Comparison of Aerosol Generation Between Bag Valve and Chest Compression-Synchronized Ventilation During Simulated Cardiopulmonary Resuscitation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Aerosol Generation and Particle Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPR | Cardiopulmonary resuscitation |
HCWs | Healthcare workers |
BV | Bag valve ventilation |
CCSV | Chest compression-synchronized ventilation |
BVM | Bag valve mask |
SD | Standard deviation |
CI | Confidence interval |
References
- Jackson, T.; Deibert, D.; Wyatt, G.; Durand-Moreau, Q.; Adisesh, A.; Khunti, K.; Khunti, S.; Smith, S.; Chan, X.H.S.; Ross, L.; et al. Classification of aerosol-generating procedures: A rapid systematic review. BMJ Open Respir. Res. 2020, 7, e000730. [Google Scholar] [CrossRef]
- Shrimpton, A.J.; Brown, V.; Vassallo, J.; Nolan, J.P.; Soar, J.; Hamilton, F.; Cook, T.M.; Bzdek, B.R.; Reid, J.P.; Makepeace, C.H.; et al. A quantitative evaluation of aerosol generation during cardiopulmonary resuscitation. Anaesthesia 2024, 79, 156–167. [Google Scholar] [CrossRef]
- Klompas, M.; Baker, M.A.; Rhee, C. Airborne transmission of SARS-CoV-2: Theoretical considerations and available evidence. JAMA 2020, 324, 441–442. [Google Scholar] [CrossRef]
- Tran, K.; Cimon, K.; Severn, M.; Pessoa-Silva, C.L.; Conly, J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: A systematic review. PLoS ONE 2012, 7, e35797. [Google Scholar] [CrossRef]
- Couper, K.; Taylor-Phillips, S.; Grove, A.; Freeman, K.; Osokogu, O.; Court, R.; Mehrabian, A.; Morley, P.T.; Nolan, J.P.; Soar, J.; et al. COVID-19 in cardiac arrest and infection risk to rescuers: A systematic review. Resuscitation 2020, 151, 59–66. [Google Scholar] [CrossRef]
- CDC Stacks. Available online: https://stacks.cdc.gov/view/cdc/86043 (accessed on 5 June 2025).
- Chan, M.T.V.; Chow, B.K.; Lo, T.; Ko, F.W.; Ng, S.S.; Gin, T.; Hui, D.S. Exhaled air dispersion during bag-mask ventilation and sputum suctioning—Implications for infection control. Sci. Rep. 2018, 8, 198. [Google Scholar] [CrossRef]
- Brown, J.; Gregson, F.K.A.; Shrimpton, A.; Cook, T.M.; Bzdek, B.R.; Reid, J.P.; Pickering, A.E. A quantitative evaluation of aerosol generation during tracheal intubation and extubation. Anaesthesia 2021, 76, 174–181. [Google Scholar] [CrossRef]
- Kill, C.; Hahn, O.; Dietz, F.; Neuhaus, C.; Schwarz, S.; Mahling, R.; Wallot, P.; Jerrentrup, A.; Steinfeldt, T.; Wulf, H.; et al. Mechanical ventilation during cardiopulmonary resuscitation with intermittent positive-pressure ventilation, bilevel ventilation, or chest compression synchronized ventilation in a pig model. Crit. Care Med. 2014, 42, e89–e95. [Google Scholar] [CrossRef] [PubMed]
- Kopra, J.; Mehtonen, L.; Laitinen, M.; Litonius, E.; Arvola, O.; Östman, R.; Heinonen, J.A.; Skrifvars, M.B.; Pekkarinen, P.T. Chest compression synchronized ventilation during prolonged experimental cardiopulmonary resuscitation improves oxygenation but may cause pneumothoraces. Resusc. Plus 2025, 22, 100918. [Google Scholar] [CrossRef] [PubMed]
- Ott, M.; Milazzo, A.; Liebau, S.; Jaki, C.; Schilling, T.; Krohn, A.; Heymer, J. Exploration of strategies to reduce aerosol-spread during chest compressions: A simulation and cadaver model. Resuscitation 2020, 152, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Raju, K.N.J.P.; Ayyan, S.M.; Anandhi, D.; Jain, N.; Ganessane, E. Effectiveness of “resuscitation cover all” in minimizing COVID-19 transmission to health-care workers during cardiopulmonary resuscitation. J. Glob. Infect. Dis. 2022, 14, 3–9. [Google Scholar] [CrossRef]
- Dbouk, T.; Aranda-García, S.; Barcala-Furelos, R.; Rodríguez-Núñez, A.; Drikakis, D. Airborne infection risk during open-air cardiopulmonary resuscitation. Emerg. Med. J. 2021, 38, 673–678. [Google Scholar] [CrossRef]
- Edelson, D.P.; Sasson, C.; Chan, P.S.; Atkins, D.L.; Aziz, K.; Becker, L.B.; Berg, R.A.; Bradley, S.M.; Brooks, S.C.; Cheng, A.; et al. Interim guidance for basic and advanced life support in adults, children, and neonates with suspected or confirmed COVID-19: From the emergency cardiovascular care committee and get with the guidelines-resuscitation adult and pediatric task forces of the American Heart Association. Circulation 2020, 141, e933–e943. [Google Scholar] [CrossRef] [PubMed]
- van Veelen, M.J.; Kaufmann, M.; Brugger, H.; Strapazzon, G. European Resuscitation Council COVID-19 guidelines. Drone delivery of AED’s and personal protective equipment in the era of SARS-CoV-2. Resuscitation 2020, 152, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. 2005, 4, 287–291. [Google Scholar] [CrossRef]
- Whitehead, A.L.; Julious, S.A.; Cooper, C.L.; Campbell, M.J. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat. Methods Med. Res. 2016, 25, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, R.S.; Rowin, W.A.; Humphries, R.S.; Kevin, K.; Ward, J.D.; Phan, T.D.; Nguyen, L.V.; Wynne, D.D.; Scott, D.A.; Clinical Aerosolisation Study Group. Aerosolisation during tracheal intubation and extubation in an operating theatre setting. Anaesthesia 2021, 76, 182–188. [Google Scholar] [CrossRef]
- Hung, T.Y.; Wen, C.S.; Yu, S.H.; Chen, Y.C.; Chen, H.L.; Chen, W.L.; Wu, C.C.; Su, Y.C.; Lin, C.L.; Hu, S.C.; et al. A comparative analysis of aerosol exposure and prevention strategies in bystander, pre-hospital, and inpatient cardiopulmonary resuscitation using simulation manikins. Sci. Rep. 2023, 13, 12552. [Google Scholar] [CrossRef]
- Avari, H.; Hiebert, R.J.; Ryzynski, A.A.; Levy, A.; Nardi, J.; Kanji-Jaffer, H.; Kiiza, P.; Pinto, R.; Plenderleith, S.W.; Fowler, R.A.; et al. Quantitative assessment of viral dispersion associated with respiratory support devices in a simulated critical care environment. Am. J. Respir. Crit. Care Med. 2021, 203, 1112–1118. [Google Scholar] [CrossRef]
- Oh, Y.T.; Lee, C.A.; Park, H.A.; Park, J.; Kim, S.; Park, H.J.; Han, S.; Wang, S.; Kim, J.W. Effectiveness of chest compression-synchronized ventilation in patients with cardiac arrest. J. Clin. Med. 2025, 14, 2394. [Google Scholar] [CrossRef]
- Hsu, C.H.; Tiba, M.H.; Boehman, A.L.; McCracken, B.M.; Leander, D.C.; Francalancia, S.C.; Pickell, Z.; Sanderson, T.H.; Ward, K.R.; Neumar, R.W. Aerosol generation during chest compression and defibrillation in a swine cardiac arrest model. Resuscitation 2021, 159, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; Chan, L.M. Should chest compressions be considered an aerosol-generating procedure? A literature review in response to recent guidelines on personal protective equipment for patients with suspected COVID-19. Clin. Med. 2020, 20, e154–e159. [Google Scholar] [CrossRef] [PubMed]
Minute | Mean Difference (CCSV-BV) | 95% Credible Interval | Posterior P [CCSV < BV] |
---|---|---|---|
0 | 13,450 | −61,661 to 88,936 | 0.35 |
1 | −22,577 | −106,822 to 62,011 | 0.71 |
2 | −56,209 | −163,690 to 58,298 | 0.85 |
3 | −66,380 | −165,283 to 33,996 | 0.90 |
4 | −109,307 | −204,614 to −12,465 | 0.99 |
5 | −117,119 | −223,643 to −5939 | 0.98 |
6 | −129,865 | −227,683 to −25,963 | 0.99 |
7 | −144,158 | −257,197 to −21,335 | 0.99 |
8 | −155,785 | −266,242 to −33,859 | 0.99 |
9 | −156,903 | −277,002 to −24,118 | 0.99 |
10 | −149,564 | −279,073 to −9282 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, Y.T.; Lee, C.A.; Choi, D.; Park, H.A. Comparison of Aerosol Generation Between Bag Valve and Chest Compression-Synchronized Ventilation During Simulated Cardiopulmonary Resuscitation. J. Clin. Med. 2025, 14, 6790. https://doi.org/10.3390/jcm14196790
Oh YT, Lee CA, Choi D, Park HA. Comparison of Aerosol Generation Between Bag Valve and Chest Compression-Synchronized Ventilation During Simulated Cardiopulmonary Resuscitation. Journal of Clinical Medicine. 2025; 14(19):6790. https://doi.org/10.3390/jcm14196790
Chicago/Turabian StyleOh, Young Taeck, Choung Ah Lee, Daun Choi, and Hang A. Park. 2025. "Comparison of Aerosol Generation Between Bag Valve and Chest Compression-Synchronized Ventilation During Simulated Cardiopulmonary Resuscitation" Journal of Clinical Medicine 14, no. 19: 6790. https://doi.org/10.3390/jcm14196790
APA StyleOh, Y. T., Lee, C. A., Choi, D., & Park, H. A. (2025). Comparison of Aerosol Generation Between Bag Valve and Chest Compression-Synchronized Ventilation During Simulated Cardiopulmonary Resuscitation. Journal of Clinical Medicine, 14(19), 6790. https://doi.org/10.3390/jcm14196790