New Developments in the Treatment of IgG4-Related Disease: A Comprehensive Clinical Approach
Abstract
1. Introduction
2. Clinical Spectrum and Therapeutic Challenges
3. Immunopathogenesis as a Therapeutic Framework
4. Current Treatment Landscape
4.1. Glucocorticoids
4.2. Traditional Immunosuppressive Agents
4.3. Rituximab
5. Emerging Therapies and Novel Targets
5.1. Inebilizumab
5.2. Obexelimab
5.3. Bruton’s Tyrosine Kinase
5.4. Other Emerging Therapies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACR | American College of Rheumatology |
AE | Adverse event |
BAFF | B-cell activating factor |
BTK | Bruton’s tyrosine kinase |
CD | Cluster of differentiation |
EULAR | European League Against Rheumatism |
FcRn | Neonatal Fc receptor |
FDG | Fluorodeoxyglucose |
GC | Glucocorticoid |
IFN | Interferon |
IgE | Inmunoglobulin E |
IgG4-RD | Immunoglobulin G4–related disease |
IL | Interleukin |
JAK | Janus kinase |
PET | Positron emission tomography |
RCT | Randomized controlled trial |
STAT | Signal transducer and activator of transcription |
TFH | T follicular helper |
TGF-β | Transforming growth factor-β |
TH2 | T helper 2 |
References
- Stone, J.H.; Zen, Y.; Deshpande, V. IgG4-Related Disease. N. Engl. J. Med. 2012, 366, 539–551. [Google Scholar] [CrossRef]
- Hamano, H.; Kawa, S.; Horiuchi, A.; Unno, H.; Furuya, N.; Akamatsu, T.; Fukushima, M.; Nikaido, T.; Nakayama, K.; Usuda, N.; et al. High Serum IgG4 Concentrations in Patients with Sclerosing Pancreatitis. N. Engl. J. Med. 2001, 344, 732–738. [Google Scholar] [CrossRef]
- Stone, J.H. IgG4-Related Disease: Nomenclature, Clinical Features, and Treatment. Semin. Diagn. Pathol. 2012, 29, 177–190. [Google Scholar] [CrossRef]
- Wallace, Z.S.; Miles, G.; Smolkina, E.; Petruski-Ivleva, N.; Madziva, D.; Cook, C.; Fu, X.; Zhang, Y.; Stone, J.H.; Choi, H.K. Incidence, Prevalence and Mortality of IgG4-Related Disease in the USA: A Claims-Based Analysis of Commercially Insured Adults. Ann. Rheum. Dis. 2023, 82, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Khosroshahi, A.; Wallace, Z.S.; Crowe, J.L.; Akamizu, T.; Azumi, A.; Carruthers, M.N.; Chari, S.T.; Della-Torre, E.; Frulloni, L.; Goto, H.; et al. International Consensus Guidance Statement on the Management and Treatment of IgG4-Related Disease. Arthritis Rheumatol. 2015, 67, 1688–1699. [Google Scholar] [CrossRef] [PubMed]
- Lanzillotta, M.; Stone, J.H.; Della-Torr, E. B-Cell Depletion Therapy in IgG4-Related Disease: State of the Art and Future Perspectives. Mod. Rheumatol. 2023, 33, 258–265. [Google Scholar] [CrossRef]
- Della-Torre, E.; Dagna, L. B-Cell Depletion Works in IgG4-Related Disease. What Else? Eur. J. Intern. Med. 2024, 127, 39–40. [Google Scholar] [CrossRef]
- Della-Torre, E.; Bozzalla-Cassione, E.; Sciorati, C.; Ruggiero, E.; Lanzillotta, M.; Bonfiglio, S.; Mattoo, H.; Perugino, C.A.; Bozzolo, E.; Rovati, L.; et al. A CD8α− Subset of CD4+SLAMF7+ Cytotoxic T Cells Is Expanded in Patients with IgG4-Related Disease and Decreases Following Glucocorticoid Treatment. Arthritis Rheumatol. 2018, 70, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Kubo, S.; Nakayamada, S.; Zhao, J.; Yoshikawa, M.; Miyazaki, Y.; Nawata, A.; Hirata, S.; Nakano, K.; Saito, K.; Tanaka, Y. Correlation of T Follicular Helper Cells and Plasmablasts with the Development of Organ Involvement in Patients with IgG4-Related Disease. Rheumatology 2018, 57, 514–524. [Google Scholar] [CrossRef]
- Wallace, Z.S.; Zhang, Y.; Perugino, C.A.; Naden, R.; Choi, H.K.; Stone, J.H. Clinical Phenotypes of IgG4-Related Disease: An Analysis of Two International Cross-Sectional Cohorts. Ann. Rheum. Dis. 2019, 78, 406–412. [Google Scholar] [CrossRef]
- Zhang, W.; Stone, J.H. Management of IgG4-Related Disease. Lancet Rheumatol. 2019, 1, e55–e65. [Google Scholar] [CrossRef]
- Wallace, Z.S.; Mattoo, H.; Mahajan, V.S.; Kulikova, M.; Lu, L.; Deshpande, V.; Choi, H.K.; Pillai, S.; Stone, J.H. Predictors of Disease Relapse in IgG4-Related Disease Following Rituximab. Rheumatology 2016, 55, 1000–1008. [Google Scholar] [CrossRef]
- Sasaki, T.; Akiyama, M.; Kaneko, Y.; Yasuoka, H.; Suzuki, K.; Yamaoka, K.; Takeuchi, T. Risk Factors of Relapse Following Glucocorticoid Tapering in IgG4-Related Disease. Clin. Exp. Rheumatol. 2018, 36, S186–S189. [Google Scholar]
- Wallace, Z.S.; Naden, R.P.; Chari, S.T.; Choi, H.K.; Della-Torre, E.; Dicaire, J.F.; Hart, P.A.; Inoue, D.; Kawano, M.; Khosroshahi, A.; et al. Plasmablasts as a Biomarker for IgG4-Related Disease, Independent of Serum IgG4 Concentrations. Curr. Opin. Rheumatol. 2015, 23, 83–90. [Google Scholar] [CrossRef]
- Zhou, J.; Peng, Y.; Peng, L.; Wu, D.; Li, J.; Jiang, N.; Li, J.; Lu, H.; Liu, Z.; Luo, X.; et al. Serum IgE in the Clinical Features and Disease Outcomes of IgG4-Related Disease: A Large Retrospective Cohort Study. Arthritis Res. Ther. 2020, 22, 255. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, P.; Li, J.; Liu, Z.; Lu, H.; Zhu, L.; Wang, X.; Teng, F.; Li, X.; Guo, H.; et al. IgG4-Related Aortitis/Periaortitis and Periarteritis: A Distinct Spectrum of IgG4-Related Disease. Arthritis Res. Ther. 2020, 22, 103. [Google Scholar] [CrossRef]
- Wallace, Z.S.; Naden, R.P.; Chari, S.; Choi, H.K.; Della-Torre, E.; Dicaire, J.F.; Hart, P.A.; Inoue, D.; Kawano, M.; Khosroshahi, A.; et al. The 2019 American College of Rheumatology/European League against Rheumatism Classification Criteria for IgG4-Related Disease. Ann. Rheum. Dis. 2020, 79, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Kamisawa, T.; Zen, Y.; Pillai, S.; Stone, J.H. IgG4-Related Disease. Lancet 2014, 6736, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wallace, Z.S.; Khosroshahi, A.; Carruthers, M.D.; Perugino, C.A.; Choi, H.; Campochiaro, C.; Culver, E.L.; Cortazar, F.; Della-torre, E.; Ebbo, M.; et al. An International Multispecialty Validation Study of the IgG4-Related Disease Responder Index. Arthritis Care Res. 2018, 70, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Della-Torre, E.; Stone, J.H. “How I Manage” IgG4-Related Disease. J. Clin. Immunol. 2016, 36, 754–763. [Google Scholar] [CrossRef]
- Masaki, Y.; Matsui, S.; Saeki, T.; Tsuboi, H.; Hirata, S.; Izumi, Y.; Miyashita, T.; Fujikawa, K.; Dobashi, H.; Susaki, K.; et al. A Multicenter Phase II Prospective Clinical Trial of Glucocorticoid for Patients with Untreated IgG4-Related Disease. Mod. Rheumatol. 2017, 27, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Perugino, C.; Kaneko, N. Immune Mechanisms of Fibrosis and Inflammation in IgG4-Related Disease. Curr. Opin. Rheumatol. 2020, 32, 146–151. [Google Scholar] [CrossRef]
- Wallace, Z.S.; Katz, G.; Hernandez-Barco, Y.G.; Baker, M.C. Current and Future Advances in Practice: IgG4-Related Disease. Rheumatol. Adv. Pract. 2024, 8, rkae020. [Google Scholar] [CrossRef]
- Carruthers, M.N.; Khosroshahi, A.; Augustin, T.; Deshpande, V.; Stone, J.H. The Diagnostic Utility of Serum IgG4 Concentrations in IgG4-Related Disease. Ann. Rheum. Dis. 2015, 74, 14–18. [Google Scholar] [CrossRef]
- Sah, R.P.; Chari, S.T. Serologic Issues in IgG4-Related Systemic Disease and Autoimmune Pancreatitis. Curr. Opin. Rheumatol. 2011, 23, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Wallace, Z.S.; Mattoo, H.; Carruthers, M.; Mahajan, V.S.; Torre, E.D.; Lee, H.; Kulikova, M.; Deshpande, V.; Pillai, S.; Stone, J.H. Plasmablasts as a Biomarker for IgG4-Related Disease, Independent of Serum IgG4 Concentrations. Ann. Rheum. Dis. 2015, 74, 190–195. [Google Scholar] [CrossRef]
- Mattoo, H.; Mahajan, V.S.; Della-Torre, E.; Sekigami, Y.; Carruthers, M.; Wallace, Z.S.; Deshpande, V.; Stone, J.H.; Pillai, S. De Novo Oligoclonal Expansions of Circulating Plasmablasts in Active and Relapsing IgG4-Related Disease. J. Allergy Clin. Immunol. 2014, 134, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Mattoo, H.; Mahajan, V.S.; Maehara, T.; Deshpande, V.; Della-Torre, E.; Wallace, Z.S.; Kulikova, M.; Drijvers, J.M.; Daccache, J.; Carruthers, M.N.; et al. Clonal Expansion of CD4+ Cytotoxic T Lymphocytes in Patients with IgG4-Related Disease. J. Allergy Clin. Immunol. 2016, 138, 825–838. [Google Scholar] [CrossRef]
- Inoue, Y.; Nakayamada, S.; Kubo, S.; Yamagata, K.; Sonomoto, K.; Iwata, S.; Miyazaki, Y.; Tanaka, Y. T Helper Cells Expressing Fractalkine Receptor and Bearing T Follicular Helper 1-like Cell Functions in Patients with IgG4-Related Disease. Rheumatology 2022, 61, 3854–3863. [Google Scholar] [CrossRef]
- Kiyama, K.; Kawabata, D.; Hosono, Y.; Kitagori, K.; Yukawa, N.; Yoshifuji, H.; Omura, K.; Fujii, T.; Mimori, T. Serum BAFF and APRIL Levels in Patients with IgG4-Related Disease and Their Clinical Significance. Arthritis Res. Ther. 2012, 14, R86. [Google Scholar] [CrossRef]
- Ming, B.; Zhong, J.; Dong, L. Role of Eosinophilia in IgG4-Related Disease. Clin. Exp. Rheumatol. 2022, 40, 1038–1044. [Google Scholar] [CrossRef]
- Motta, R.V.; Culver, E.L. IgG4 Autoantibodies and Autoantigens in the Context of IgG4-Autoimmune Disease and IgG4-Related Disease. Front. Immunol. 2024, 15, 1272084. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Z.; Zhang, P.; Lin, W.; Lu, H.; Peng, Y.; Peng, L.; Zhou, J.; Wang, M.; Chen, H.; et al. Peripheral B-Cell Immunophenotyping Identifies Heterogeneity in IgG4-Related Disease. Front. Immunol. 2021, 12, 747076. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Stone, J.H. Perspectives on Current and Emerging Therapies for Immunoglobulin G4-Related Disease. Mod. Rheumatol. 2023, 33, 229–236. [Google Scholar] [CrossRef]
- Orozco-Gálvez, O.; Fernández-Codina, A.; Lanzillotta, M.; Ebbo, M.; Schleinitz, N.; Culver, E.L.; Rebours, V.; D’CRuz, D.P.; Della-Torre, E.; Martínez-Valle, F. Development of an Algorithm for IgG4-Related Disease Management. Autoimmun. Rev. 2023, 22, 103273. [Google Scholar] [CrossRef]
- Stone, J.H.; Khosroshahi, A.; Zhang, W.; Della Torre, E.; Okazaki, K.; Tanaka, Y.; Löhr, J.M.; Schleinitz, N.; Dong, L.; Umehara, H.; et al. Inebilizumab for Treatment of IgG4-Related Disease. N. Engl. J. Med. 2025, 392, 1168–1177. [Google Scholar] [CrossRef]
- Stone, J.H.; Martinez Valle, F.; Carruthers, M.; Baker, M.; Wu, T.; Choi, J.; Mikol, V.; Mannent, L.; Hagino, O. OP0186 Efficacy and safety of rilzabrutinib, an oral bruton’s tyrosine kinase inhibitor, in patients with IgG4-related disease: Results from a 52-week, phase 2, open-label, proof-of-concept study. Ann. Rheum. Dis. 2025, 84, 155. [Google Scholar] [CrossRef]
- Perugino, C.A.; Wallace, Z.S.; Zack, D.J.; Quinn, S.M.; Poma, A.; Fernandes, A.D.; Foster, P.; DeMattos, S.; Burington, B.; Liu, H.; et al. Evaluation of the Safety, Efficacy, and Mechanism of Action of Obexelimab for the Treatment of Patients with IgG4-Related Disease: An Open-Label, Single-Arm, Single Centre, Phase 2 Pilot Trial. Lancet Rheumatol. 2023, 5, e442–e450. [Google Scholar] [CrossRef]
- Matza, M.A.; Perugino, C.A.; Harvey, L.; Fernandes, A.D.; Wallace, Z.S.; Liu, H.; Allard-Chamard, H.; Pillai, S.; Stone, J.H. Abatacept in IgG4-Related Disease: A Prospective, Open-Label, Single-Arm, Single-Centre, Proof-of-Concept Study. Lancet Rheumatol. 2022, 4, e105–e112. [Google Scholar] [CrossRef] [PubMed]
- Backhus, J.; Neumann, C.; Perkhofer, L.; Schulte, L.A.; Mayer, B.; Seufferlein, T.; Müller, M.; Kleger, A. A Follow-up Study of a European Igg4-Related Disease Cohort Treated with Rituximab. J. Clin. Med. 2021, 10, 1329. [Google Scholar] [CrossRef]
- Iaccarino, L.; Talarico, R.; Scirè, C.A.; Amoura, Z.; Burmester, G.; Doria, A.; Faiz, K.; Frank, C.; Hachulla, E.; Hie, M.; et al. IgG4-Related Diseases: State of the Art on Clinical Practice Guidelines. RMD Open 2019, 4, e000787. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, P.; Wang, M.; Feng, R.; Lai, Y.; Peng, L.; Fei, Y.; Zhang, X.; Zhao, Y.; Zeng, X.; et al. Failure of Remission Induction by Glucocorticoids Alone or in Combination with Immunosuppressive Agents in IgG4-Related Disease: A Prospective Study of 215 Patients. Arthritis Res. Ther. 2018, 20, 65. [Google Scholar] [CrossRef]
- Lanzillotta, M.; Della-Torre, E.; Wallace, Z.S.; Stone, J.H.; Karadag, O.; Fernández-Codina, A.; Arcidiacono, P.G.; Falconi, M.; Dagna, L.; Capurso, G. Efficacy and Safety of Rituximab for IgG4-Related Pancreato-Biliary Disease: A Systematic Review and Meta-Analysis. Pancreatology 2021, 21, 1395–1401. [Google Scholar] [CrossRef]
- Kamisawa, T.; Shimosegawa, T.; Okazaki, K.; Nishino, T.; Watanabe, H.; Kanno, A.; Okumura, F.; Nishikawa, T.; Kobayashi, K.; Ichiya, T.; et al. Standard Steroid Treatment for Autoimmune Pancreatitis. Gut 2009, 58, 1504–1507. [Google Scholar] [CrossRef]
- Stone, J.H.; McDowell, P.J.; Jayne, D.R.W.; Merkel, P.A.; Robson, J.; Patel, N.J.; Zhang, Y.; Yue, H.; Bekker, P.; Heaney, L.G. The Glucocorticoid Toxicity Index: Measuring Change in Glucocorticoid Toxicity over Time. Semin. Arthritis Rheum. 2022, 55, 152010. [Google Scholar] [CrossRef]
- Martínez-Valle, F.; Fernández-Codina, A.; Pinal-Fernández, I.; Orozco-Gálvez, O.; Vilardell-Tarrés, M. IgG4-Related Disease: Evidence from Six Recent Cohorts. Autoimmun. Rev. 2017, 16, 168–172. [Google Scholar] [CrossRef]
- Fernández-Codina, A.; Pinilla, B.; Pinal-Fernández, I.; López, C.; Fraile-Rodríguez, G.; Fonseca-Aizpuru, E.; Carballo, I.; Brito-Zerón, P.; Feijóo-Massó, C.; López-Dupla, M.; et al. Treatment and Outcomes in Patients with IgG4-Related Disease Using the IgG4 Responder Index. Jt. Bone Spine 2018, 85, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Yunyun, F.; Yu, P.; Panpan, Z.; Xia, Z.; Linyi, P.; Jiaxin, Z.; Li, Z.; Shangzhu, Z.; Jinjing, L.; Di, W.; et al. Efficacy and Safety of Low Dose Mycophenolate Mofetil Treatment for Immunoglobulin G4-Related Disease: A Randomized Clinical Trial. Rheumatology 2019, 58, 52–60. [Google Scholar] [CrossRef]
- Yunyun, F.; Yu, C.; Panpan, Z.; Hua, C.; Di, W.; Lidan, Z.; Linyi, P.; Li, W.; Qingjun, W.; Xuan, Z.; et al. Efficacy of Cyclophosphamide Treatment for Immunoglobulin G4-Related Disease with Addition of Glucocorticoids. Sci. Rep. 2017, 7, 6195. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Z.; Gao, D.; Wang, H.; Liao, S.; Dong, C.; Luo, G.; Ji, X.; Li, Y.; Wang, X.; et al. Additive Effect of Leflunomide and Glucocorticoids Compared with Glucocorticoids Monotherapy in Preventing Relapse of IgG4-Related Disease: A Randomized Clinical Trial. Semin. Arthritis Rheum. 2020, 50, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Omar, D.; Chen, Y.; Cong, Y.; Dong, L. Glucocorticoids and Steroid Sparing Medications Monotherapies or in Combination for IgG4-RD: A Systematic Review and Network Meta-Analysis. Rheumatology 2020, 59, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, M.N.; Topazian, M.D.; Khosroshahi, A.; Witzig, T.E.; Wallace, Z.S.; Hart, P.A.; Deshpande, V.; Smyrk, T.C.; Chari, S.; Stone, J.H.; et al. Rituximab for IgG4-Related Disease: A Prospective, Open-Label Trial. Ann. Rheum. Dis. 2015, 74, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
- Khosroshahi, A.; Bloch, D.B.; Deshpande, V.; Stone, J.H. Rituximab Therapy Leads to Rapid Decline of Serum IgG4 Levels and Prompt Clinical Improvement in IgG4-Related Systemic Disease. Arthritis Rheum. 2010, 62, 1755–1762. [Google Scholar] [CrossRef]
- Khosroshahi, A.; Carruthers, M.N.; Deshpande, V.; Unizony, S.; Bloch, D.B.; Stone, J.H. Rituximab for the Treatment of IgG4-Related Disease: Lessons from 10 Consecutive Patients. Medicine 2012, 91, 57–66. [Google Scholar] [CrossRef]
- Ebbo, M.; Grados, A.; Samson, M.; Groh, M.; Loundou, A.; Rigolet, A.; Terrier, B.; Guillaud, C.; Carra-Dallière, C.; Renou, F.; et al. Long-Term Efficacy and Safety of Rituximab in IgG4-Related Disease: Data from a French Nationwide Study of Thirty-Three Patients. PLoS ONE 2017, 12, e0183844. [Google Scholar] [CrossRef]
- Majumder, S.; Mohapatra, S.; Lennon, R.J.; Piovezani Ramos, G.; Postier, N.; Gleeson, F.C.; Levy, M.J.; Pearson, R.K.; Petersen, B.T.; Vege, S.S.; et al. Rituximab Maintenance Therapy Reduces Rate of Relapse of Pancreaticobiliary Immunoglobulin G4-Related Disease. Clin. Gastroenterol. Hepatol. 2018, 16, 1947–1953. [Google Scholar] [CrossRef]
- Urban, M.L.; Maritati, F.; Palmisano, A.; Fenaroli, P.; Peyronel, F.; Trivioli, G.; Ferretti, S.; De Biase, C.; Grayson, P.C.; Pegoraro, F.; et al. Rituximab for Chronic Periaortitis without Evidence of IgG4-Related Disease: A Long-Term Follow-up Study of 20 Patients. Ann. Rheum. Dis. 2019, 79, 433–434. [Google Scholar] [CrossRef]
- Campochiaro, C.; Della-Torre, E.; Lanzillotta, M.; Bozzolo, E.; Baldissera, E.; Milani, R.; Arcidiacono, P.G.; Crippa, S.; Falconi, M.; Dagna, L. Long-Term Efficacy of Maintenance Therapy with Rituximab for IgG4-Related Disease. Eur. J. Intern. Med. 2020, 74, 92–98. [Google Scholar] [CrossRef]
- Della-Torre, E.; Lanzillotta, M.; Campochiaro, C.; Di-Colo, G.; Mancuso, G.; Capurso, G.; Falconi, M.; Dagna, L. Efficacy and Safety of Rituximab Biosimilar (CT-P10) in IgG4-Related Disease: An Observational Prospective Open-Label Cohort Study. Eur. J. Intern. Med. 2021, 84, 63–67. [Google Scholar] [CrossRef]
- Le Cosquer, G.; Ribes, D.; Faguer, S.; Jeune, M.; Alric, L.; Bournet, B.; Buscail, L. Long-Term Follow-Up and Immunomonitoring of Relapsing Type 1 Autoimmune Pancreatitis Treated with Rituximab. Pancreas 2022, 51, 452–462. [Google Scholar] [CrossRef]
- Colquhoun, M.; Barwick, T.D.; Bolton, E.; Gibbons, N.; Hughes-Hallett, A.; Levy, J.B.; McAdoo, S.P.; Parisinos, C.A.; Philips, N.; Tam, F.W.K.; et al. A Protocol for Targeted B-Lymphocyte Depletion for the Treatment of IgG4-Related Disease. Rheumatology 2025, 64, 2847–2854. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, K.; Yang, Y.; Yang, A. Efficacy and Safety of Rituximab Induction Therapy and Effect of Rituximab Maintenance for IgG4-Related Disease: A Systematic Review and Meta-Analysis. Eur. J. Intern. Med. 2024, 127, 63–73. [Google Scholar] [CrossRef]
- Lanzillotta, M.; Ramirez, G.A.; Milani, R.; Dagna, L.; Della-Torre, E. B Cell Depletion after Treatment with Rituximab Predicts Relapse of IgG4-Related Disease. Rheumatology 2025, 64, 2290–2294. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Jofra, T.; Lanzillotta, M.; Aiuti, A.; Cicalese, M.P.; Di Colo, G.; Dagna, L.; Fousteri, G.; Della-Torre, E. Persistence of Circulating T-Follicular Helper Cells after Rituximab Is Associated with Relapse of IgG4-Related Disease. Rheumatology 2021, 60, 3947–3949. [Google Scholar] [CrossRef]
- Suárez-García, I.; Perales-Fraile, I.; González-García, A.; Muñoz-Blanco, A.; Manzano, L.; Fabregate, M.; Díez-Manglano, J.; Aizpuru, E.F.; Fernández, F.A.; García, A.G.; et al. In-Hospital Mortality among Immunosuppressed Patients with COVID-19: Analysis from a National Cohort in Spain. PLoS ONE 2021, 16, e0255524. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. A Study to Assess Obexelimab in Participants with IgG4-Related Disease (INDIGO). Available online: https://clinicaltrials.gov/ct2/show/NCT05662241 (accessed on 17 September 2025).
- ClinicalTrials.gov. Zanubrutinib in Treating Patients with IgG4-Related Disease. Available online: https://clinicaltrials.gov/ct2/show/NCT04602598 (accessed on 17 September 2025).
- ClinicalTrials.gov. Efgartigimod in Patients with IgG4-Related Disease. Available online: https://clinicaltrials.gov/ct2/show/NCT07025330 (accessed on 15 September 2025).
- Kanda, M.; Kamekura, R.; Sugawara, M.; Nagahata, K.; Suzuki, C.; Takano, K.; Takahashi, H. IgG4-Related Disease Administered Dupilumab: Case Series and Review of the Literature. RMD Open 2023, 9, e003026. [Google Scholar] [CrossRef]
- Cao, X.; Li, S.; Wan, J.; Yu, Z.; Dong, G.; Zhou, W. Effectiveness of Tofacitinib Monotherapy for Patients with IgG4-RD or Idiopathic Retroperitoneal Fibrosis. Clin. Exp. Rheumatol. 2024, 42, 1736–1743. [Google Scholar] [CrossRef]
- Herbst, R.; Wang, Y.; Gallagher, S.; Mittereder, N.; Kuta, E.; Damschroder, M.; Woods, R.; Rowe, D.C.; Cheng, L.; Cook, K.; et al. B-Cell Depletion in Vitro and in Vivo with an Afucosylated Anti-CD19 Antibody. J. Pharmacol. Exp. Ther. 2010, 335, 213–222. [Google Scholar] [CrossRef]
- Chen, D.; Gallagher, S.; Monson, N.L.; Herbst, R.; Wang, Y. Inebilizumab, a B Cell-Depleting Anti-CD19 Antibody for the Treatment of Autoimmune Neurological Diseases: Insights from Preclinical Studies. J. Clin. Med. 2016, 5, 107. [Google Scholar] [CrossRef]
- Chu, S.Y.; Vostiar, I.; Karki, S.; Moore, G.L.; Lazar, G.A.; Pong, E.; Joyce, P.F.; Szymkowski, D.E.; Desjarlais, J.R. Inhibition of B Cell Receptor-Mediated Activation of Primary Human B Cells by Coengagement of CD19 and FcγRIIb with Fc-Engineered Antibodies. Mol. Immunol. 2008, 45, 3926–3933. [Google Scholar] [CrossRef]
- Horton, H.M.; Chu, S.Y.; Ortiz, E.C.; Pong, E.; Cemerski, S.; Leung, I.W.L.; Jacob, N.; Zalevsky, J.; Desjarlais, J.R.; Stohl, W.; et al. Antibody-Mediated Coengagement of FcγRIIb and B Cell Receptor Complex Suppresses Humoral Immunity in Systemic Lupus Erythematosus. J. Immunol. 2011, 186, 4223–4233. [Google Scholar] [CrossRef]
- Merrill, J.T.; Guthridge, J.; Smith, M.; June, J.; Koumpouras, F.; Machua, W.; Askanase, A.; Khosroshahi, A.; Sheikh, S.Z.; Rathi, G.; et al. Obexelimab in Systemic Lupus Erythematosus with Exploration of Response Based on Gene Pathway Co-Expression Patterns: A Double-Blind, Randomized, Placebo-Controlled, Phase 2 Trial. Arthritis Rheumatol. 2023, 75, 2185–2194. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, Y.; Hu, N.; Yu, D.; Zhou, C.; Shi, G.; Zhang, B.; Wei, M.; Liu, J.; Luo, L.; et al. Discovery of Zanubrutinib (BGB-3111), a Novel, Potent and Selective Covalent Inhibitor of Bruton’s Tyrosine Kinase. J. Med. Chem. 2019, 62, 7923–7940. [Google Scholar] [CrossRef]
- Brown, J.R.; Eichhorst, B.; Hillmen, P.; Jurczak, W.; Kaźmierczak, M.; Lamanna, N.; O’Brien, S.M.; Tam, C.S.; Qiu, L.; Zhou, K.; et al. Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 319–332. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Study of Rilzabrutinib in IgG4-Related Disease. Available online: https://clinicaltrials.gov/ct2/show/NCT04520451 (accessed on 17 September 2025).
- Cheng, J.J.; Wang, F.Q.; Dai, Z.Y.; Wang, X.W.; Wang, Y. The Efficacy and Safety of Efgartigimod for Refractory Myasthenia Gravis: A Systematic Review and Meta—Analysis. Eur. J. Med. Res. 2025, 30, 775. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yu, Y.; Sun, P.; Cao, L. A Case of IgG4-Related Spinal Pachymeningitis with a Large Spinal Cord Cavity: Case Report and Updated Systematic Review. Neurol. Sci. 2025; ahead of print. [Google Scholar] [CrossRef]
- Yamamoto, M.; Takahashi, H.; Takano, K.; Shimizu, Y.; Sakurai, N.; Suzuki, C.; Naishiro, Y.; Yajima, H.; Awakawa, T.; Himi, T.; et al. Efficacy of Abatacept for IgG4-Related Disease over 8 Months. Ann. Rheum. Dis. 2016, 75, 1576–1578. [Google Scholar] [CrossRef] [PubMed]
- Batani, V.; Minici, C.; Sanvito, F.; Venturini, E.; Della-Torre, E. Interleukin-6 Inhibition for the Treatment of IgG4 Related Vasculitis. Eur. J. Intern. Med. 2023, 118, 149–151. [Google Scholar] [CrossRef]
- Zongfei, J.; Rongyi, C.; Xiaomeng, C.; Lili, M.; Lingying, M.; Xiufang, K.; Xiaomin, D.; Zhuojun, Z.; Huiyong, C.; Ying, S.; et al. In Vitro IL-6/IL-6R Trans-Signaling in Fibroblasts Releases Cytokines That May Be Linked to the Pathogenesis of IgG4-Related Disease. Front. Immunol. 2020, 11, 1272. [Google Scholar] [CrossRef]
- García, A.G.; Fernández-Martín, J.; Marhuenda, Á.R. Idiopathic Multicentric Castleman Disease and Associated Autoimmune and Autoinflammatory Conditions: Practical Guidance for Diagnosis. Rheumatology 2023, 62, 1426–1435. [Google Scholar] [CrossRef]
Study/Trial | Study Design | Protocol | Patients (n) | Complete Response | Relapses | Follow-Up Time |
---|---|---|---|---|---|---|
Khosroshahi et al. (2010) [53] | Retrospective | RTX 1 g 2 weeks apart | 4 | NA | NA | NA |
Khosroshahi et al. (2012) [54] | Retrospective | RTX 1 g 2 weeks apart | 10 | 90% | NA | NA |
Carruthers et al. (2015) [52] | Open label trial | RTX 1 g 2 weeks apart | 30 | 47% | 10% | 12 months |
Wallace et al. (2016) [12] | Retrospective cohort | RTX 1 g 2 weeks apart | 60 | 95% | 37% | 9 months |
Ebbo et al. (2017) [55] | Retrospective cohort | Group 1: no RTX Group 2: RTX administered before relapse (variable doses) | 33 | 93.5% | 41.9% | 25 months |
Majumder et al. (2018) [56] | Retrospective cohort | Group 1: RTX induction 2 weeks apart or 375 mg/m2/week × 4 weeks Group 2: RTX induction and maintenance every 2–6 months | 33 | 86% | 45% group 1 11% group 2 | Aprox. 30 months |
Urban et al. (2019) [57] | Retrospective cohort | RTX 1000 mg 2 weeks apart or 375 mg/ m2/week × 4 weeks | 20 | 75% | 15% | 38 months |
Campochiaro et al. (2020) [58] | Retrospective cohort | RTX 1 g 2 weeks apart in each group (1: induction only, 2a: induction and maintenance 1 g 2 weeks apart every 6 months, 2b: induction and maintenance 1 g every 6 months) | 14 | NA | 71% group 1 vs. 0% group 2 | Median 26 months (group 1), 19 months (group 2a), 21 months (group 2b) |
Della-Torre et al. (2021) [59] | Prospective | RTX 1 g 2 weeks apart | 38 | 60% | 36% | 9 months |
Backhus et al. (2021) [40] | Retrospective | RTX 1000 mg 2 weeks apart or 375 mg/m2/week × 4 weeks | 13 | NA | 61% | 71 months |
Le Cosquer et al. (2022) [60] | Retrospective | 375 mg/m2/week × 4 weeks | 15 | |||
Colquhoun et al. (2024) [61] | Retrospective cohort | RTX 1 g 2 weeks apart Re-treatment 2 × 1 g or 1 × 1 g | 45 | 22.5% | 18% | 30 months |
Treatment | Mechanism of Action | Trial/Study | Clinical Rationale | Primary Outcome | Efficacy/Status |
---|---|---|---|---|---|
Inebilizumab [36] | Inhibition CD-19+ B cells | NCT04540497 MITIGATE Phase 3 Placebo-con-trolled RCT | Broader B cell depletion than anti-CD20; targets plasmablasts and plasma cells involved in IgG4 production. | Time to relapse | Relapse rate: 10% vs. 60% HR: 0.13 (95% CI, 0.06–0.28; p < 0.001) Serious AEs: 18% vs. 9% |
Obexelimab [66] | Inhibition CD19 and FcγRIIb co-ligation | NCT05662241 INDIGO Phase 3 Placebo-con-trolled RCT | Inhibits B cell activation without depletion; potential to suppress pathogenic IgG4-producing B cells | Time to relapse | Active, no longer enrolling |
Zanubrutinib [67] | Selective Bruton’s tyrosine kinase inhibitor | NCT04602598 Phase 2, Single-Site, Open-Label | Inhibiting B cell receptor signaling, reducing activation and differentiation of B cells and plasmablasts; potentially decreases autoantibody production and inflammatory responses in IgG4-RD. | Volume of the submandibular/lacrimal glands on PET-MRI | Trial completed; results pending publication |
Rilzabrutinib [37] | Reversible covalent inhibitor of Bruton’s tyrosine kinase | NCT04520451 Phase 2a, multicenter, open-label Ongoing Phase 3 | Inhibiting B-cell activation, possibly decreasing autoantibody production, preventing FcγR-mediated phagocytosis in the spleen and liver, and reducing chronic inflammation | Time to relapse | 70% flare-free at week 52; mild AEs |
Efgartigimod [68] | Reduction pathogenic IgG autoantibody levels | NCT07025330 Phase 2a, Single-Site, Open-Label | Blocking FcRn accelerates the catabolism of IgG4, which could potentially reduce the levels of pathogenic immune complexes and serum IgG4 without inducing immunosuppression. | Change in volume on FDG-PET/ MRI organ involvement | No data available yet |
Abatacept [39] | CD80/CD86–CTLA4-Ig fusion protein | Single-arm open-label trial | Blocks T cell co-stimulation and B-T interaction; shown benefit in observational cohorts. | Complete remission | Complete remission at 12 weeks in 30% 60% partial remission at 12 weeks, 50% at week 24 80% |
Dupilumab [69] | IL-4 and IL-13 receptor alpha subunit | Case reports/early-stage evaluation. | Blocks type 2 cytokines involved in IgG4 switch; promising in Th2-driven IgG4-RD phenotypes | NA | Anecdotal benefit in allergic/Th2 phenotypes |
JAK inhibitors [70] | JAK/STAT pathway | Theoretical/experimental | Broad anti-inflammatory effects; may inhibit cytokine cascades contributing to fibrosis and inflammation. | NA | No trials in IgG4-RD to date |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-García, A.; Starita-Fajardo, G.; Lucena López, D.; Iranzo Alcolea, M.P.; López-Paraja, M.; Peña-Rodríguez, M.; Lirola Sánchez, F.; Sánchez, M.; Viteri-Noël, A.; Fabregate-Fuente, M.; et al. New Developments in the Treatment of IgG4-Related Disease: A Comprehensive Clinical Approach. J. Clin. Med. 2025, 14, 6774. https://doi.org/10.3390/jcm14196774
González-García A, Starita-Fajardo G, Lucena López D, Iranzo Alcolea MP, López-Paraja M, Peña-Rodríguez M, Lirola Sánchez F, Sánchez M, Viteri-Noël A, Fabregate-Fuente M, et al. New Developments in the Treatment of IgG4-Related Disease: A Comprehensive Clinical Approach. Journal of Clinical Medicine. 2025; 14(19):6774. https://doi.org/10.3390/jcm14196774
Chicago/Turabian StyleGonzález-García, Andrés, Grisell Starita-Fajardo, David Lucena López, María Pilar Iranzo Alcolea, María López-Paraja, Mercedes Peña-Rodríguez, Francisco Lirola Sánchez, María Sánchez, Adrián Viteri-Noël, Martin Fabregate-Fuente, and et al. 2025. "New Developments in the Treatment of IgG4-Related Disease: A Comprehensive Clinical Approach" Journal of Clinical Medicine 14, no. 19: 6774. https://doi.org/10.3390/jcm14196774
APA StyleGonzález-García, A., Starita-Fajardo, G., Lucena López, D., Iranzo Alcolea, M. P., López-Paraja, M., Peña-Rodríguez, M., Lirola Sánchez, F., Sánchez, M., Viteri-Noël, A., Fabregate-Fuente, M., López-Rodríguez, M., Calleja-López, J. L., & Manzano Espinosa, L. (2025). New Developments in the Treatment of IgG4-Related Disease: A Comprehensive Clinical Approach. Journal of Clinical Medicine, 14(19), 6774. https://doi.org/10.3390/jcm14196774