Alters the “default” Brain Processing. Neuroimage 2019, 189, 870–877. [Google Scholar] [CrossRef]
- Di Marco, L.Y.; Marzo, A.; Muñoz-Ruiz, M.; Ikram, M.A.; Kivipelto, M.; Ruefenacht, D.; Venneri, A.; Soininen, H.; Wanke, I.; Ventikos, Y.A.; et al. Modifiable Lifestyle Factors in Dementia: A Systematic Review of Longitudinal Observational Cohort Studies. J. Alzheimers Dis. 2014, 42, 119–135. [Google Scholar] [CrossRef]
- Voelcker-Rehage, C.; Niemann, C. Structural and Functional Brain Changes Related to Different Types of Physical Activity across the Life Span. Neurosci. Biobehav. Rev. 2013, 37, 2268–2295. [Google Scholar] [CrossRef]
- Thoenen, H. Neurotrophins and Neuronal Plasticity. Science 1995, 270, 593–598. [Google Scholar] [CrossRef]
- Estaki, M.; Pither, J.; Baumeister, P.; Little, J.P.; Gill, S.K.; Ghosh, S.; Ahmadi-Vand, Z.; Marsden, K.R.; Gibson, D.L. Cardiorespiratory Fitness as a Predictor of Intestinal Microbial Diversity and Distinct Metagenomic Functions. Microbiome 2016, 4, 42. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on Sports Cardiology and Exercise in Patients with Cardiovascular Disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, V.; Chang, W.J.; Liston, M.B.; McAuley, J.H.; Schabrun, S.M. The Role of Perceived Stress and Life Stressors in the Development of Chronic Musculoskeletal Pain Disorders: A Systematic Review. J. Pain. 2019, 20, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Lucini, D.; Pagani, E.; Capria, F.; Galiano, M.; Marchese, M.; Cribellati, S.; Parati, G. Age Influences on Lifestyle and Stress Perception in the Working Population. Nutrients 2023, 15, 399. [Google Scholar] [CrossRef] [PubMed]
- Lucini, D.; Sala, R.; Spataro, A.; Malacarne, M.; Benzi, M.; Tamorri, S.; Pagani, M. Can the Use of a Single Integrated Unitary Autonomic Index Provide Early Clues for Eventual Eligibility for Olympic Games? Eur. J. Appl. Physiol. 2018, 118, 919–926. [Google Scholar] [CrossRef]
- Iellamo, F.D.; Pigozzi, F.; Spataro, A.; Di Salvo, V.; Fagnani, F.; Roselli, A.; Rizzo, M.; Malacarne, M.; Pagani, M.; Lucini, D. Autonomic and Psychological Adaptations in Olympic Rowers. J. Sports Med. Phys. Fit. 2006, 46, 598–604. [Google Scholar]
- Lucini, D.; Malacarne, M.; Gatzemeier, W.; Pagani, M. A Simple Home-Based Lifestyle Intervention Program to Improve Cardiac Autonomic Regulation in Patients with Increased Cardiometabolic Risk. Sustainability 2020, 12, 7671. [Google Scholar] [CrossRef]
- Cha, D.U.; Baek, C.H.; Lee, D.; Kim, H.S.; Son, M. Association between Weight Perception and Perceived Stress among Korean Adults from the Korea National Health and Nutrition Examination Survey. Sci. Rep. 2024, 14, 24946. [Google Scholar] [CrossRef]
- Stefanaki, C.; Pervanidou, P.; Boschiero, D.; Chrousos, G.P. Chronic Stress and Body Composition Disorders: Implications for Health and Disease. Hormones 2018, 17, 33–43. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wise, R.A. How Can Drug Addiction Help Us Understand Obesity? Nat. Neurosci. 2005, 8, 555–560. [Google Scholar] [CrossRef]
- Volkow, N.; Li, T.K. The Neuroscience of Addiction. Nat. Neurosci. 2005, 8, 1429–1430. [Google Scholar] [CrossRef]
- Esch, T.; Stefano, G.B. The Neurobiology of Pleasure, Reward Processes, Addiction and Their Health Implications. Neuroendocrinol. Lett. 2004, 25, 235–251. [Google Scholar]
- Edenfield, T.M.; Blumenthal, J.A. Exercise and Stress Reduction. In The Handbook of Stress Science Biology, Psychology, and Health; Contrada, E.J., Baum, A., Eds.; Springer: New York, NY, USA, 2011; p. 301. [Google Scholar]
- Sandlund, E.S.; Norlander, T. The Effects of Tai Chi Chuan Relaxation and Exercise on Stress Responses and Well-Being: An Overview of Research. Int. J. Stress. Manag. 2000, 7, 139–149. [Google Scholar] [CrossRef]
- Kashihara, K.; Maruyama, T.; Murota, M.; Nakahara, Y. Positive Effects of Acute and Moderate Physical Exercise on Cognitive Function. J. Physiol. Anthropol. 2009, 28, 155–164. [Google Scholar] [CrossRef]
Variable | All | Females | Males | Mann–Whitney U | |
---|---|---|---|---|---|
Mean ± S.D | Mean ± S.D | Mean ± S.D | Sign. p = | ||
Age | [yrs] | 35.79 ± 13.00 | 38.04 ± 12.30 | 32.21 ± 25.00 | 0.006 |
BMI | [kg/m2] | 25.72 ± 5.50 | 26.14 ± 6.06 | 25.05 ± 4.46 | 0.609 |
Waist | [cm] | 87.96 ± 14.30 | 87.86 ± 15.71 | 88.13 ± 11.87 | 0.542 |
FM% | % | 27.45 ± 11.17 | 33.27 ± 8.70 | 18.04 ± 7.82 | 0.000 |
FFM% | % | 72.55 ± 11.17 | 66.73 ± 8.70 | 81.96 ± 7.82 | 0.000 |
TOT Chol. | [mg/dL] | 210.36 ± 40.65 | 214.42 ± 40.04 | 194.94 ± 41.01 | 0.159 |
HDL Chol | [mg/dL] | 58.89 ± 14.32 | 61.43 ± 13.27 | 50.60 ± 14.94 | 0.004 |
LDL Chol | [mg/dL] | 130.16 ± 38.48 | 133.49 ± 36.00 | 119.27 ± 45.30 | 0.231 |
Triglycerides | [mg/dL] | 100.76 ± 47.45 | 96.27 ± 36.76 | 115.38 ± 71.88 | 0.497 |
FPG | [mg/dL] | 88.67 ± 9.92 | 87.88 ± 10.29 | 91.13 ± 8.52 | 0.106 |
SAP | [mmHg] | 115.30 ± 10.76 | 113.53 ± 12.25 | 118.11 ± 7.07 | 0.000 |
DAP | [mmHg] | 70.34 ± 9.44 | 70.61 ± 9.97 | 69.91 ± 8.61 | 0.817 |
HR thres. | [beat/min] | 125.25 ± 19.22 | 122.95 ± 18.36 | 128.84 ± 20.14 | 0.143 |
HR max | [beat/min] | 163.77 ± 16.61 | 160.77 ± 16.57 | 168.51 ± 15.67 | 0.007 |
VO2max | [mL/kg/min] | 31.65 ± 12.30 | 25.75 ± 9.16 | 40.88 ± 10.87 | 0.000 |
RQ | . | 1.16 ± 0.10 | 1.16 ± 0.10 | 1.15 ± 0.09 | 0.682 |
VO2/Work | [mL/min/Watt] | 9.81 ± 3.21 | 8.26 ± 2.61 | 12.16 ± 2.54 | 0.000 |
HR/VO2 | [bpm/L/min] | 2.96 ± 0.84 | 3.46 ± 0.87 | 2.54 ± 0.55 | 0.000 |
VE/VCO2 | . | 23.85 ± 3.65 | 24.45 ± 3.93 | 22.92 ± 2.99 | 0.014 |
Mets M-V | . | 1080.69 ± 1139.51 | 856.18 ± 1080.16 | 1437.50 ± 1149.65 | 0.000 |
TOT. Mets | . | 1737.39 ± 1266.54 | 1461.12 ± 1184.00 | 2176.46 ± 1279.50 | 0.000 |
Stress P. score | [AU] | 4.33 ± 2.79 | 4.69 ± 2.84 | 3.77 ± 2.64 | 0.062 |
Fatigue P. score | [AU] | 4.33 ± 2.83 | 4.80 ± 2.76 | 3.59 ± 2.80 | 0.011 |
4SQ score | [AU] | 26.79 ± 23.44 | 31.85 ± 22.56 | 18.73 ± 22.73 | 0.000 |
AGE | VO2max | METs Total | METs M-V | Stress P. Score | Fatigue P. Score | 4SQ Score | Fat Mass% | Total Chol. | HDL Chol. | Triglycerides | FPG | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AGE | 1 | |||||||||||
VO2max | −0.552 ** | 1 | ||||||||||
METs Total | −0.150 | 0.461 ** | 1 | |||||||||
METs M-V | −0.235 ** | 0.488 ** | 0.848 ** | 1 | ||||||||
Stress P. Score | 0.014 | −0.183 * | −0.275 ** | −0.243 ** | 1 | |||||||
Fatigue P. Score | 0.036 | −0.321 ** | −0.275 ** | −0.235 ** | 0.720 ** | 1 | ||||||
4SQ Score | 0.136 | −0.302 ** | −0.255 ** | −0.216 ** | 0.555 ** | 0.623 ** | 1 | |||||
Fat Mass% | 0.599 ** | −0.823 ** | −0.358 ** | −0.346 ** | 0.168 | 0.241 ** | 0.253 ** | 1 | ||||
TOT Chol. | 0.316 ** | −0.351 ** | 0.007 | −0.124 | 0.105 | 0.051 | 0.120 | 0.239 * | 1 | |||
HDL Chol. | −0.343 ** | 0.142 | 0.000 | −0.096 | 0.103 | 0.099 | 0.116 | −0.182 | 0.025 | 1 | ||
Triglycerides | 0.299 * | −0.202 | −0.149 | −0.172 | −0.123 | −0.077 | −0.060 | 0.087 | 0.418 ** | −0.349 ** | 1 | |
FPG | 0.286 * | −0.246 * | −0.228 | −0.177 | 0.208 | 0.331 ** | 0.194 | 0.275 * | 0.019 | −0.226 | 0.015 | 1 |
AGE | METs Total | METs M-V | Stress P. Score | Fatigue P. Score | 4SQ Score | Fat Mass% | Total Chol. | HDL Chol. | Triglycerides | FPG | |
---|---|---|---|---|---|---|---|---|---|---|---|
Regression coefficient | −0.584 | 47.95 | 45.77 | −0.042 | −0.074 | −0.581 | −0.742 | −1.25 | 0.179 | −0.837 | −0.211 |
Significance | <0.001 | <0.001 | <0.001 | 0.030 | <0.001 | <0.001 | <0.001 | 0.003 | 0.264 | 0.099 | <0.001 |
Variable | BELOW Group | ABOVE Group | Cohen’s d | Univariate GLM (Covariates: Sex, Age) | Mann–Whitney U | ||
---|---|---|---|---|---|---|---|
Mean ± S.D | Mean ± S.D | (95% C.I.) | Sign. p = | Sign. p = | |||
BMI | [kg/m2] | 27.75 ± 6.90 | 24.37 ± 3.81 | 0.644 | (0.31, 3.86) | 0.022 | 0.005 |
Waist | [cm] | 91.55 ± 17.37 | 85.43 ± 11.09 | 0.437 | (−0.59, 9.23) | 0.084 | 0.072 |
FM% | % | 32.27 ± 10.93 | 23.86 ± 10.00 | 0.809 | (−0.45, 4.48) | 0.108 | 0.000 |
FFM% | % | 67.72 ± 10.92 | 76.14 ± 10.00 | 0.809 | (−4.48, 0.45) | 0.108 | 0.000 |
TOT Chol. | [mg/dL] | 213.90 ± 41.06 | 205.48 ± 40.27 | 0.207 | (−16.60, 22.14) | 0.776 | 0.531 |
HDL Chol | [mg/dL] | 60.14 ± 14.64 | 57.23 ± 1 3.99 | 0.199 | (−3.67, 9.40) | 0.384 | 0.507 |
LDL Chol | [mg/dL] | 132.52 ± 37.26 | 127.12 ± 40.47 | 0.140 | (−16.91, 19.33) | 0.894 | 0.882 |
Triglycerides | [mg/dL] | 102.00 ± 36.47 | 99.10 ± 59.82 | 0.061 | (−21.28, 24.07) | 0.902 | 0.236 |
FPG | [mg/dL] | 90.23 ± 10.23 | 86.46 ± 9.21 | 0.390 | (−0.89, 8.61) | 0.109 | 0.078 |
SAP | [mmHg] | 114.55 ± 12.12 | 115.80 ± 9.8 | 0.115 | (−5.79, 1.52) | 0.250 | 0.621 |
DAP | [mmHg] | 72.15 ± 10.23 | 69.13 ± 8.72 | 0.324 | (68.08, 72.31) | 0.863 | 0.031 |
HR thres. | [beat/min] | 115.42 ± 16.17 | 131.92 ± 18.31 | 0.944 | (−17.49, −5.73) | 0.000 | 0.000 |
HR max | [beat/min] | 156.89 ± 16.88 | 168.38 ± 16.61 | 0.732 | (−9.32, 0.13) | 0.056 | 0.000 |
VO2max | [mL/kg/min] | 24.46 ± 9.30 | 36.53 ± 11.72 | −1.117 | (−8.84, −3.04) | 0.000 | 0.000 |
RQ | . | 1.17 ± 0.09 | 1.15 ± 0.10 | 0.211 | (−0.01, 0.06) | 0.124 | 0.192 |
VO2/Work | [mL/min/Watt] | 8.39 ± 2.74 | 10.77 ± 3.21 | 0.792 | (−1.78, 0.09) | 0.076 | 0.000 |
HR/VO2 | [bpm/L/min] | 3.5 ± 1.08 | 2.76 ± 0.65 | 0.939 | (0.24, 0.99) | 0.002 | 0.006 |
VE/VCO2 | . | 24.75 ± 4.21 | 23.25 ± 3.11 | 0.418 | (−0.35, 2.42) | 0.143 | 0.042 |
Mets M-V | . | 152.07 ± 210.66 | 1699.77 ± 1084.21 | 1.818 | (−1805.80, −1186.00) | 0.000 | 0.000 |
TOT. Mets | . | 939.80 ± 874.02 | 2269.11 ± 1210.21 | 1.221 | (1647.26, 862.51) | 0.000 | 0.000 |
Stress P. score | [AU] | 5.33 ± 2.93 | 3.67 ± 2.50 | 0.620 | (0.73, 2.67) | 0.001 | 0.001 |
Fatigue P. score | [AU] | 5.28 ± 2.87 | 3.70 ± 2.63 | 0.577 | (0.50, 2.47) | 0.003 | 0.001 |
4SQ score | [AU] | 34.81 ± 26.98 | 21.44 ± 19.10 | 0.592 | (2.29, 18.42) | 0.012 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oggionni, G.; Rizzi, M.; Bernardelli, G.; Malacarne, M.; Pagani, M.; Lucini, D. The Association Between Cardiorespiratory Fitness Directly Assessed by the Cardiopulmonary Stress Test and the Perception of Stress. J. Clin. Med. 2025, 14, 7120. https://doi.org/10.3390/jcm14197120
Oggionni G, Rizzi M, Bernardelli G, Malacarne M, Pagani M, Lucini D. The Association Between Cardiorespiratory Fitness Directly Assessed by the Cardiopulmonary Stress Test and the Perception of Stress. Journal of Clinical Medicine. 2025; 14(19):7120. https://doi.org/10.3390/jcm14197120
Chicago/Turabian StyleOggionni, Gianluigi, Marcello Rizzi, Giuseppina Bernardelli, Mara Malacarne, Massimo Pagani, and Daniela Lucini. 2025. "The Association Between Cardiorespiratory Fitness Directly Assessed by the Cardiopulmonary Stress Test and the Perception of Stress" Journal of Clinical Medicine 14, no. 19: 7120. https://doi.org/10.3390/jcm14197120
APA StyleOggionni, G., Rizzi, M., Bernardelli, G., Malacarne, M., Pagani, M., & Lucini, D. (2025). The Association Between Cardiorespiratory Fitness Directly Assessed by the Cardiopulmonary Stress Test and the Perception of Stress. Journal of Clinical Medicine, 14(19), 7120. https://doi.org/10.3390/jcm14197120