Artificial Intelligence for Myocardial Infarction Detection via Electrocardiogram: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Searches
2.2. Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Synthesis of Results
2.5. Critical Appraisal of Individual Sources
3. Results
3.1. Data Validation Approaches for AI-Based ECG Models
3.2. ECG Data Source
3.3. Diagnostic Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fathima, S.N. An update on myocardial infarction. Curr. Res. Trends Med. Sci. Technol. 2021, 1, 95. [Google Scholar]
- Salari, N.; Morddarvanjoghi, F.; Abdolmaleki, A.; Rasoulpoor, S.; Khaleghi, A.A.; Hezarkhani, L.A.; Shohaimi, S.; Mohammadi, M. The global prevalence of myocardial infarction: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 206. [Google Scholar] [CrossRef]
- Mendis, S.; Thygesen, K.; Kuulasmaa, K.; Giampaoli, S.; Mähönen, M.; Blackett, K.N.; Lisheng, L.; Writing group on behalf of the participating experts of the WHO consultation for revision of WHO definition of myocardial infarction. World Health Organization definition of myocardial infarction: 2008–09 revision. Int. J. Epidemiol. 2011, 40, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Dutta, U.; Baruah, S.; Baruah, S. Artificial Intelligence (Al) in Healthcare; IGI Global: Hershey, PA, USA, 2025; p. 1. [Google Scholar]
- Ward, M.J.; Nikpay, S.; Shermeyer, A.; Nallamothu, B.K.; Rokos, I.; Self, W.H.; Hsia, R.Y. Interfacility Transfer of Uninsured vs Insured Patients with ST-Segment Elevation Myocardial Infarction in California. JAMA Netw. Open 2023, 6, e2317831. [Google Scholar] [CrossRef] [PubMed]
- Kulstad, E.B.; Kelley, K.M. Overcrowding is associated with delays in percutaneous coronary intervention for acute myocardial infarction. Int. J. Emerg. Med. 2009, 2, 149–154. [Google Scholar] [CrossRef]
- Jacobs, A.K.; Ali, M.J.; Best, P.J.; Bieniarz, M.C.; Bufalino, V.J.; French, W.J.; Henry, T.D.; Hollowell, L.; Jauch, E.C.; Kurz, M.C.; et al. Systems of Care for ST-Segment–Elevation Myocardial Infarction: A Policy Statement From the American Heart Association. Circulation 2021, 144, e310–e327. [Google Scholar] [CrossRef]
- Herring, N.; Paterson, D. ECG diagnosis of acute ischaemia and infarction: Past, present and future. QJM Int. J. Med. 2006, 99, 219–230. [Google Scholar] [CrossRef]
- Raghukumar, B.; Naveen, B. Enhancing Myocardial Infarction Diagnosis: Insights from ECG Image Analysis and Machine Learning. SN Comput. Sci. 2024, 5, 448. [Google Scholar] [CrossRef]
- Boldireva, A. Identifying Needs in the Field of Electrocardiogram Analysis to Increase the Accuracy of ECG Interpretation. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2023. [Google Scholar]
- De Luna, A.B. Basic Electrocardiography: Normal and Abnormal ECG Patterns; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Zeb, S.; Nizamullah, F.; Abbasi, N.; Fahad, M. AI in healthcare: Revolutionizing diagnosis and therapy. Int. J. Multidiscip. Sci. Arts 2024, 3, 118–128. [Google Scholar] [CrossRef]
- Sallam, M.; Beaini, C.; Mijwil, M.M.; Sallam, M. AI at the Crossroads of Cost and Care: A SWOT Analysis of Microsoft AI Diagnostic Orchestrator (MAI-DxO) in Clinical Diagnosis. J. Clin. Med. Res. 2025. [Google Scholar] [CrossRef]
- Moreno-Sánchez, P.A.; García-Isla, G.; Corino, V.D.; Vehkaoja, A.; Brukamp, K.; Van Gils, M.; Mainardi, L. ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review. Comput. Biol. Med. 2024, 172, 108235. [Google Scholar] [CrossRef]
- Xiong, P.; Lee, S.M.-Y.; Chan, G. Deep learning for detecting and locating myocardial infarction by electrocardiogram: A literature review. Front. Cardiovasc. Med. 2022, 9, 860032. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Fujita, H.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 2017, 415–416, 190–198. [Google Scholar] [CrossRef]
- Liu, W.; Huang, Q.; Chang, S.; Wang, H.; He, J. Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram. Biomed. Signal Process. Control 2018, 45, 22–32. [Google Scholar] [CrossRef]
- Hayıroğlu, M.İ.; Lakhani, I.; Tse, G.; Çınar, T.; Çinier, G.; Tekkeşin, A.İ. In-hospital prognostic value of electrocardiographic parameters other than ST-segment changes in acute myocardial infarction: Literature review and future perspectives. Heart Lung Circ. 2020, 29, 1603–1612. [Google Scholar] [CrossRef]
- Siontis, K.C.; Noseworthy, P.A.; Attia, Z.I.; Friedman, P.A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 2021, 18, 465–478. [Google Scholar] [CrossRef]
- Than, M.P.; Pickering, J.W.; Sandoval, Y.; Shah, A.S.; Tsanas, A.; Apple, F.S.; Blankenberg, S.; Cullen, L.; Mueller, C.; Neumann, J.T.; et al. Machine learning to predict the likelihood of acute myocardial infarction. Circulation 2019, 140, 899–909. [Google Scholar] [CrossRef]
- Liu, W.-C.; Lin, C.; Lin, C.-S.; Tsai, M.-C.; Chen, S.-J.; Tsai, S.-H.; Lin, W.-S.; Lee, C.-C.; Tsao, T.-P.; Cheng, C.-C. An artificial intelligence-based alarm strategy facilitates management of acute myocardial infarction. J. Pers. Med. 2021, 11, 1149. [Google Scholar] [CrossRef] [PubMed]
- Kuno, T.; Mikami, T.; Sahashi, Y.; Numasawa, Y.; Suzuki, M.; Noma, S.; Fukuda, K.; Kohsaka, S. Machine learning prediction model of acute kidney injury after percutaneous coronary intervention. Sci. Rep. 2022, 12, 749. [Google Scholar] [CrossRef] [PubMed]
- Kapur, N.K.; Esposito, M. Hemodynamic support with percutaneous devices in patients with heart failure. Heart Fail. Clin. 2015, 11, 215–230. [Google Scholar] [CrossRef]
- Hulsen, T.J.A. Explainable artificial intelligence (XAI): Concepts and challenges in healthcare. AI 2023, 4, 652–666. [Google Scholar] [CrossRef]
- Xu, Y.; Goodacre, R. On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning. J. Anal. Test. 2018, 2, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Goto, S.; Goto, S. Application of Neural Networks to 12-Lead Electrocardiography—Current Status and Future Directions. Circ. Rep. 2019, 1, 481–486. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, J.; Danioko, S.; Yao, H.; Guo, H.; Rakovski, C. A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients. Sci. Data 2020, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Micali, G.; Corallo, F.; Pagano, M.; Giambò, F.M.; Duca, A.; D’Aleo, P.; Anselmo, A.; Bramanti, A.; Garofano, M.; Mazzon, E.; et al. Artificial Intelligence and Heart-Brain Connections: A Narrative Review on Algorithms Utilization in Clinical Practice. Healthcare 2024, 12, 1380. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, J.; Li, Y.; Luo, Z.; Luo, J.; Wan, X. A Multi-Domain Feature Fusion CNN for Myocardial Infarction Detection and Localization. Biosensors 2025, 15, 392. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Kumar, M.; Pachori, R.B.; Acharya, U.R. Automated Diagnosis of Myocardial Infarction ECG Signals Using Sample Entropy in Flexible Analytic Wavelet Transform Framework. Entropy 2017, 19, 488. [Google Scholar] [CrossRef]
- Dohare, A.K.; Kumar, V.; Kumar, R. Detection of myocardial infarction in 12 lead ECG using support vector machine. Appl. Soft Comput. 2018, 64, 138–147. [Google Scholar] [CrossRef]
- Platt, J. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. 1999. Available online: https://home.cs.colorado.edu/~mozer/Teaching/syllabi/6622/papers/Platt1999.pdf (accessed on 15 August 2025).
- Rifkin, R.M.; Klautau, A. In Defense of One-Vs-All Classification. J. Mach. Learn. Res. 2004, 5, 101–141. [Google Scholar]
- Herman, R.; Demolder, A.; Vavrik, B.; Martonak, M.; Boza, V.; Kresnakova, V.; Iring, A.; Palus, T.; Bahyl, J.; Nelis, O.; et al. Validation of an automated artificial intelligence system for 12-lead ECG interpretation. J. Electrocardiol. 2024, 82, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar]
- Fabricius Ekenberg, L.; Høfsten, D.E.; Rasmussen, S.M.; Mølgaard, J.; Hasbak, P.; Sørensen, H.B.D.; Meyhoff, C.S.; Aasvang, E.K. Wireless Single-Lead versus Standard 12-Lead ECG, for ST-Segment Deviation during Adenosine Cardiac Stress Scintigraphy. Sensors 2023, 23, 2962. [Google Scholar] [CrossRef]
- Bovino, L.R.; Funk, M.P.; Pelter, M.M.P.; Desai, M.M.; Jefferson, V.D.; Andrews, L.K.P.; Forte, K.M. The Value of Continuous ST-Segment Monitoring in the Emergency Department. Adv. Emerg. Nurs. J. 2015, 37, 290–300. [Google Scholar] [CrossRef]
- Martínez-Sellés, M.; Marina-Breysse, M. Current and Future Use of Artificial Intelligence in Electrocardiography. J. Cardiovasc. Dev. Dis. 2023, 10, 175. [Google Scholar] [CrossRef]
- Bartusik-Aebisher, D.; Rogóż, K.; Aebisher, D. Artificial Intelligence and ECG: A New Frontier in Cardiac Diagnostics and Prevention. Biomedicines 2025, 13, 1685. [Google Scholar] [CrossRef]
- Karim, S.R.; Helseth, H.C.; Baker, P.O.; Keller, G.A.; Meyers, H.P.; Herman, R.; Smith, S.W. Artificial Intelligence Detection of Occlusive Myocardial Infarction from Electrocardiograms Interpreted as “Normal” by Conventional Algorithms. J. Pers. Med. 2025, 15, 130. [Google Scholar] [CrossRef]
- Chia, C.-C.; Syed, Z. Scalable noise mining in long-term electrocardiographic time-series to predict death following heart attacks. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014. [Google Scholar]
- Deserno, T.M.; Marx, N. Computational Electrocardiography: Revisiting Holter ECG Monitoring. Methods Inf. Med. 2016, 55, 305–311. [Google Scholar]
- Kim, A.; Chatterjee, M.; Iansavitchene, A.; Komeili, M.; Chan, A.D.C.; Yang, H.; Chui, J. Artificial intelligence for electrocardiographic diagnosis of perioperative myocardial ischaemia: A scoping review. Br. J. Anaesth. 2025, 135, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Makimoto, H.; Höckmann, M.; Lin, T.; Glöckner, D.; Gerguri, S.; Clasen, L.; Schmidt, J.; Assadi-Schmidt, A.; Bejinariu, A.; Müller, P.; et al. performance of a convolutional neural network derived from an ECG database in recognizing myocardial infarction. Sci. Rep. 2020, 10, 8445. [Google Scholar] [CrossRef] [PubMed]
Algorithm Family | Accuracy (Reported) | Sensitivity (Reported) | Specificity (Reported) | Notes/Representative Examples |
---|---|---|---|---|
CNN | Often ≥ 99% (overall model accuracies in the corpus span 70–100%) | Often ≥ 99% | Often ≥ 99% | Multiple CNN studies reported consistently high, though variable, classification (e.g., multi-VGG inner-patient evaluation; other CNN variants). Performance tends to be highest on inner-patient splits and can drop on strict inter-patient validation. |
SVM | Often ≥ 99% | Often ≥ 99% | Often ≥ 99% | SVMs trained on engineered ECG features (including ST-T morphology/HRV) frequently matched CNN-level performance; exemplar work reported good results. |
ANN (MLP) | Up to ~100% in some reports | Up to ~100% in some reports | Up to ~100% in some reports | ANN using time-domain HRV parameters reported near-perfect performance; results vary with features and validation. |
Random Forest | Reported as high in individual studies; no pooled/aggregate family metrics in manuscript text | NA | NA | RF appears among used algorithms (Figure 4), but the narrative does not quantify family-level sensitivity/specificity; see per-study entries in Table S1 for exact values. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bdir, S.; Jaber, M.; Tanbouz, O.; Milhem, F.; Sarhan, I.; Bdair, M.; Alhroob, T.; Abu Alya, W.; Qneibi, M. Artificial Intelligence for Myocardial Infarction Detection via Electrocardiogram: A Scoping Review. J. Clin. Med. 2025, 14, 6792. https://doi.org/10.3390/jcm14196792
Bdir S, Jaber M, Tanbouz O, Milhem F, Sarhan I, Bdair M, Alhroob T, Abu Alya W, Qneibi M. Artificial Intelligence for Myocardial Infarction Detection via Electrocardiogram: A Scoping Review. Journal of Clinical Medicine. 2025; 14(19):6792. https://doi.org/10.3390/jcm14196792
Chicago/Turabian StyleBdir, Sosana, Mennatallah Jaber, Osaid Tanbouz, Fathi Milhem, Iyas Sarhan, Mohammad Bdair, Thaer Alhroob, Walaa Abu Alya, and Mohammad Qneibi. 2025. "Artificial Intelligence for Myocardial Infarction Detection via Electrocardiogram: A Scoping Review" Journal of Clinical Medicine 14, no. 19: 6792. https://doi.org/10.3390/jcm14196792
APA StyleBdir, S., Jaber, M., Tanbouz, O., Milhem, F., Sarhan, I., Bdair, M., Alhroob, T., Abu Alya, W., & Qneibi, M. (2025). Artificial Intelligence for Myocardial Infarction Detection via Electrocardiogram: A Scoping Review. Journal of Clinical Medicine, 14(19), 6792. https://doi.org/10.3390/jcm14196792