The Triglyceride Glucose–Conicity Index as a Novel Predictor for Stroke Risk: A Nationwide Prospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Assessment of Exposure
2.3. Assessment of Outcome
2.4. Definitions of Covariates
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Study Participants
3.2. Association of TyG, CI, and TyG-CI with Stroke Risk
3.3. Predictive Value of TyG-CI in Incident Stroke
3.4. Subgroup and Sensitivity Analyses
3.5. Risk Factors for Stroke in Individuals with Low TyG-CI Values
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AO | Abdominal obesity |
AUC | Area under the curve |
BMI | Body mass index |
CHARLS | China Health and Retirement Longitudinal Study |
CHD | Coronary heart disease |
CI | Conicity index |
CVD | Cardiovascular disease |
DBP | Diastolic blood pressure |
eGFR | Estimated glomerular filtration rate |
FPG | Fasting plasma glucose |
HbA1c | Glycosylated hemoglobin A1c |
HDL-C | High-density lipoprotein cholesterol |
HOMA-IR | Homeostatic model assessment for insulin resistance |
HR | Hazard ratio |
IR | Insulin resistance |
LDL-C | Low-density lipoprotein cholesterol |
OR | Odds ratio |
Q | Quartile |
RCS | Restricted cubic spline |
ROC | Receiver operating characteristic curve |
SBP | Systolic blood pressure |
TC | Total cholesterol |
TG | Triglycerides |
TyG | Triglyceride–glucose index |
TyG-CI | Triglyceride glucose–conicity index |
WC | Waist circumference |
95%CI | 95% confidence interval |
References
- GBD 2021 Stroke Risk Factor Collaborators. Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 973–1003. [Google Scholar] [CrossRef]
- Feigin, V.L.; Owolabi, M.O.; World Stroke Organization–Lancet Neurology Commission Stroke Collaboration Group. Pragmatic Solutions to Reduce the Global Burden of Stroke: A World Stroke Organization–Lancet Neurology Commission. Lancet Neurol. 2023, 22, 1160–1206. [Google Scholar] [CrossRef]
- GBD 2021 Diseases and Injuries Collaborators. Global Incidence, Prevalence, Years Lived with Disability (YLDs), Disability-Adjusted Life-Years (DALYs), and Healthy Life Expectancy (HALE) for 371 Diseases and Injuries in 204 Countries and Territories and 811 Subnational Locations, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2133–2161. [Google Scholar] [CrossRef]
- Tu, W.-J.; Wang, L.-D. China Stroke Surveillance Report 2021. Mil. Med. Res. 2023, 10, 33. [Google Scholar] [CrossRef]
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.O.; Pandian, J.; Lindsay, P.; Grupper, M.F.; Rautalin, I. World Stroke Organization: Global Stroke Fact Sheet 2025. Int. J. Stroke 2025, 20, 132–144. [Google Scholar] [CrossRef]
- Valdez, R. A Simple Model-Based Index of Abdominal Adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [Google Scholar] [CrossRef]
- Chung, W.; Park, J.H.; Chung, H.S.; Yu, J.M.; Kim, D.S.; Moon, S. Utility of the Z-Score of Log-Transformed A Body Shape Index (LBSIZ) in the Assessment for Sarcopenic Obesity and Cardiovascular Disease Risk in the United States. Sci. Rep. 2019, 9, 9292. [Google Scholar] [CrossRef]
- Hill, M.A.; Yang, Y.; Zhang, L.; Sun, Z.; Jia, G.; Parrish, A.R.; Sowers, J.R. Insulin Resistance, Cardiovascular Stiffening and Cardiovascular Disease. Metabolism 2021, 119, 154766. [Google Scholar] [CrossRef] [PubMed]
- Balakumar, P.; Maung-U, K.; Jagadeesh, G. Prevalence and Prevention of Cardiovascular Disease and Diabetes Mellitus. Pharmacol. Res. 2016, 113, 600–609. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef]
- Sánchez-García, A.; Rodríguez-Gutiérrez, R.; Mancillas-Adame, L.; González-Nava, V.; Díaz González-Colmenero, A.; Solis, R.C.; Álvarez-Villalobos, N.A.; González-González, J.G. Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. Int. J. Endocrinol. 2020, 2020, 4678526. [Google Scholar] [CrossRef]
- Tahapary, D.L.; Pratisthita, L.B.; Fitri, N.A.; Marcella, C.; Wafa, S.; Kurniawan, F.; Rizka, A.; Tarigan, T.J.E.; Harbuwono, D.S.; Purnamasari, D.; et al. Challenges in the Diagnosis of Insulin Resistance: Focusing on the Role of HOMA-IR and Tryglyceride/Glucose Index. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102581. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, X.; Wang, Y.; Leng, L.; Xu, J.; Feng, L.; Jiang, S.; Wang, J.; Yang, Y.; Pan, G.; et al. The Impact of Triglyceride-Glucose Index on Ischemic Stroke: A Systematic Review and Meta-Analysis. Cardiovasc. Diabetol. 2023, 22, 2. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; Jing, J.; Wang, A.; Zhang, X.; Jia, Q.; Meng, X.; Zhao, X.; Liu, L.; Li, H.; et al. Association of Triglyceride-Glucose Index and Stroke Recurrence among Nondiabetic Patients with Acute Ischemic Stroke. BMC Neurol. 2022, 22, 79. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ji, H.; Sun, W.; An, X.; Lian, F. Triglyceride Glucose (TyG) Index: A Promising Biomarker for Diagnosis and Treatment of Different Diseases. Eur. J. Intern. Med. 2025, 131, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wu, K.; Wu, W.; Chen, G.; Chen, Z.; Cai, Z.; Cai, Z.; Lan, Y.; Wu, S.; Chen, Y. Relationship between the Cumulative Exposure to Atherogenic Index of Plasma and Ischemic Stroke: A Retrospective Cohort Study. Cardiovasc. Diabetol. 2023, 22, 313. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Shen, J.; Chen, P.; Cai, J.; Zhao, Y.; Liang, J.; Cai, J.; Cheng, S.; Zhang, Y. Association of Triglyceride Glucose Index with Stroke: From Two Large Cohort Studies and Mendelian Randomization Analysis. Int. J. Surg. 2024, 110, 5409–5416. [Google Scholar] [CrossRef]
- Wang, B.; Li, L.; Tang, Y.; Ran, X. Joint Association of Triglyceride Glucose Index (TyG) and Body Roundness Index (BRI) with Stroke Incidence: A National Cohort Study. Cardiovasc. Diabetol. 2025, 24, 164. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, Y.; Smith, J.P.; Strauss, J.; Yang, G. Cohort Profile: The China Health and Retirement Longitudinal Study (CHARLS). Int. J. Epidemiol. 2014, 43, 61–68. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am. J. Kidney Dis. 2022, 79, 268–288.e1. [Google Scholar] [CrossRef]
- Stekhoven, D.J.; Bühlmann, P. MissForest—Non-Parametric Missing Value Imputation for Mixed-Type Data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef] [PubMed]
- Bornfeldt, K.E.; Tabas, I. Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metab. 2011, 14, 575–585. [Google Scholar] [CrossRef]
- Santilli, F.; Vazzana, N.; Liani, R.; Guagnano, M.T.; Davì, G. Platelet Activation in Obesity and Metabolic Syndrome. Obes. Rev. 2012, 13, 27–42. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Xing, L.; Jing, L.; Tian, Y.; Yan, H.; Sun, Q.; Dai, D.; Shi, L.; Liu, S. Value of Triglyceride-Glucose Index for the Estimation of Ischemic Stroke Risk: Insights from a General Population. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 245–253. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Wang, T.; Tian, W.; Chen, X.; Zhang, J.; Li, Q.; Ma, D.; Zhao, L.; Chen, Z.; et al. Triglyceride–Glucose Index and the Risk of Stroke in American Adults: Findings from the Atherosclerosis Risk in Communities Study. Diabetol. Metab. Syndr. 2023, 15, 187. [Google Scholar] [CrossRef]
- Feng, X.; Yao, Y.; Wu, L.; Cheng, C.; Tang, Q.; Xu, S. Triglyceride-Glucose Index and the Risk of Stroke: A Systematic Review and Dose-Response Meta-Analysis. Horm. Metab. Res. 2022, 54, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Roriz, A.K.C.; Passos, L.C.S.; de Oliveira, C.C.; Eickemberg, M.; de Moreira, P.A.; Sampaio, L.R. Evaluation of the Accuracy of Anthropometric Clinical Indicators of Visceral Fat in Adults and Elderly. PLoS ONE 2014, 9, e103499. [Google Scholar] [CrossRef]
- Nkwana, M.R.; Monyeki, K.D.; Lebelo, S.L. Body Roundness Index, A Body Shape Index, Conicity Index, and Their Association with Nutritional Status and Cardiovascular Risk Factors in South African Rural Young Adults. Int. J. Environ. Res. Public Health 2021, 18, 281. [Google Scholar] [CrossRef]
- Tonding, S.F.; Silva, F.M.; Antonio, J.P.; Azevedo, M.J.; Canani, L.H.S.; Almeida, J.C. Adiposity Markers and Risk of Coronary Heart Disease in Patients with Type 2 Diabetes Mellitus. Nutr. J. 2014, 13, 124. [Google Scholar] [CrossRef]
- Motamed, N.; Perumal, D.; Zamani, F.; Ashrafi, H.; Haghjoo, M.; Saeedian, F.S.; Maadi, M.; Akhavan-Niaki, H.; Rabiee, B.; Asouri, M. Conicity Index and Waist-to-Hip Ratio Are Superior Obesity Indices in Predicting 10-Year Cardiovascular Risk Among Men and Women. Clin. Cardiol. 2015, 38, 527–534. [Google Scholar] [CrossRef]
- Ning, P.; Huang, J.; Ouyang, H.; Feng, Q.; Cao, H.; Yang, F.; Hou, J. Value of the Conicity Index as an Indicator of Abdominal Obesity in Predicting Cardiovascular Disease and All-Cause Mortality Risk in Patients with Diabetes Based on NHANES Data from 1999–2018. Am. J. Med. Sci. 2025, 370, 74–82. [Google Scholar] [CrossRef]
- Miao, M.; Zhou, G.; Bao, A.; Sun, Y.; Du, H.; Song, L.; Cao, Y.; You, S.; Zhong, C. Triglyceride-Glucose Index and Common Carotid Artery Intima-Media Thickness in Patients with Ischemic Stroke. Cardiovasc. Diabetol. 2022, 21, 43. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Liu, Z.; Huang, Q.; Feng, X.; Liao, D.; Yu, F.; Feng, J.; Huang, Q.; Liu, Y.; Xia, J. Conicity Index and Sex Differences in Relation to Carotid Plaque Instability in Chinese Community Residents: Conicity Index and Carotid Plaque. J. Stroke Cerebrovasc. Dis. 2025, 34, 108193. [Google Scholar] [CrossRef] [PubMed]
- Maida, C.D.; Norrito, R.L.; Rizzica, S.; Mazzola, M.; Scarantino, E.R.; Tuttolomondo, A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int. J. Mol. Sci. 2024, 25, 6297. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall n = 8011 | Q1 n = 2003 | Q2 n = 2003 | Q3 n = 2003 | Q4 n = 2002 | p Value |
---|---|---|---|---|---|---|
Age, years | 58.0 (52.0, 65.0) | 56.0 (49.0, 62.0) | 58.0 (51.0, 65.0) | 59.0 (53.0, 65.0) | 60.0 (54.0, 67.0) | <0.001 |
Sex, % | <0.001 | |||||
Male | 3701 (46%) | 1117 (56%) | 1038 (52%) | 834 (42%) | 712 (36%) | |
Female | 4310 (54%) | 886 (44%) | 965 (48%) | 1169 (58%) | 1290 (64%) | |
Residence, % | <0.001 | |||||
Rural | 6658 (83%) | 1729 (86%) | 1695 (85%) | 1653 (83%) | 1581 (79%) | |
City | 1353 (17%) | 274 (14%) | 308 (15%) | 350 (17%) | 421 (21%) | |
Marital status, % | <0.001 | |||||
Non-married | 982 (12%) | 227 (11%) | 229 (11%) | 227 (11%) | 299 (15%) | |
Married | 7029 (88%) | 1776 (89%) | 1774 (89%) | 1776 (89%) | 1703 (85%) | |
Education level | 0.70 | |||||
High school or below | 7764 (97%) | 1941 (97%) | 1946 (97%) | 1944 (97%) | 1933 (97%) | |
College or above | 247 (3.1%) | 62 (3.1%) | 57 (2.8%) | 59 (2.9%) | 69 (3.4%) | |
Smoking, % | 3105 (39%) | 917 (46%) | 839 (42%) | 691 (34%) | 658 (33%) | <0.001 |
Drinking, % | 3132 (39%) | 882 (44%) | 848 (42%) | 721 (36%) | 681 (34%) | <0.001 |
Hypertension, % | 3255 (41%) | 515 (26%) | 698 (35%) | 878 (44%) | 1164 (58%) | <0.001 |
Dyslipidemia, % | 3834 (48%) | 423 (21%) | 713 (36%) | 1074 (54%) | 1624 (81%) | <0.001 |
Diabetes, % | 713 (8.9%) | 64 (3.2%) | 69 (3.4%) | 163 (8.1%) | 417 (21%) | <0.001 |
Heart disease, % | 928 (12%) | 161 (8.0%) | 203 (10%) | 257 (13%) | 307 (15%) | <0.001 |
Kidney disease, % | 702 (8.8%) | 181 (9.0%) | 165 (8.2%) | 177 (8.8%) | 179 (8.9%) | 0.80 |
BMI, kg/m2 | 23.1 (20.9, 25.8) | 21.6 (19.7, 23.5) | 22.4 (20.4, 24.6) | 24.0 (21.6, 26.3) | 25.1 (22.7, 27.8) | <0.001 |
SBP, mmHg | 126.0 (113.5, 141.0) | 120.0 (109.5, 133.5) | 124.0 (112.5, 138.5) | 128.0 (115.5, 142.5) | 133.0 (120.0, 147.5) | <0.001 |
DBP, mmHg | 74.5 (66.5, 82.5) | 71.5 (64.5, 80.0) | 73.5 (66.0, 81.5) | 75.0 (67.5, 83.5) | 77.5 (70.0, 85.5) | <0.001 |
TC, mg/dL | 191.4 (168.6, 216.5) | 179.0 (159.3, 202.2) | 188.7 (165.5, 211.1) | 195.6 (173.2, 219.6) | 204.7 (180.5, 233.1) | <0.001 |
TG, mg/dL | 104.4 (74.3, 150.4) | 67.3 (54.0, 85.0) | 91.2 (72.6, 114.2) | 115.9 (92.9, 149.6) | 180.5 (133.6, 257.5) | <0.001 |
HDL-C, mg/dL | 49.5 (40.6, 60.3) | 57.2 (48.7, 67.7) | 52.2 (43.7, 62.6) | 47.9 (40.6, 57.6) | 41.4 (34.0, 49.1) | <0.001 |
LDL-C, mg/dL | 115.2 (94.3, 138.4) | 107.5 (90.1, 127.6) | 115.6 (95.5, 136.5) | 121.4 (100.5, 143.8) | 117.9 (92.8, 144.2) | <0.001 |
FPG, mg/dL | 102.2 (94.5, 112.5) | 96.7 (90.4, 104.4) | 99.9 (93.4, 107.6) | 103.1 (95.9, 112.7) | 112.0 (101.9, 134.6) | <0.001 |
HbA1c, % | 5.2 (4.9, 5.4) | 5.1 (4.8, 5.3) | 5.1 (4.8, 5.4) | 5.2 (4.9, 5.5) | 5.3 (5.0, 5.8) | <0.001 |
eGFR, mL/min/1.73 m2 | 98.9 (88.6, 105.6) | 101.3 (92.4, 107.7) | 99.5 (90.1, 105.9) | 98.1 (87.5, 104.7) | 96.1 (84.3, 103.7) | <0.001 |
TyG | 8.6 (8.2, 9.0) | 8.1 (7.9, 8.3) | 8.4 (8.2, 8.7) | 8.7 (8.5, 9.0) | 9.3 (8.9, 9.7) | <0.001 |
CI | 1.3 (1.2, 1.3) | 1.2 (1.2, 1.2) | 1.3 (1.2, 1.3) | 1.3 (1.3, 1.3) | 1.4 (1.3, 1.4) | <0.001 |
TyG-CI | 11.0 (10.2, 11.9) | 9.7 (9.3, 10.0) | 10.7 (10.5, 10.9) | 11.4 (11.2, 11.7) | 12.6 (12.2, 13.2) | <0.001 |
Hazard Ratio (95%CI) | |||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
TyG quartile | |||
Q1 | 1.00 (Reference) | 1.00 (Reference) | 1.00 (Reference) |
Q2 | 1.48 (1.18–1.87) | 1.51 (1.20–1.91) | 1.38 (1.09–1.74) |
Q3 | 1.97 (1.58–2.45) | 1.99 (1.59–2.49) | 1.60 (1.27–2.02) |
Q4 | 2.00 (1.61–2.50) | 2.08 (1.66–2.60) | 1.36 (1.05–1.76) |
TyG Per IQR | 1.31 (1.21–1.41) | 1.33 (1.23–1.43) | 1.12 (1.01–1.23) |
CI quartile | |||
Q1 | 1.00 (Reference) | 1.00 (Reference) | 1.00 (Reference) |
Q2 | 1.09 (0.86–1.36) | 1.06 (0.84–1.34) | 1.01 (0.80–1.27) |
Q3 | 1.43 (1.15–1.77) | 1.39 (1.12–1.72) | 1.16 (0.93–1.44) |
Q4 | 1.97 (1.61–2.42) | 1.81 (1.46–2.24) | 1.43 (1.15–1.78) |
CI Per IQR | 1.12 (1.07–1.17) | 1.09 (1.04–1.15) | 1.06 (1.00–1.13) |
TyG-CI quartile | |||
Q1 | 1.00 (Reference) | 1.00 (Reference) | 1.00 (Reference) |
Q2 | 1.47 (1.16–1.87) | 1.43 (1.13–1.82) | 1.31 (1.03–1.66) |
Q3 | 1.85 (1.47–2.33) | 1.83 (1.45–2.30) | 1.48 (1.16–1.88) |
Q4 | 2.51 (2.01–3.12) | 2.42 (1.93–3.03) | 1.69 (1.31–2.17) |
TyG-CI Per IQR | 1.26 (1.19–1.33) | 1.23 (1.16–1.31) | 1.11 (1.03–1.21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, X.; Li, Y.; Liang, Y.; Chen, L.; Ran, X. The Triglyceride Glucose–Conicity Index as a Novel Predictor for Stroke Risk: A Nationwide Prospective Cohort Study. J. Clin. Med. 2025, 14, 7086. https://doi.org/10.3390/jcm14197086
Ye X, Li Y, Liang Y, Chen L, Ran X. The Triglyceride Glucose–Conicity Index as a Novel Predictor for Stroke Risk: A Nationwide Prospective Cohort Study. Journal of Clinical Medicine. 2025; 14(19):7086. https://doi.org/10.3390/jcm14197086
Chicago/Turabian StyleYe, Xiaoqi, Yan Li, Yebei Liang, Lihong Chen, and Xingwu Ran. 2025. "The Triglyceride Glucose–Conicity Index as a Novel Predictor for Stroke Risk: A Nationwide Prospective Cohort Study" Journal of Clinical Medicine 14, no. 19: 7086. https://doi.org/10.3390/jcm14197086
APA StyleYe, X., Li, Y., Liang, Y., Chen, L., & Ran, X. (2025). The Triglyceride Glucose–Conicity Index as a Novel Predictor for Stroke Risk: A Nationwide Prospective Cohort Study. Journal of Clinical Medicine, 14(19), 7086. https://doi.org/10.3390/jcm14197086