The Use of Stem Cells in Assisted Reproduction
Abstract
1. Introduction
- Summarize IVF principles and persistent challenges;
- Discuss the biological characteristics of stem cells and their mechanisms relevant to infertility;
- Evaluate potential applications in women (ovarian rejuvenation, endometrial regeneration) and men (sperm quality enhancement);
- Consider the ethical, clinical, and regulatory implications of stem cell-based ART.
2. IVF: Clinical Overview
- -
- Ovarian stimulation: Exogenous gonadotropins are administered to induce the development of multiple follicles, thereby increasing the number of retrievable oocytes [18]. Ultrasound and blood tests guide the timing of interventions.
- -
- Oocyte retrieval: Mature oocytes are collected transvaginally under ultrasound guidance using a needle aspiration technique, typically performed under sedation [19].
- -
- Fertilization: Retrieved oocytes are exposed to prepared sperm. Fertilization may occur via conventional insemination or through intracytoplasmic sperm injection (ICSI), in which a single sperm is injected directly into the oocyte, particularly in cases of severe male infertility [20].
- -
- Embryo culture: Fertilized oocytes are cultured for 3–5 days in specialized media, allowing embryonic development. Embryo quality is assessed microscopically [21].
- -
- Embryo transfer: One or more embryos are placed into the uterine cavity using a thin catheter inserted through the cervix. The number of embryos transferred depends on patient age, embryo quality, and guidelines designed to minimize multiple pregnancies [22].
- -
- Luteal phase support and pregnancy test: Hormonal supplementation supports the endometrium, and pregnancy is confirmed approximately two weeks later via serum β-hCG measurement [23].
3. Stem Cells: Characteristics and Mechanisms
3.1. Overview of Stem Cell Characteristics
3.2. Types of Stem Cells
- Ectodermal stem cells (ectoSCs);
- Mesodermal stem cells (mesoSCs), which later include mesenchymal stem cells (MSCs) and muscle stem cells (muscleSCs);
- Endodermal stem cells (endoSCs).
3.3. Potential Applications of ESCs and iPSCs in Infertility and IVF
3.4. Pathway A—Stem Cell-Based Therapy in Infertility
3.5. Pathway B—In Vitro Gametogenesis (IVG)
3.6. Pathway C—Synthetic Embryo Models (SEMs)
4. Potential Applications in Women: Ovarian Rejuvenation and Endometrial Regeneration
5. Potential Applications in Men: Sperm Quality Enhancement
6. Ethical Considerations of Stem Cell IVF
7. Challenges and Future Perspectives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steptoe, P.C.; Edwards, R.G. Birth after the reimplantation of a human embryo. Lancet 1978, 2, 366. [Google Scholar] [CrossRef]
- Barratt, C.L.R.; Björndahl, L.; De Jonge, C.J.; Lamb, D.J.; Osorio Martini, F.; McLachlan, R.; Oates, R.D.; van der Poel, S.; St John, B.; Sigman, M.; et al. The diagnosis of male infertility: An analysis of the evidence to support the development of global WHO guidance-challenges and future research opportunities. Hum. Reprod. Update 2017, 23, 660–680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giudice, L.C. Clinical practice. Endometriosis. N. Engl. J. Med. 2010, 362, 2389–2398. [Google Scholar] [CrossRef]
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Hum. Reprod. 2017, 32, 1786–1801. [Google Scholar] [CrossRef]
- Adashi, E.Y.; Wessel, G.M. Reproduction (Re)defined. Reprod. Sci. 2025, 32, 1287–1289. [Google Scholar] [CrossRef]
- Tian, Z.; Yu, T.; Liu, J.; Wang, T.; Higuchi, A. Introduction to stem cells. Prog. Mol. Biol. Transl. Sci. 2023, 199, 3–32. [Google Scholar] [CrossRef] [PubMed]
- Hussen, B.M.; Taheri, M.; Yashooa, R.K.; Abdullah, G.H.; Abdullah, S.R.; Kheder, R.K.; Mustafa, S.A. Revolutionizing medicine: Recent developments and future prospects in stem-cell therapy. Int. J. Surg. 2024, 110, 8002–8024. [Google Scholar] [CrossRef]
- Wei, L.; Yan, W.; Shah, W.; Zhang, Z.; Wang, M.; Liu, B.; Xue, Z.; Cao, Y.; Hou, X.; Zhang, K.; et al. Advancements and challenges in stem cell transplantation for regenerative medicine. Heliyon 2024, 10, e35836. [Google Scholar] [CrossRef]
- Cucinella, G.; Gullo, G.; Catania, E.; Perino, A.; Billone, V.; Marinelli, S.; Napoletano, G.; Zaami, S. Stem Cells and Infertility: A Review of Clinical Applications and Legal Frameworks. J. Pers. Med. 2024, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, G.; Talaei, S.A.; Enderami, S.E.; Mahabady, M.K.; Mahabadi, J.A. Pluripotent stem cell-derived gametes: A gap for infertility treatment and reproductive medicine in the future. Tissue Cell 2025, 95, 102904. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.X.; Xia, T.; She, L.P.; Lin, S.; Luo, X.M. Stem Cell Therapies for Human Infertility: Advantages and Challenges. Cell Transplant. 2022, 31, 9636897221083252. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Dehkordi, F.B.; Chehelgerdi, M.; Kabiri, H.; Salehian-Dehkordi, H.; Abdolvand, M.; Salmanizadeh, S.; Rashidi, M.; Niazmand, A.; Ahmadi, S.; et al. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol. Cancer 2023, 22, 189. [Google Scholar] [CrossRef]
- Marei, H.E. Stem Cell and Synthetic Embryo Models: Advances, Applications, and Ethical Considerations. Stem Cell Rev. Rep. 2025, 21, 1648–1668. [Google Scholar] [CrossRef]
- Baron, T. The Artificial Womb on Trial; Cambridge University Press: Cambridge, UK, 2025. [Google Scholar]
- Practice Committee of the American Society for Reproductive Medicine. Tubal factor infertility: A committee opinion. Fertil. Steril. 2015, 103, e24–e28. [Google Scholar]
- Sauer, M.V. Reproduction at an advanced maternal age and maternal health. Fertil. Steril. 2015, 103, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.C.; Sengupta, S.B. Preimplantation genetic diagnosis: State of the art 2011. Hum. Genet. 2012, 131, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Bosch, E.; Labarta, E.; Kolibianakis, E.; Rosen, M.P.; Meldrum, D.R. Ovarian stimulation protocols for IVF. Best. Pract. Res. Clin. Obstet. Gynaecol. 2019, 59, 69–81. [Google Scholar]
- Pados, G.; Tsolakidis, D.; Assimakopoulos, E.; Athanatos, D.; Bontis, J. Oocyte retrieval technique in IVF. J. Assist. Reprod. Genet. 2017, 34, 983–990. [Google Scholar]
- Palermo, G.; Joris, H.; Devroey, P.; Van Steirteghem, A.C. Intracytoplasmic sperm injection (ICSI): A novel fertilization treatment. Hum. Reprod. 1992, 7, 13–17. [Google Scholar]
- Gardner, D.K.; Schoolcraft, W.B. Culture and transfer of human blastocysts. Curr. Opin. Obstet. Gynecol. 1999, 11, 307–311. [Google Scholar] [CrossRef]
- Practice Committee of ASRM. Guidelines on the number of embryos to transfer. Fertil. Steril. 2017, 107, 901–903. [Google Scholar] [CrossRef]
- Fatemi, H.M. Luteal phase support in IVF/ICSI cycles: A review. Reprod. Biomed. Online 2015, 30, 512–520. [Google Scholar]
- Centers for Disease Control and Prevention. Assisted Reproductive Technology National Summary Report; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. [Google Scholar]
- Cobo, A. Embryo vitrification and cumulative live birth rates. Hum. Reprod. 2017, 32, 784–791. [Google Scholar]
- Thurin, A.; Hausken, J.; Hillensjö, T.; Jablonowska, B.; Pinborg, A.; Strandell, A.; Bergh, C. Elective single-embryo transfer versus double-embryo transfer in in vitro fertilization. N. Engl. J. Med. 2004, 351, 2392–2402. [Google Scholar] [CrossRef]
- Delvigne, A.; Rozenberg, S. Ovarian hyperstimulation syndrome: Pathophysiology and prevention. Fertil. Steril. 2002, 77, 1147–1155. [Google Scholar]
- Schieve, L.A.; Meikle, S.F.; Ferre, C.; Peterson, H.B.; Jeng, G.; Wilcox, L.S. Perinatal outcomes of twins conceived using ART. N. Engl. J. Med. 2002, 346, 1185–1192. [Google Scholar]
- Practice Committee of ASRM. Diagnosis and treatment of ectopic pregnancy. Fertil. Steril. 2018, 110, 967–978. [Google Scholar]
- Gameiro, S.; Boivin, J.; Dancet, E.; de Klerk, C.; Emery, M.; Lewis-Jones, C.; Thorn, P.; Van den Broeck, U.; Venetis, C.; Verhaak, C.M.; et al. ESHRE guideline: Routine psychosocial care in infertility and medically assisted reproduction-a guide for fertility staff. Hum. Reprod. 2015, 30, 2476–2485. [Google Scholar] [CrossRef] [PubMed]
- Hudson, K.L. Embryo disposition: An ethical challenge. Fertil. Steril. 2008, 90, 1343–1348. [Google Scholar]
- DeLuca, R.S.; Benson, C.B. Socioeconomic disparities in IVF access. Fertil. Steril. 2019, 111, 870–876. [Google Scholar]
- Savulescu, J.; Gyngell, C.; Wilkinson, D. Ethical issues in sex selection and genetic modification. J. Med. Ethics 2015, 41, 761–767. [Google Scholar]
- Pennings, G. Legal parenthood and IVF embryos. Hum. Reprod. 2008, 23, 475–478. [Google Scholar]
- World Health Organization. Global ART Regulatory Frameworks; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Wong, C.C.; Loewke, K.E.; Bossert, N.L.; Behr, B.; De Jonge, C.J.; Baer, T.M.; Reijo Pera, R.A. Non-invasive imaging of human 1118 embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 2010, 28, 1115–1121. [Google Scholar] [CrossRef]
- Munné, S.; Kaplan, B.; Frattarelli, J.L.; Child, T.; Nakhuda, G.; Shamma, F.N.; Silverberg, K.; Kalista, T.; Handyside, A.H.; Katz-Jaffe, M.; et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: A multicenter randomized clinical trial. Fertil Steril. 2019, 112, 1071–1079.e7. [Google Scholar] [CrossRef] [PubMed]
- Kuwayama, M. Vitrification methods for cryopreservation. Reprod. Biomed. Online 2007, 15, 738–747. [Google Scholar]
- Tran, D.; Cooke, S.; Illingworth, P.J. Artificial intelligence in IVF embryo selection. Fertil. Steril. 2021, 115, 444–451. [Google Scholar]
- Geens, M.; Sermon, K.; Tournaye, H. Human artificial gametes from stem cells: How close are we? Hum. Reprod. Update 2018, 25, 267–288. [Google Scholar]
- Segers, S. The IVG ‘relatedness paradox’: Researchers should mind speculation. Trends Biotechnol. 2023, 41, 1220–1222. [Google Scholar] [CrossRef]
- Cerneckis, J.; Cai, H.; Shi, Y. Induced pluripotent stem cells (iPSCs): Molecular mechanisms of induction and applications. Signal Transduct. Target. Ther. 2024, 9, 112. [Google Scholar] [CrossRef]
- Lingyue, H.; Peng, Y.; Yan, L.; Yuan, P.; Qiao, J. Moving toward totipotency: The molecular and cellular features of totipotent and naïve pluripotent stem cells. Hum. Reprod. Update 2025, 31, 361–391. [Google Scholar] [CrossRef]
- Zhankina, R.; Zhanbyrbekuly, U.; Askarov, M.; Zare, A.; Jafari, N.; Saipiyeva, D.; Sherkhanov, R.; Akhmetov, D.; Hashemi, A.; Farjam, M.; et al. Improving Fertility in Non-obstructive Azoospermia: Results from an Autologous Bone Mar-row-Derived Mesenchymal Stromal/Stem Cell Phase I Clinical Trial. Int. J. Fertil. Steril. 2024, 18 (Suppl. 1), 60–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leaver, R.B. Male infertility: An overview of causes and treatment options. Br. J. Nurs. 2016, 25, S35–S40. [Google Scholar] [CrossRef]
- Ismail, H.Y.; Hussein, S.; Shaker, N.A.; Rizk, H.; Wally, Y.R. Stem cell treatment trials for regeneration of testicular tissue. Reprod. Sci. 2023, 30, 1770–1781. [Google Scholar] [CrossRef]
- Nandy, K.; Babu, D.; Rani, S.; Joshi, G.; Ijee, S.; George, A.; Palani, D.; Premkumar, C.; Rajesh, P.; Vijayanand, S.; et al. Efficient gene editing in induced pluripotent stem cells enabled by an inducible adenine base editor with tunable expression. Sci. Rep. 2023, 13, 21953. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Wang, W.; Ren, X.; Hu, J.F. Therapeutic restoration of female reproductive and endocrine dysfunction using stem cells. Life Sci. 2023, 322, 121658. [Google Scholar] [CrossRef] [PubMed]
- Modanlou, M.; Mahdipour, M.; Mobarak, H. Effectiveness of stem cell therapy for male infertility restoration: A systematic review. J. Investig. Med. 2025, 73, 229–252. [Google Scholar] [CrossRef] [PubMed]
- Margiana, R. Mesenchymal stem cell-derived exosomes in preeclampsia: A next-generation therapeutic tool. Cell Biochem. Funct. 2024, 42, e3908. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Whitehead, C.; Werner, M.; Seli, E. Best quality vs. sex selection—An analysis of embryo selection preferences. J. Assist. Reprod. Genet. 2024, 41, 2211–2216. [Google Scholar] [CrossRef]
- Smolarczyk, R.; Szeliga, A.; Duszewska, A.M.; Kostrzak, A.; Rudnicka, E.; Szczesnowicz, A.; Kunicki, M.; Bochynska, S.; Bala, G.; Meczekalski, B.; et al. Foretelling the Future: Preimplantation Genetic Testing and the Coming of Polygenic Embryo Screening. J. Clin. Med. 2025, 14, 3885. [Google Scholar] [CrossRef]
- Nair, R.; Agarwal, P.; Gadre, M.A.; Vasanthan, K.S.; Seetharam, R.N. Stem cell treatments for female reproductive disorders: A comprehensive review. J. Ovarian Res. 2025, 18, 161. [Google Scholar] [CrossRef]
- Botigelli, R.C.; Guiltinan, C.; Arcanjo, R.B.; Denicol, A.C. In vitro gametogenesis from embryonic stem cells in livestock species. J. Anim. Sci. 2023, 101, skad137. [Google Scholar] [CrossRef]
- Ajmal, L.; Ajmal, S.; Ajmal, M.; Nawaz, G. Organ regeneration through stem cells and tissue engineering. Cureus 2023, 15, e34336. [Google Scholar] [CrossRef]
- Chatzianagnosti, S.; Dermitzakis, I.; Theotokis, P.; Kousta, E.; Mastorakos, G.; Manthou, M.E. Application of MSCs in female infertility treatment. Life 2024, 14, 1161. [Google Scholar] [CrossRef]
- Hong, I.S. Endometrial stem/progenitor cells: Properties, origins, and functions. Genes Dis. 2022, 10, 931–947. [Google Scholar] [CrossRef]
- Yoshimatsu, S.; Kisu, I.; Qian, E.; Noce, T. In vitro gametogenesis in rodents and large animals. Biology 2022, 11, 987. [Google Scholar] [CrossRef]
- Na, J.; Kim, G.J. Stem cell therapy for POI: A review. J. Ovarian Res. 2020, 13, 74. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, M. Fallopian tube assembloids. Nat. Methods 2024, 21, 1974. [Google Scholar] [CrossRef]
- Rosner, M.; Horer, S.; Feichtinger, M.; Hengstschläger, M. Multipotent fetal stem cells in reproductive biology. Stem Cell Res. Ther. 2023, 14, 157. [Google Scholar] [CrossRef]
- Stopel, A.; Lev, C.; Dahari, S.; Adibi, O.; Armon, L.; Gonen, N. Towards a “testis in a dish”: Generation of mouse testicular organoids. Int. J. Biol. Sci. 2024, 20, 1024–1041. [Google Scholar] [CrossRef]
- Hu, B.; Wang, R.; Wu, D.; Long, R.; Ruan, J.; Jin, L.; Ma, D.; Sun, C.; Liao, S. Prospects for fertility preservation: The ovarian organ function reconstruction techniques for oogenesis, growth and maturation in vitro. Front. Physiol. 2023, 14, 1177443. [Google Scholar] [CrossRef] [PubMed]
- Canosa, S.; Silvestris, E.; Carosso, A.R.; Ruffa, A.; Evangelisti, B.; Gennarelli, G.; Cormio, G.; Loizzi, V.; Rolfo, A.; Benedetto, C.; et al. Ovarian Stem Cells: Will the Dream of Neo-Folliculogenesis After Birth Become Real? Obstet. Gynecol. Surv. 2025, 80, 112–120. [Google Scholar] [CrossRef]
- Bulletti, F.M.; Sciorio, R.; Palagiano, A.; Bulletti, C. The artificial uterus: On the way to ectogenesis. Zygote 2023, 31, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Khulbe, Y.; Gupta, S.; Javed, B.; Neyazi, A.; Padhi, B.K. Artificial womb: Opportunities and challenges for public health. Int. J. Surg. 2023, 109, 618–619. [Google Scholar] [CrossRef]
- Landecker, H.L.; Clark, A.T. Human embryo models made from pluripotent stem cells are not synthetic; they aren’t embryos, either. Cell Stem Cell 2023, 30, 1290–1293. [Google Scholar] [CrossRef]
- Schlag, F.; Dion, C.; Sepulveda-Rincon, L.P.; Schlatt, S.; Sharma, S. Spermatogonia: A unique stem cell orchestrating species-specific transition from pluripotency to sperm production. Hum. Reprod. Update 2025, 31, 478–496. [Google Scholar] [CrossRef]
- Cui, Y.H.; Chen, W.; Wu, S.; Wan, C.L.; He, Z. Generation of male germ cells in vitro from stem cells. Asian J. Androl. 2023, 25, 13–20. [Google Scholar] [CrossRef]
- Jeffries Hein, R.; Le Goff, A.; Landecker, H.L. Making and disposing of life’s ‘starting materials’: Attitudes concerning reproductive scarcity and abundance in in vitro gametogenesis. Soc. Sci. Med. 2025, 379, 118146. [Google Scholar] [CrossRef]
- Villalba, A. Artificial Gametes and Human Reproduction in the 21st Century: An Ethical Analysis. Reprod. Sci. 2024, 31, 2174–2183. [Google Scholar] [CrossRef]
- Frost, E.R.; Gilchrist, R.B. Making human eggs in a dish: Are we close? Trends Biotechnol. 2024, 42, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wang, M.; Yuan, Y.; Wang, X.; Fu, R.; Wan, H.; Xie, M.; Liu, M.; Guo, X.; Zheng, Y.; et al. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 2024, 31, 1091–1092. [Google Scholar] [CrossRef] [PubMed]
- Horer, S.; Feichtinger, M.; Rosner, M.; Hengstschläger, M. Pluripotent stem cell-derived in vitro gametogenesis and synthetic embryos: Early ethical debate. Stem Cells Transl. Med. 2023, 12, 569–575. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, T.J. Current status and future prospects of stem cell therapy for infertile patients with premature ovarian insufficiency. Biomolecules 2024, 14, 242. [Google Scholar] [CrossRef]
- Cui, X.; Jing, X. Stem cell-based therapeutic potential in female ovarian aging and infertility. J. Ovarian Res. 2024, 17, 171. [Google Scholar] [CrossRef]
- Gao, T.; Cao, Y.; Hu, M.; Du, Y. hUC-MSC extracellular vesicles improve ovarian function in POI mice. Dis. Markers 2022, 2022, 5045873. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Xu, B.; Li, X.; Ma, W.; Zhang, P.; Chen, X.; Wu, J. Tracing and characterizing the development of transplanted female germline stem cells in vivo. Mol. Ther. 2017, 25, 1408–1419. [Google Scholar] [CrossRef] [PubMed]
- Takehara, Y.; Yabuuchi, A.; Ezoe, K.; Kuroda, T.; Yamadera, R.; Sano, C.; Murata, N.; Aida, T.; Nakama, K.; Aono, F.; et al. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab. Investig. 2013, 93, 181–193. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Yao, X.; Lai, D.; Guo, L. Human amniotic epithelial cells restore folliculogenesis in chemotherapy-induced POI mice. Stem Cell Res. Ther. 2013, 4, 124. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-B.; Hao, J.-X.; Meng, T.-G.; Guo, L.; Dong, M.Z.; Fan, L.H.; Ouyang, Y.C.; Wang, G.; Sun, Q.Y.; Ou, X.H.; et al. Transfer of autologous mitochondria from adipose tissue-derived stem cells rescues oocyte quality and infertility in aged mice. Aging 2017, 9, 2480–2488. [Google Scholar] [CrossRef]
- Zhao, Y.-X.; Chen, S.-R.; Su, P.-P.; Huang, F.H.; Shi, Y.C.; Shi, Q.Y.; Lin, S. Using mesenchymal stem cells to treat female infertility: An update on female reproductive diseases. Stem Cells Int. 2019, 2019, 9071720. [Google Scholar] [CrossRef]
- Jiao, W.; Mi, X.; Qin, Y.; Zhao, S. Stem cell transplantation improves ovarian function via paracrine mechanisms. Curr. Gene Ther. 2020, 20, 347–355. [Google Scholar] [CrossRef]
- Feng, P.; Li, P.; Tan, J. Menstrual blood-derived stromal cells promote recovery of POI. Stem Cell Rev. Rep. 2019, 15, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Zhang, Y.; Li, H.; Li, H.; Jin, R.; Li, L.; Xiang, Y.; Tian, M.; Wang, J.; Sun, L.; et al. Human umbilical cord blood-derived MSCs trans-differentiate into endometrial cells and regulate Th17/Treg balance through NF-κB signaling in rabbit intrauterine adhesions endometrium. Stem Cell Res. Ther. 2022, 13, 301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Du, Q.; Li, C.; Ding, C.; Chen, J.; He, Y.; Duan, T.; Feng, Q.; Yu, Y.; Zhou, Q. Functionalized human umbilical cord mesenchymal stem cells and injectable HA/Gel hydrogel synergy in endometrial repair and fertility recovery. Acta Biomater. 2023, 167, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Sun, H.; Zhu, H.; Zhu, X.; Tang, X.; Yan, G.; Wang, J.; Bai, D.; Wang, J.; Wang, L.; et al. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: A phase I clinical trial. Stem Cell Res. Ther. 2018, 9, 192. [Google Scholar] [CrossRef]
- Herraiz, I.; Simón, E.; Gómez-Arriaga, P.I.; Quezada, M.S.; García-Burguillo, A.; López-Jiménez, E.A.; Galindo, A. Clinical implementation of the sFlt-1/PlGF ratio to identify preeclampsia and fetal growth restriction: A prospective cohort study. Pregnancy Hypertens. 2018, 13, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Igboeli, P.; El Andaloussi, A.; Sheikh, U.; Takala, H.; ElSharoud, A.; McHugh, A.; Gavrilova-Jordan, L.; Levy, S.; Al-Hendy, A. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: Two case reports and a review of the literature. J. Med. Case Rep. 2020, 14, 108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tandulwadkar, S.R.; Naralkar, M.V.; Surana, A.D.; Selvakarthick, M.; Kharat, A.H. Autologous Intrauterine Platelet-Rich Plasma Instillation for Suboptimal Endometrium in Frozen Embryo Transfer Cycles: A Pilot Study. J. Hum. Reprod. Sci. 2017, 10, 208–212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zafardoust, S.; Kazemnejad, S.; Darzi, M.; Fathi-Kazerooni, M.; Rastegari, H.; Mohammadzadeh, A. Improvement of Pregnancy Rate and Live Birth Rate in Poor Ovarian Responders by Intraovarian Administration of Autologous Menstrual Blood Derived- Mesenchymal Stromal Cells: Phase I/II Clinical Trial. Stem Cell Rev. Rep. 2020, 16, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Juanola, X.; Loza Santamaría, E.; Cordero-Coma, M.; SENTINEL Working Group. Description and Prevalence of Spondyloarthritis in Patients with Anterior Uveitis: The SENTINEL Interdisciplinary Collaborative Project. Ophthalmology 2016, 123, 1632–1636. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.C.; Zuo, Y.L. An Analysis of the Current Situation of Web-Based Courses in China. Technol. Innov. 2018, 17, 32–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Xing, J. Enterprise Digital Transformation and Audit Pricing. Audit. Res. 2021, 3, 62–71. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Liu, H. Can China’s Carbon Trading Policy Help Achieve Carbon Neutrality? A Study of Policy Effects from the Five-Sphere Integrated Plan Perspective. J. Environ. Manag. 2022, 305, 114357. [Google Scholar] [CrossRef]
- Singh, V.; Sharma, N.; Singh, S. A Review of Imaging Techniques for Plant Disease Detection. Artif. Intell. Agric. 2020, 4, 229–242. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Guan, C.-Y.; Tian, S.; Lv, X.D.; Li, J.H.; Ma, X.; Xia, H.F. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase. Stem Cell Res. Ther. 2018, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.-Y.; Zheng, H.; Shi, Q.-Y.; Xu, J.-H. Stem cell-loaded scaffolds for endometrial regeneration: Systematic review and meta-analysis. Front. Endocrinol. 2024, 15, 1397783. [Google Scholar] [CrossRef]
- Poliwoda, S.; Noor, N.; Downs, E.; Schaaf, A.; Cantwell, A.; Ganti, L.; Kaye, A.D.; Mosel, L.I.; Carroll, C.B.; Viswanath, O.; et al. Stem cells: A comprehensive review of origins and emerging clinical roles in medical practice. Orthop. Rev. 2022, 14, 37498. [Google Scholar] [CrossRef]
- Hwang, Y.S.; Clark, A.T. Male fertility restoration with stem cell–based therapies: From testicular stem cells to pluripotent stem cell–based in vitro gametogenesis. Fertil. Steril. 2025, 124, 399–405. [Google Scholar] [CrossRef]
- Diao, L.; Turek, P.J.; John, C.M.; Fang, F.; Reijo Pera, R.A. Roles of spermatogonial stem cells in spermatogenesis and fertility restoration. Front. Endocrinol. 2022, 13, 895528. [Google Scholar] [CrossRef] [PubMed]
- Papadiochou, A.; Diamanti, A.; Metallinou, D.; Georgakopoulou, V.E.; Taskou, C.; Kagkouras, I.; Sarantaki, A. Impact of Climate Change on Reproductive Health and Pregnancy Outcomes: A Systematic Review. Cureus 2024, 16, e68221. [Google Scholar] [CrossRef] [PubMed]
- Saftić Martinović, L.; Mladenić, T.; Lovrić, D.; Ostojić, S.; Dević Pavlić, S. Decoding the Epigenetics of Infertility: Mechanisms, Environmental Influences, and Therapeutic Strategies. Epigenomes 2024, 8, 34. [Google Scholar] [CrossRef]
- Sakali, A.K.; Bargiota, A.; Bjekic-Macut, J.; Macut, D.; Mastorakos, G.; Papagianni, M. Environmental factors affecting female fertility. Endocrine 2024, 86, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Yopo Díaz, M.; Watkins, L. Beyond the body: Social, structural, and environmental infertility. Soc. Sci. Med. 2025, 365, 117557. [Google Scholar] [CrossRef]
- Merleau-Ponty, N.; Le Goff, A. The Emerging Field of In Vitro Gametogenesis: Perspectives in Social Science and Bioethics. Curr. Sex. Health Rep. 2025, 17, 123–131. [Google Scholar] [CrossRef]
- Pennings, G. Why we need stem-cell derived gametes. Reprod. Biomed. Online 2023, 47, 103322. [Google Scholar] [CrossRef] [PubMed]
- Smajdor, A.; Villalba, A. The Ethics of Cellular Reprogramming. Cell Reprogram. 2023, 25, 190–194. [Google Scholar] [CrossRef] [PubMed]
First Author (Year) | Indication | Study Design | Type of Cells | Primary Endpoints | Reproductive and Overal Outcomes |
---|---|---|---|---|---|
Herraiz S. (2018) [88] | POR | Prospective pilot; n = 17 | Autologous bone marrow-derived stem cells (BMDSCs); | Increase in AMH (some patients), increase in AFC, increase in the number of stimulable antral follicles and oocytes | Improved follicle and oocyte quantities, enabling pregnancy in women who were poor responders and previously limited to oocyte donation. |
Igboeli P. (2020) [89] | POI | Two cases of Caucasian women; n = 2 | Autologous bone marrow-derived stem cell engraftment into the ovary | Increase of 50% in the volume of treated ovaries, serum levels of estrogen increased by 150% compared with preoperative levels | Resumption of menses 7 months post-procedure (case level); improvement in symptoms |
Tandulwadkar S. (2020) [90] | Poor responders (POSEIDON 3–4) | Pilot study; n = 20 | Autologous bone marrow-derived stem cells + platelet-rich plasma; intraovarian instillation | Increase in AFC; increase in mature MII oocytes and secondary outcome—AMH levels (not statistically significant); and increase in numbers of Grade A and B embryos frozen on day 3 | Enhanced the recruitment of dormant primordial follicles, thereby improving oocyte yield and increasing both the number and quality of embryos following controlled ovarian stimulation in POSEIDON Groups 3 and 4 poor responders. |
Zafardoust S. (2023) [91] | POR | Non-randomized controlled study; n = 180 infertile individuals (90 treated vs. 90 control) | Menstrual blood-derived mesenchymal stromal cells; bilateral intraovarian injection | Improvement in anti-Müllerian hormone (AMH) levels (p = 0.0007) and antral follicle count (AFC) (p < 0.001) at 2 months vs. control | Higher rate of spontaneous pregnancy (p < 0.005) and greater numbers of mature oocytes and embryos among women who underwent ICSI/IVF |
Santamaría X. (2016) [92] | Refractory Asherman’s syndrome (AS)/Endometrial atrophy (EA) | Prospective, experimental, non-controlled study; 18 patients aged 30–45 years with refractory AS or EA were recruited, and 16 of these completed the study | Autologous CD133+ BM-derived cells, delivery into the spiral arterioles by catheterization | Increase in menses volume/duration; increase in endometrial thickness; decrease in adhesion score; increase in angiogenesis process | Three patients became pregnant spontaneously, resulting in one baby boy born, one ongoing pregnancy, and a miscarriage. Furthermore, seven pregnancies were obtained after fourteen embryo transfers, resulting in three biochemical pregnancies, one miscarriage, one ectopic pregnancy, one baby born, and one ongoing pregnancy. |
Cao Y. (2018) [93] | Recurrent IUA | Prospective, non-controlled, phase I clinical trial; n = 26 | 1 × 107 umbilical cord-derived mesenchymal stromal cells (UC-MSCs), loaded onto a collagen scaffold, were transplanted into the uterine cavity following an adhesion separation procedure | Increase in endometrial thickness; decrease in intrauterine adhesion score; upregulation of ERα (estrogen receptor α), vimentin, Ki67, and vWF (von Willebrand factor) expression levels and downregulation of ΔNP63 expression level; DNA short tandem repeat (STR) analysis showed that the regenerated endometrium contained patient DNA only | By 30 months: 26 patients had become pregnant, and 8 of them had delivered live babies with no obvious birth defects and without placental complications, one patient in the third trimester of pregnancy, and one had a spontaneous abortion at 7 weeks |
Zhang Y. (2021) [94] | Asherman syndrome | Prospective study; 18 infertile women with unresponsive thin endometrium | Collagen scaffold/umbilical cord mesenchymal stem cells transplanted into the uterine cavity in two consecutive menstrual cycles | Endometrial thickness increase from 4.08 ± 0.26 to 5.87 ± 0.77 mm (p < 0.001); increase in micro-vessel density, upregulated expression of Ki67, estrogen receptor alpha, and progesterone receptor | Three of fifteen patients after FET became pregnant, of whom 2 gave birth successfully and 1 had a miscarriage at 25 weeks’ gestation. One of 2 patients without FET had a natural pregnancy and gave birth normally after transplantation |
Huang J. (2022) [95] | Intrauterine adhesions/cesarean scar diverticulum | Phase I; n = 10 | Human umbilical cord MSCs twice into the uterus | Endometrial thickness, volume of the uterus, and cesarean scar diverticulum showed improving tendencies, but no significant difference was noted | Not powered for pregnancy endpoints |
Singh N. (2020) [96] | Refractory AS/EA | n = 25 | Autologous bone marrow-derived mononuclear stem cells instilled into the subendometrial zone followed by oral estrogen therapy for 3 months | Endometrial thickness increase at 3 months (3.3 to 5.1 mm), six of the seven amenorrheic patients resumed menses. | Three patients had a successful pregnancy outcome. |
Study (Year) | Country | Cell Type | Patients (n) | Condition | Intervention | Outcomes | Limitations |
---|---|---|---|---|---|---|---|
Zhankina et al., 2024 [44] | Kazakhstan | Bone marrow-derived MSCs | 10 | Non-obstructive azoospermia (NOA) | Autologous MSC injection | Improved sperm count in 4/10 patients, partial restoration of spermatogenesis | Small sample size, short follow-up |
Ismail et al., 2023 [46] | Egypt | Stem cell transplantation (animal + pilot human trial) | Preclinical + few humans | Testicular tissue injury | Testicular injection | Improved histology, some recovery of spermatogenesis | Mostly animal data, safety unclear |
Modanlou et al., 2025 [49] | Review of clinical trials | MSCs, SSCs | Multiple | Male infertility (various) | Systematic analysis | Reported safety, modest improvements | Lack of large RCTs |
Margiana, 2024 [50] | Indonesia | MSCs | 15 | NOA | Testicular injection | Some sperm retrieval, improved testicular function | Non-randomized, small cohort |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szeliga, A.; Duszewska, A.; Unogu, C.; Smolarczyk, R.; Bochynska, S.; Bala, G.; Meczekalski, B.; Adashi, E.Y. The Use of Stem Cells in Assisted Reproduction. J. Clin. Med. 2025, 14, 6942. https://doi.org/10.3390/jcm14196942
Szeliga A, Duszewska A, Unogu C, Smolarczyk R, Bochynska S, Bala G, Meczekalski B, Adashi EY. The Use of Stem Cells in Assisted Reproduction. Journal of Clinical Medicine. 2025; 14(19):6942. https://doi.org/10.3390/jcm14196942
Chicago/Turabian StyleSzeliga, Anna, Anna Duszewska, Christian Unogu, Roman Smolarczyk, Stefania Bochynska, Gregory Bala, Blazej Meczekalski, and Eli Y. Adashi. 2025. "The Use of Stem Cells in Assisted Reproduction" Journal of Clinical Medicine 14, no. 19: 6942. https://doi.org/10.3390/jcm14196942
APA StyleSzeliga, A., Duszewska, A., Unogu, C., Smolarczyk, R., Bochynska, S., Bala, G., Meczekalski, B., & Adashi, E. Y. (2025). The Use of Stem Cells in Assisted Reproduction. Journal of Clinical Medicine, 14(19), 6942. https://doi.org/10.3390/jcm14196942