IVIM-DWI-Based Radiomics for Lesion Phenotyping and Clinical Status Prediction in Relapsing–Remitting Multiple Sclerosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. MRI
2.3. Lesion Segmentation and Classification
2.4. Extraction and Selection of Radiomic Features
2.5. Machine Learning-Based Predictive Modelling
2.5.1. Model Training
2.5.2. Model Evaluation and Statistical Analysis
3. Results
3.1. Lesion Phenotyping (Enhancing vs. Non-Enhancing Lesions)
3.2. Clinical Disability Prediction
3.2.1. Expanded Disability Status Scale (EDSS)
3.2.2. Mobility Impairment
3.3. Other Clinical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MRI | Magnetic resonance imaging |
IVIM | Intravoxel incoherent motion |
DWI | Diffusion-weighted imaging |
ML | Machine learning |
D | Pure molecular diffusion |
D* | Pseudo-diffusion |
f | Perfusion fraction |
RR-MS | Relapsing–remitting multiple sclerosis |
EDSS | Expanded Disability Status Scale |
DMT | Disease-modifying therapy |
References
- Alomair, O.I. Conventional and Advanced Magnetic Resonance Imaging Biomarkers of Multiple Sclerosis in the Brain. Cureus 2025, 17, e79914. [Google Scholar] [CrossRef] [PubMed]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Cree, B. 20—Demyelinating and Inflammatory Disorders of the Central Nervous System. In On Call Neurology (Third Edition); Marshall, R.S., Mayer, S.A., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2007; pp. 266–293. [Google Scholar] [CrossRef]
- Klineova, S.; Lublin, F.D. Clinical Course of Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a028928. [Google Scholar] [CrossRef]
- Rida Zainab, S.; Zeb Khan, J.; Khalid Tipu, M.; Jahan, F.; Irshad, N. A review on multiple sclerosis: Unravelling the complexities of pathogenesis, progression, mechanisms and therapeutic innovations. Neuroscience 2025, 567, 133–149. [Google Scholar] [CrossRef]
- Lublin, F.D.; Häring, D.A.; Ganjgahi, H.; Ocampo, A.; Hatami, F.; Čuklina, J.; Aarden, P.; Dahlke, F.; Arnold, D.L.; Wiendl, H.; et al. How patients with multiple sclerosis acquire disability. Brain 2022, 145, 3147–3161. [Google Scholar] [CrossRef]
- Dünschede, J.; Ruschil, C.; Bender, B.; Mengel, A.; Lindig, T.; Ziemann, U.; Kowarik, M.C. Clinical-Radiological Mismatch in Multiple Sclerosis Patients during Acute Relapse: Discrepancy between Clinical Symptoms and Active, Topographically Fitting MRI Lesions. J. Clin. Med. 2023, 12, 739. [Google Scholar] [CrossRef]
- Alomair, O.I.; Alghamdi, S.A.; Abujamea, A.H.; Aljarallah, S.; Alkhawajah, N.M.; Alshuhri, M.S.; Alashban, Y.I.; Kurniawan, N.D. The Utility of Intravoxel Incoherent Motion Metrics in Assessing Disability in Relapsing–Remitting Multiple Sclerosis. Diagnostics 2025, 15, 2113. [Google Scholar] [CrossRef]
- Wattjes, M.P.; Ciccarelli, O.; Reich, D.S.; Banwell, B.; de Stefano, N.; Enzinger, C.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Gasperini, C.; et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021, 20, 653–670. [Google Scholar] [CrossRef]
- Nij Bijvank, J.A.; Sánchez Aliaga, E.; Balk, L.J.; Coric, D.; Davagnanam, I.; Tan, H.S.; Uitdehaag, B.M.J.; van Rijn, L.J.; Petzold, A. A model for interrogating the clinico-radiological paradox in multiple sclerosis: Internuclear ophthalmoplegia. Eur. J. Neurol. 2021, 28, 1617–1626. [Google Scholar] [CrossRef]
- Rocca, M.A.; Preziosa, P.; Barkhof, F.; Brownlee, W.; Calabrese, M.; De Stefano, N.; Granziera, C.; Ropele, S.; Toosy, A.T.; Vidal-Jordana, À.; et al. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. Lancet Reg. Health Eur. 2024, 44, 100978. [Google Scholar] [CrossRef]
- Filippi, M.; Preziosa, P.; Arnold, D.L.; Barkhof, F.; Harrison, D.M.; Maggi, P.; Mainero, C.; Montalban, X.; Sechi, E.; Weinshenker, B.G.; et al. Present and future of the diagnostic work-up of multiple sclerosis: The imaging perspective. J. Neurol. 2023, 270, 1286–1299. [Google Scholar] [CrossRef]
- Costagli, M.; Lapucci, C.; Zacà, D.; Bruschi, N.; Schiavi, S.; Castellan, L.; Stemmer, A.; Roccatagliata, L.; Inglese, M. Improved detection of multiple sclerosis lesions with T2-prepared double inversion recovery at 3T. J. Neuroimaging 2022, 32, 902–909. [Google Scholar] [CrossRef]
- Blomqvist, L.; Nordberg, G.F.; Nurchi, V.M.; Aaseth, J.O. Gadolinium in Medical Imaging-Usefulness, Toxic Reactions and Possible Countermeasures-A Review. Biomolecules 2022, 12, 742. [Google Scholar] [CrossRef]
- Gulani, V.; Calamante, F.; Shellock, F.G.; Kanal, E.; Reeder, S.B. Gadolinium deposition in the brain: Summary of evidence and recommendations. Lancet Neurol. 2017, 16, 564–570. [Google Scholar] [CrossRef]
- Raju, J.; Amma, C.U.; John, A. IVIM MRI—Evolution from DWI, Observations, Challenges and Relevance of pre and post processing phases. In Proceedings of the 2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT), Mysuru, India, 10–11 December 2021; pp. 624–630. [Google Scholar]
- Alomair, O.I.; Alghamdi, S.A.; Abujamea, A.H.; AlfIfi, A.Y.; Alashban, Y.I.; Kurniawan, N.D. Investigating the Role of Intravoxel Incoherent Motion Diffusion-Weighted Imaging in Evaluating Multiple Sclerosis Lesions. Diagnostics 2025, 15, 1260. [Google Scholar] [CrossRef] [PubMed]
- Lipiński, K.; Bogorodzki, P. Evaluation of Whole Brain Intravoxel Incoherent Motion (IVIM) Imaging. Diagnostics 2024, 14, 653. [Google Scholar] [CrossRef] [PubMed]
- Thoeny, H.C.; De Keyzer, F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 2011, 259, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Sigmund, E.E.; Chandarana, H.; Rusinek, H.; Chen, Q.; Vivier, P.H.; Taouli, B.; Lee, V.S. Variability of renal apparent diffusion coefficients: Limitations of the monoexponential model for diffusion quantification. Radiology 2010, 254, 783–792. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Zurita, M.; Montalba, C.; Labbé, T.; Cruz, J.P.; Dalboni da Rocha, J.; Tejos, C.; Ciampi, E.; Cárcamo, C.; Sitaram, R.; Uribe, S. Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data. Neuroimage Clin. 2018, 20, 724–730. [Google Scholar] [CrossRef]
- Rostami, A.; Robatjazi, M.; Dareyni, A.; Ghorbani, A.R.; Ganji, O.; Siyami, M.; Raoofi, A.R. Enhancing classification of active and non-active lesions in multiple sclerosis: Machine learning models and feature selection techniques. BMC Med. Imaging 2024, 24, 345. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Tang, C.; Sun, J.; Yang, J.; Huang, C.; Phillips, P.; Zhang, Y.D. Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling. Front. Neurosci. 2018, 12, 818. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Pan, C.; Sun, J.; Tang, C. Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J. Comput. Sci. 2018, 28, 1–10. [Google Scholar] [CrossRef]
- Faustino, R.; Lopes, C.; Jantarada, A.; Mendonça, A.; Raposo, R.; Ferrão, C.; Freitas, J.; Mateus, C.; Pinto, A.; Almeida, E.; et al. Neuroimaging characterization of multiple sclerosis lesions in pediatric patients: An exploratory radiomics approach. Front. Neurosci. 2024, 18, 1294574. [Google Scholar] [CrossRef] [PubMed]
- Tanasescu, R.; Li, R.; Altokhis, A.; Morgan, P.S.; Eshaghi, A.; Chen, X.; Evangelou, N. Limited Value of Radiomics Compared to Quantitative MRI Measures for Predicting 10-year Disability in Newly Diagnosed Multiple Sclerosis: A Real-world Data Exploratory Study (P11-6.018). Neurology 2024, 102, 2932. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Hartung, H.P.; Graf, J.; Aktas, O.; Mares, J.; Barnett, M.H. Diagnosis of multiple sclerosis: Revisions of the McDonald criteria 2017—Continuity and change. Curr. Opin. Neurol. 2019, 32, 327–337. [Google Scholar] [CrossRef]
- Yue, X.; Cui, J.; Huang, S.; Liu, W.; Qi, J.; He, K.; Li, T. An interpretable radiomics-based machine learning model for predicting reverse left ventricular remodeling in STEMI patients using late gadolinium enhancement of myocardial scar. Eur. Radiol. 2025, 35, 6302–6312. [Google Scholar] [CrossRef]
- Zhan, Y.; Song, F.; Zhang, W.; Gong, T.; Zhao, S.; Lv, F. Prediction of benign and malignant pulmonary nodules using preoperative CT features: Using PNI-GARS as a predictor. Front. Immunol. 2024, 15, 1446511. [Google Scholar] [CrossRef]
- Paschoal, A.M.; Leoni, R.F.; Dos Santos, A.C.; Paiva, F.F. Intravoxel incoherent motion MRI in neurological and cerebrovascular diseases. Neuroimage Clin. 2018, 20, 705–714. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M.; Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 2001, 5, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002, 17, 825–841. [Google Scholar] [CrossRef] [PubMed]
- Greve, D.N.; Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 2009, 48, 63–72. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Ali, Y.A.; Awwad, E.M.; Al-Razgan, M.; Maarouf, A. Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity. Processes 2023, 11, 349. [Google Scholar] [CrossRef]
- Mantovani, R.G.; Rossi, A.L.D.; Vanschoren, J.; Bischl, B.; De Carvalho, A.C. Effectiveness of Random Search in SVM hyper-parameter tuning. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8. [Google Scholar]
- MacKay, D.J.C. Bayesian Interpolation. Neural Comput. 1992, 4, 415–447. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef]
- Lerede, A.; Rodgers, J.; Middleton, R.M.; Hampshire, A.; Nicholas, R. Patient-reported outcomes in multiple sclerosis: A prospective registry cohort study. Brain Commun. 2023, 5, fcad199. [Google Scholar] [CrossRef] [PubMed]
- Scalfari, A.; Neuhaus, A.; Degenhardt, A.; Rice, G.P.; Muraro, P.A.; Daumer, M.; Ebers, G.C. The natural history of multiple sclerosis: A geographically based study 10: Relapses and long-term disability. Brain 2010, 133, 1914–1929. [Google Scholar] [CrossRef] [PubMed]
- He, A.; Merkel, B.; Brown, J.W.L.; Zhovits Ryerson, L.; Kister, I.; Malpas, C.B.; Sharmin, S.; Horakova, D.; Kubala Havrdova, E.; Spelman, T.; et al. Timing of high-efficacy therapy for multiple sclerosis: A retrospective observational cohort study. Lancet Neurol. 2020, 19, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, J.; Gu, H.; Fan, W.; Wang, Y.; Chen, S.; Chen, X.; Wang, Z. MRI-Based Radiomic Model for Preoperative Risk stratification in Stage I Endometrial Cancer. J. Cancer 2021, 12, 726–734. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence—Volume 2, Montreal, QC, Canada, 20–25 August 1995; pp. 1137–1143. [Google Scholar]
- Peng, H.; Long, F.; Ding, C. Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis. In Wiley StatsRef: Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Iima, M. Perfusion-driven Intravoxel Incoherent Motion (IVIM) MRI in Oncology: Applications, Challenges, and Future Trends. Magn. Reson. Med. Sci. 2021, 20, 125–138. [Google Scholar] [CrossRef]
- Kutzelnigg, A.; Lassmann, H. Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handb. Clin. Neurol. 2014, 122, 15–58. [Google Scholar] [CrossRef]
- Zierfuss, B.; Larochelle, C.; Prat, A. Blood–brain barrier dysfunction in multiple sclerosis: Causes, consequences, and potential effects of therapies. Lancet Neurol. 2024, 23, 95–109. [Google Scholar] [CrossRef]
- Pontillo, G.; Tommasin, S.; Cuocolo, R.; Petracca, M.; Petsas, N.; Ugga, L.; Carotenuto, A.; Pozzilli, C.; Iodice, R.; Lanzillo, R.; et al. A Combined Radiomics and Machine Learning Approach to Overcome the Clinicoradiologic Paradox in Multiple Sclerosis. AJNR Am. J. Neuroradiol. 2021, 42, 1927–1933. [Google Scholar] [CrossRef]
- Tozlu, C.; Card, S.; Jamison, K.; Gauthier, S.A.; Kuceyeski, A. Larger lesion volume in people with multiple sclerosis is associated with increased transition energies between brain states and decreased entropy of brain activity. Netw. Neurosci. 2023, 7, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Narayana, P.A.; Coronado, I.; Sujit, S.J.; Wolinsky, J.S.; Lublin, F.D.; Gabr, R.E. Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI. Radiology 2020, 294, 398–404. [Google Scholar] [CrossRef]
- Peng, Y.; Zheng, Y.; Tan, Z.; Liu, J.; Xiang, Y.; Liu, H.; Dai, L.; Xie, Y.; Wang, J.; Zeng, C.; et al. Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: A machine learning approach. Mult. Scler. Relat. Disord. 2021, 53, 102989. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Yuan, C.; Zhou, Q.; Huang, X.; Meng, H.; Chen, M.; Wang, H.; Huang, Q.; Xiang, S.; Qian, D.; et al. Deep learning-based PET/MR radiomics for the classification of annualized relapse rate in multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 75, 104750. [Google Scholar] [CrossRef] [PubMed]
- Hagens, M.H.J.; Burggraaff, J.; Kilsdonk, I.D.; de Vos, M.L.; Cawley, N.; Sbardella, E.; Andelova, M.; Amann, M.; Lieb, J.M.; Pantano, P.; et al. Three-Tesla MRI does not improve the diagnosis of multiple sclerosis. Neurology 2018, 91, e249–e257. [Google Scholar] [CrossRef]
- Hagens, M.H.; Burggraaff, J.; Kilsdonk, I.D.; Ruggieri, S.; Collorone, S.; Cortese, R.; Cawley, N.; Sbardella, E.; Andelova, M.; Amann, M.; et al. Impact of 3 Tesla MRI on interobserver agreement in clinically isolated syndrome: A MAGNIMS multicentre study. Mult. Scler. J. 2019, 25, 352–360. [Google Scholar] [CrossRef]
- Park, C.C.; Thongkham, D.W.; Sadigh, G.; Saindane, A.M.; Chu, R.; Bakshi, R.; Allen, J.W.; Hu, R. Detection of Cortical and Deep Gray Matter Lesions in Multiple Sclerosis Using DIR and FLAIR at 3T. J. Neuroimaging 2021, 31, 408–414. [Google Scholar] [CrossRef]
- Ammari, S.; Pitre-Champagnat, S.; Dercle, L.; Chouzenoux, E.; Moalla, S.; Reuze, S.; Talbot, H.; Mokoyoko, T.; Hadchiti, J.; Diffetocq, S.; et al. Influence of Magnetic Field Strength on Magnetic Resonance Imaging Radiomics Features in Brain Imaging, an In Vitro and In Vivo Study. Front. Oncol. 2020, 10, 541663. [Google Scholar] [CrossRef]
- Cobo, M.; Menéndez Fernández-Miranda, P.; Bastarrika, G.; Lloret Iglesias, L. Enhancing radiomics and Deep Learning systems through the standardization of medical imaging workflows. Sci. Data 2023, 10, 732. [Google Scholar] [CrossRef]
- Muñoz González, G.; BA, T.H.; Bugiani, M.; Plemel, J.R.; Schenk, G.J.; Kooij, G.; Luchicchi, A. A focus on the normal-appearing white and gray matter within the multiple sclerosis brain: A link to smoldering progression. Acta Neuropathol. 2025, 150, 16. [Google Scholar] [CrossRef]
- Cairns, J.; Vavasour, I.M.; Traboulsee, A.; Carruthers, R.; Kolind, S.H.; Li, D.K.B.; Moore, G.R.W.; Laule, C. Diffusely abnormal white matter in multiple sclerosis. J. Neuroimaging 2022, 32, 5–16. [Google Scholar] [CrossRef]
- Beck, E.S.; Mullins, W.A.; Dos Santos Silva, J.; Filippini, S.; Parvathaneni, P.; Maranzano, J.; Morrison, M.; Suto, D.J.; Donnay, C.; Dieckhaus, H.; et al. Cortical lesions uniquely predict motor disability accrual and form rarely in the absence of new white matter lesions in multiple sclerosis. medRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Alosaimi, M.; Alkanhal, H.; Aldeligan, S.; Alkhawajah, N.; Albishi, A.; Hilabi, B.; Aljarallah, S. Thalamic volume differentiates multiple sclerosis from neuromyelitis optica spectrum disorder: MRI-based retrospective study. Front. Neurol. 2025, 15, 1491193. [Google Scholar] [CrossRef] [PubMed]
- Mostardeiro, T.R.; Schmitt, L.G.; de Campos, F.T.X.; Xi, Y.; Brondani Torri, G.; Carvalho, B.M.; Feltrin, F.S. Multiple sclerosis lesion detection with 3D double inversion recovery (DIR) as compared to 3D fluid low attenuation inversion recovery (T2-FLAIR): A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2025, 93, 106186. [Google Scholar] [CrossRef] [PubMed]
- Higazi, M.M.; Ghany, H.S.A.E.; Fathy, A.W.; Ismail, M.M.; Samra, M.F.A. Diagnostic accuracy of double inversion recovery (DIR) in detection of cortical gray matter lesions in patients with MS. Egypt. J. Radiol. Nucl. Med. 2022, 53, 13. [Google Scholar] [CrossRef]
Demographic and Clinical Data | Outcome Mean ± SD and % |
---|---|
Mean age ± SD | 36.1 ± 9.4 years |
Gender (male and female) | Male = 59 (29.9%) Female = 138 (70.1%) |
Disease duration | 6.3 ± 5.2 years |
EDSS (mean ± SD) | 2.25 ± 1.91 |
N relapses (mean ± SD) | 463 for all RR-MS patients 2.65 ± 2.03 |
N patients with DMT | 144 (73.1%) |
N patients without DMT | 53 (26.9%) |
N patients with mobility impairment | 20 (10.2%) |
N patients with normal walking ability | 177 (89.8%) |
N MS_E lesions (mean ± SD) | 91 (0.46 ± 1.65) |
N MS_NE lesions (mean ± SD) | 1445 (7.34 ± 4.59) |
N MS_BH lesions (mean ± SD) | 778 (3.95 ± 4.95) |
Model | MRI | Train Accuracy | Test Accuracy | AUC | 95% AUC Confidence Interval (CI) |
---|---|---|---|---|---|
XGBoost | IVIM-f | 0.84 | 0.77 | 0.89 | 0.82–0.94 |
IVIM-D | 0.79 | 0.645 | 0.73 | 0.6–0.85 | |
IVIM-D* | 0.9 | 0.83 | 0.88 | 0.81–0.94 | |
Random Forest | IVIM-f | 0.98 | 0.96 | 0.99 | 0.93–1 |
IVIM-D | 0.98 | 0.71 | 0.73 | 0.72–0.93 | |
IVIM-D* | 0.98 | 0.91 | 0.99 | 0.96–1 | |
RNN | IVIM-f | 0.95 | 0.89 | 0.93 | 0.84–0.94 |
IVIM-D | 0.71 | 0.65 | 0.74 | 0.54–0.75 | |
IVIM-D* | 0.95 | 0.88 | 0.99 | 0.88–0.96 | |
CNN | IVIM-f | 0.96 | 0.92 | 0.97 | 0.93–0.99 |
IVIM-D | 0.61 | 0.53 | 0.56 | 0.41–0.71 | |
IVIM-D* | 0.96 | 0.89 | 0.96 | 0.91–0.99 |
Model | MRI | Train Accuracy | Test Accuracy | AUC | 95% AUC Confidence Interval (CI) |
---|---|---|---|---|---|
XGBoost | IVIM-f | 0.78 | 0.83 | 0.82 | 0.71–0.92 |
IVIM-D | 0.8 | 0.72 | 0.75 | 0.63–0.87 | |
IVIM-D* | 0.85 | 0.81 | 0.99 | 0.79–0.96 | |
IVIM (f, D, and D*) | 0.8 | 0.81 | 0.88 | 0.78–0.96 | |
Random Forest | IVIM-f | 0.94 | 0.84 | 0.87 | 0.76–0.96 |
IVIM-D | 0.95 | 0.89 | 0.9 | 0.79–0.98 | |
IVIM-D* | 0.95 | 0.8 | 0.83 | 0.72–0.93 | |
IVIM (f, D, and D*) | 0.98 | 0.81 | 0.84 | 0.73–0.93 | |
RNN | IVIM-f | 0.97 | 0.84 | 0.93 | 0.75–0.93 |
IVIM-D | 0.97 | 0.83 | 0.92 | 0.73–0.92 | |
IVIM-D* | 0.96 | 0.88 | 0.95 | 0.78–0.95 | |
IVIM (f, D, and D*) | 0.97 | 0.89 | 0.93 | 0.82–0.96 | |
CNN | IVIM-f | 0.97 | 0.9 | 0.947 | 0.88–0.99 |
IVIM-D | 0.98 | 0.88 | 0.91 | 0.74–0.95 | |
IVIM-D* | 0.97 | 0.8 | 0.90 | 0.82–0.97 | |
IVIM (f, D, and D*) | 0.96 | 0.8 | 0.87 | 0.78–0.95 |
Model | MRI | Train Accuracy | Test Accuracy | AUC | 95% AUC Confidence Interval (CI) |
---|---|---|---|---|---|
XGBoost | IVIM-f | 0.82 | 0.75 | 0.84 | 0.72–0.93 |
IVIM-D | 0.86 | 0.84 | 0.85 | 0.74–0.94 | |
IVIM-D* | 0.83 | 0.79 | 0.87 | 0.76–0.96 | |
IVIM (f, D, and D*) | 0.81 | 0.84 | 0.90 | 0.81–0.98 | |
Random Forest | IVIM-f | 0.97 | 0.87 | 0.95 | 0.88–0.99 |
IVIM-D | 0.95 | 0.88 | 0.96 | 0.9–0.99 | |
IVIM-D* | 0.96 | 0.91 | 0.95 | 0.89–0.99 | |
IVIM (f, D and D*) | 0.96 | 0.90 | 0.93 | 0.86–0.99 | |
RNN | IVIM-f | 0.97 | 0.96 | 0.99 | 0.91–1.00 |
IVIM-D | 0.93 | 0.91 | 0.98 | 0.84–0.97 | |
IVIM-D* | 0.95 | 0.93 | 0.99 | 0.87–0.98 | |
IVIM (f, D and D*) | 0.99 | 0.97 | 0.99 | 0.93–1.00 | |
CNN | IVIM-f | 0.97 | 0.96 | 0.98 | 0.95–1.00 |
IVIM-D | 0.97 | 0.97 | 0.99 | 0.98–1.00 | |
IVIM-D* | 0.97 | 0.86 | 0.96 | 0.932–1.00 | |
IVIM (f, D and D*) | 0.92 | 0.92 | 0.95 | 0.89–0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomair, O.I.; Alshuhri, M.S.; Al-Mubarak, H.F.; Alghamdi, S.A.; Abujamea, A.H.; Aljarallah, S.; Alkhawajah, N.M.; Alashban, Y.I.; Kurniawan, N.D. IVIM-DWI-Based Radiomics for Lesion Phenotyping and Clinical Status Prediction in Relapsing–Remitting Multiple Sclerosis. J. Clin. Med. 2025, 14, 6753. https://doi.org/10.3390/jcm14196753
Alomair OI, Alshuhri MS, Al-Mubarak HF, Alghamdi SA, Abujamea AH, Aljarallah S, Alkhawajah NM, Alashban YI, Kurniawan ND. IVIM-DWI-Based Radiomics for Lesion Phenotyping and Clinical Status Prediction in Relapsing–Remitting Multiple Sclerosis. Journal of Clinical Medicine. 2025; 14(19):6753. https://doi.org/10.3390/jcm14196753
Chicago/Turabian StyleAlomair, Othman I., Mohammed S. Alshuhri, Haitham F. Al-Mubarak, Sami A. Alghamdi, Abdullah H. Abujamea, Salman Aljarallah, Nuha M. Alkhawajah, Yazeed I. Alashban, and Nyoman D. Kurniawan. 2025. "IVIM-DWI-Based Radiomics for Lesion Phenotyping and Clinical Status Prediction in Relapsing–Remitting Multiple Sclerosis" Journal of Clinical Medicine 14, no. 19: 6753. https://doi.org/10.3390/jcm14196753
APA StyleAlomair, O. I., Alshuhri, M. S., Al-Mubarak, H. F., Alghamdi, S. A., Abujamea, A. H., Aljarallah, S., Alkhawajah, N. M., Alashban, Y. I., & Kurniawan, N. D. (2025). IVIM-DWI-Based Radiomics for Lesion Phenotyping and Clinical Status Prediction in Relapsing–Remitting Multiple Sclerosis. Journal of Clinical Medicine, 14(19), 6753. https://doi.org/10.3390/jcm14196753