Prehabilitation: A Catalyst for Transforming Toward Value-Based, Personalized Perioperative Health and Care
Abstract
1. Introduction
2. The Impact of Surgery
3. Prehabilitation as a Strategy to Enhance Allostatic Capacity
4. Scientific Justification for Prehabilitation
5. Reflection and Future Perspectives
5.1. Value-Based and Personalized Care
5.2. Stakeholder Perspectives
5.3. Innovation Horizons
5.4. Measuring What Matters
5.5. A Roadmap for Scaling Prehabilitation
5.6. Cost and Resource Implications
6. Limitations
7. Conclusions: A Strategic Path Forward
Author Contributions
Funding
Conflicts of Interest
Abbreviations
6MWT | 6 min walk test |
CPET | Cardiopulmonary exercise testing |
ISWT | Incremental shuttle walk test |
IZA | Dutch Integral Care Agreement |
OR | Odds ratio |
POCs | Postoperative complications |
PREMs | Patient-reported experience measures |
PROMs | Patient-reported outcome measures |
RCT | Randomized controlled trial |
SRT | Steep ramp test |
VAT | Ventilatory anaerobic threshold |
WHO | World Health Organization |
References
- Available online: https://iris.who.int/bitstream/handle/10665/365133/9789240064911-eng.pdf?sequence=1 (accessed on 10 May 2025).
- Scheffler, R.M.; Liu, J.X.; Kinfu, Y.; Poz, M.R.D. Forecasting the global shortage of physicians: An economic- and needs-based approach. Bull. World Health Organ. 2008, 86, 516–523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, V.; Saxena, S.; Lund, C.; Thornicroft, G.; Baingana, F.; Bolton, P.; Chisholm, D.; Collins, P.; Cooper, J.; Eaton, J.; et al. The Lancet Commission on global mental health and sustainable development. Lancet 2018, 392, 1553–1598. [Google Scholar] [CrossRef] [PubMed]
- Kozanhan, B.; Zencirci, B. Operating Room Efficiency: Challenges and Solutions. J. Perioper. Pract. 2021, 31, 112–118. [Google Scholar]
- Makary, M.A.; Segev, D.L.; Pronovost, P.J.; Syin, D.; Bandeen-Roche, K.; Patel, P.; Takenaga, R.; Devgan, L.; Holzmueller, C.G.; Tian, J.; et al. Frailty as a predictor of surgical outcomes in older patients. JAMA 2010, 304, 1721–1722. [Google Scholar] [CrossRef]
- Nepogodiev, D.; Martin, J.; Biccard, B.; Makupe, A.; Bhangu, A. Global burden of postoperative death. Lancet 2019, 393, 401. [Google Scholar] [CrossRef] [PubMed]
- Ghaferi, A.A.; Birkmeyer, J.D.; Dimick, J.B. Variation in hospital mortality associated with inpatient surgery. N. Engl. J. Med. 2009, 361, 1368–1375. [Google Scholar] [CrossRef]
- Naghavi, M.; Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Adetokunboh, O.; Afshin, A.; Agrawal, A.; et al. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1151–1210. [Google Scholar] [CrossRef]
- Dencker, E.E.; Bonde, A.; Troelsen, A.; Varadarajan, K.M.; Sillesen, M. Postoperative complications: An observational study of trends in the United States from 2012 to 2018. BMC Surg. 2021, 21, 393. [Google Scholar] [CrossRef]
- Kim, M.; Wall, M.M.; Li, G. Risk Stratification for Major Postoperative Complications in Patients Undergoing Intra-abdominal General Surgery Using Latent Class Analysis. Anesth. Analg. 2018, 126, 848–857. [Google Scholar] [CrossRef]
- Le, L.M.; Chaiyakunapruk, N. Urgent need to take action on reducing postoperative respiratory complications. Lancet Reg. Health West. Pac. 2021, 10, 100136. [Google Scholar] [CrossRef]
- Tang, V.L.; Jing, B.; Boscardin, J.; Ngo, S.; Silverstrini, M.; Finlayson, E.; Covinsky, K. Association of Functional, Cognitive, and Psychological Measures with 1-Year Mortality in Patients Undergoing Major Surgery. JAMA Surg. 2020, 155, 412–418. [Google Scholar] [CrossRef]
- Lawrence, V.A.; Hazuda, H.P.; Cornell, J.E.; Pederson, T.; Bradshaw, P.; Mulrow, C.; Page, C. Functional independence after major abdominal surgery in the elderly. J. Am. Coll. Surg. 2004, 358, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017, 152, 292–298. [Google Scholar] [CrossRef]
- Smit-Fun, V.M.; Boer, D.d.K.-D.; Damen, T.; Stolze, A.; Posthuma, L.M.; Hollmann, M.W.; Buhre, W.F.F.A.; the TRACE Study Investigators Group. Routine anaesthesia ward-based patient visits in surgery: 1-year outcomes of the TRACE randomized clinical trial. Br. J. Surg. 2025, 112, znaf019. [Google Scholar] [CrossRef]
- Cusack, B.; Buggy, D.J. Anaesthesia, analgesia, and the surgical stress response. BJA Educ. 2020, 20, 321–328. [Google Scholar] [CrossRef]
- Manou-Stathopoulou, V.; Korbonits, M.; Ackland, G.L. Redefining the perioperative stress response: A narrative review. Br. J. Anaesth. 2019, 123, 570–583. [Google Scholar] [CrossRef]
- van Beijsterveld, C.A.F.M. Better Be Prepared: Transition in Perioperative Physical Therapy Care with Patients that Decided to Have Surgery Because of Cancer in the Pancreas or Liver. Doctoral Thesis, Maastricht University, Maastricht, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Wigmore, T.J.; Mohammed, K.; Jhanji, S. Long-term Survival for Patients Undergoing Volatile versus IV Anesthesia for Cancer Surgery: A Retrospective Analysis. Anesthesiology 2016, 124, 69–79. [Google Scholar] [CrossRef]
- Rollins, K.E.; Tewari, N.; Ackner, A.; Awwad, A.; Madhusudan, S.; Macdonald, I.A.; Fearon, K.C.; Lobo, D.N. The impact of sarcopenia and myosteatosis on outcomes of unresectable pancreatic cancer or distal cholangiocarcinoma. Clin. Nutr. 2016, 35, 1103–1109. [Google Scholar] [CrossRef]
- Khuri, S.F.; Healey, N.A.; Hossain, M.; Birjiniuk, V.; Crittenden, M.D.; Josa, M.; Treanor, P.R.; Najjar, S.F.; Kumbhani, D.J.; Henderson, W.G. Intraoperative regional myocardial acidosis and reduction in long-term survival after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2005, 129, 372–381. [Google Scholar] [CrossRef]
- Simegn, G.D.; Bayable, S.D.; Fetene, M.B. Prevention and management of perioperative hypothermia in adult elective surgical patients: A systematic review. Ann. Med. Surg. 2021, 72, 103059. [Google Scholar] [CrossRef]
- Rampersad, C.; Patel, P.; Koulack, J.; McGregor, T. Back-to-back comparison of mini-open vs. laparoscopic technique for living kidney donation. Can. Urol. Assoc. J. 2016, 10, 253–257. [Google Scholar] [CrossRef]
- Agabiti, N.; Stafoggia, M.; Davoli, M.; Fusco, D.; Barone, A.P.; Perucci, C.A. Thirty-day complications after laparoscopic or open cholecystectomy: A population-based cohort study in Italy. BMJ Open 2013, 3, e001943. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.F.; Rocco, P.R.; Pelosi, P. Immunomodulators in anesthesia. Curr. Opin. Anaesthesiol. 2021, 34, 357–363. [Google Scholar] [CrossRef]
- Motayagheni, N.; Phan, S.; Eshraghi, C.; Nozari, A.; Atala, A. A Review of Anesthetic Effects on Renal Function: Potential Organ Protection. Am. J. Nephrol. 2017, 46, 380–389. [Google Scholar] [CrossRef]
- Sugasawa, Y.; Yamaguchi, K.; Kumakura, S.; Murakami, T.; Suzuki, K.; Nagaoka, I.; Inada, E. Effects of sevoflurane and propofol on pulmonary inflammatory responses during lung resection. J. Anesth. 2011, 26, 62–69. [Google Scholar] [CrossRef]
- Luo, C.; Yuan, D.; Li, X.; Yao, W.; Luo, G.; Chi, X.; Li, H.; Irwin, M.G.; Xia, Z.; Hei, Z. Propofol Attenuated Acute Kidney Injury after Orthotopic Liver Transplantation via Inhibiting Gap Junction Composed of Connexin 32. Anesthesiology 2015, 122, 72–86. [Google Scholar] [CrossRef]
- Yang, S.; Chou, W.-P.; Pei, L. Effects of propofol on renal ischemia/reperfusion injury in rats. Exp. Ther. Med. 2013, 6, 1177–1183. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, D.; Lei, L.; Jia, Y.; Zhou, H.; Yang, B. Propofol Prevents Renal Ischemia-Reperfusion Injury via Inhibiting the Oxidative Stress Pathways. Cell. Physiol. Biochem. 2015, 37, 14–26. [Google Scholar] [CrossRef]
- Ohsumi, A.; Marseu, K.; Slinger, P.; McRae, K.; Kim, H.; Guan, Z.; Hwang, D.M.; Liu, M.; Keshavjee, S.; Cypel, M. Sevoflurane Attenuates Ischemia-Reperfusion Injury in a Rat Lung Transplantation Model. Ann. Thorac. Surg. 2017, 103, 1578–1586. [Google Scholar] [CrossRef]
- Conrad, C.; Eltzschig, H.K. Disease Mechanisms of Perioperative Organ Injury. Anesth. Analg. 2020, 131, 1730–1750. [Google Scholar] [CrossRef]
- Fragiadakis, G.K.; Gaudillière, B.; Ganio, E.A.; Aghaeepour, N.; Tingle, M.; Nolan, G.; Angst, M. Patient-specific Immune States before Surgery Are Strong Correlates of Surgical Recovery. Anesthesiology 2015, 123, 1241–1255. [Google Scholar] [CrossRef]
- Laudanski, K. Quo Vadis Anesthesiologist? The Value Proposition of Future Anesthesiologists Lies in Preserving or Restoring Presurgical Health after Surgical Insult. J. Clin. Med. 2022, 11, 1135. [Google Scholar] [CrossRef]
- Kallen, V.; Tahir, M.; Bedard, A.; Bongers, B.; Van Riel, N.; Van Meeteren, N. Aging and Allostasis: Using Bayesian Network Analytics to Explore and Evaluate Allostatic Markers in the Context of Aging. Diagnostics 2021, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Beese, S.; Postma, J.; Graves, J.M. Allostatic Load Measurement: A Systematic Review of Reviews, Database Inventory, and Considerations for Neighborhood Research. Int. J. Environ. Res. Public Health 2022, 19, 17006. [Google Scholar] [CrossRef]
- Van Rooijen, S.J.; Molenaar, C.J.L.; Schep, G.; Van Lieshout, R.; Beijer, S.; Dubbers, R.; Rademakers, N.; Papen-Botterhuis, N.; Van Kempen, S.; Carli, F.; et al. Making Patients Fit for Surgery: Introducing a Four Pillar Multimodal Prehabilitation Program in Colorectal Cancer. Am. J. Phys. Med. Rehabil. 2019, 98, 888–896. [Google Scholar] [CrossRef]
- Mills, E.; Eyawo, O.; Lockhart, I.; Kelly, S.; Wu, P.; Ebbert, J.O. Smoking cessation reduces postoperative complications: A systematic review and meta-analysis. Am. J. Med. 2011, 124, 144–154.e8. [Google Scholar] [CrossRef]
- Wong, J.; Lam, D.P.; Abrishami, A.; Chan, M.T.V.; Chung, F. Short-term preoperative smoking cessation and postoperative complications: A systematic review and meta-analysis. Can. J. Anaesth. 2011, 59, 268–279. [Google Scholar] [CrossRef]
- Tonnesen, H.; Kehlet, H. Preoperative alcoholism and postoperative morbidity. Br. J. Surg. 1999, 86, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Levett, D.Z.H.; Jack, S.; Swart, M.; Carlisle, J.; Wilson, J.; Snowden, C.; Riley, M.; Danjoux, G.; Ward, S.; Older, P.; et al. Perioperative cardiopulmonary exercise testing (CPET): Consensus clinical guidelines. Br. J. Anaesth. 2018, 120, 484–500. [Google Scholar] [CrossRef]
- Snowden, C.P.; Prentis, J.M.; Anderson, H.L.; Roberts, D.; Randles, D.; Renton, M.; Manas, D. Submaximal Cardiopulmonary Exercise Testing Predicts Complications and Hospital Length of Stay in Patients Undergoing Major Elective Surgery. Ann. Surg. 2010, 251, 535–541. [Google Scholar] [CrossRef]
- Moran, J.; Wilson, F.; Guinan, E.; McCormick, P.; Hussey, J.; Moriarty, J. Role of cardiopulmonary exercise testing as a risk-assessment method in patients undergoing intra-abdominal surgery: A systematic review. Br. J. Anaesth. 2016, 116, 177–191. [Google Scholar] [CrossRef]
- Cuijpers, A.C.M.; Heldens, A.F.J.M.; Bours, M.J.L.; Van Meeteren, N.; Stassen, L.; Lubbers, T.; Bongers, B. Relation between preoperative aerobic fitness estimated by steep ramp test performance and postoperative morbidity in colorectal cancer surgery. Br. J. Surg. 2022, 109, 155–159. [Google Scholar] [CrossRef]
- Bongers, B. Steep ramp test protocol for preoperative risk assessment and short-term high-intensity interval training to evaluate, improve, and monitor cardiorespiratory fitness in surgical oncology. J. Surg. Oncol. 2023, 127, 891–895. [Google Scholar]
- Kammerer, T.; Mahú, I.; Schier, R. Prehabilitation and inflammation. Ann. Nutr. Metab. 2025, 81, 234–244. [Google Scholar] [CrossRef]
- Lindholm, M.E.; Rundqvist, H. Skeletal muscle hypoxia-inducible factor-1 and exercise. Exp. Physiol. 2016, 101, 28–32. [Google Scholar] [CrossRef]
- Carrard, J.; Gallart-Ayala, H.; Weber, N.; Colledge, F.; Streese, L.; Hanssen, H.; Schmied, C.; Ivanisevic, J.; Schmidt-Trucksäss, A. How ceramides orchestrate cardiometabolic health—An ode to physically active living. Metabolites 2021, 11, 675. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N.; Stensel, D.; Lindley, M.; Mastana, S.; Nimmo, M. The anti-inflammatory effects of exercise: Mechanisms and implications. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef]
- Reidy, P.; Mahmassani, Z.; KcKenzie, A.; Petrocelli, J.; Summers, S.; Drummond, M. Influence of exercise training on skeletal muscle insulin resistance in aging. Int. J. Mol. Sci. 2020, 21, 1514. [Google Scholar] [CrossRef] [PubMed]
- Brattinga, B.; Rutgers, A.; De Haan, J.; Absalom, A.; Van der Wal-Huisman, H.; De Bock, G.; Van Leeuwen, B. Preoperative inflammatory markers as predictors of survival in older cancer patients. Cancers 2021, 13, 1824. [Google Scholar] [CrossRef]
- Proschinger, S.; Winker, M.; Joisten, N.; Block, W.; Palmowski, J.; Zimmer, P. The effect of exercise on regulatory T cells: A systematic review. Exerc. Immunol. Rev. 2021, 27, 142–166. [Google Scholar]
- Davis, J.F.; van Rooijen, S.J.; Grimmett, C.; Weset, M.; Campbell, A.; Awasthi, R.; Slooter, G.; Grocott, M.; Carli, F.; Jack, S. From Theory to Practice: An International Approach to Establishing Prehabilitation Programmes. Curr. Anesthesiol. Rep. 2022, 12, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, C.J.L.; Minnella, E.M.; Coca-Martinez, M.; Ten Cate, D.; Regis, M.; Awasthi, R.; Martínez-Palli, G.; López-Baamonde, M.; Sebio-Garcia, R.; Feo, C.; et al. Effect of Multimodal Prehabilitation on Reducing Postoperative Complications and Enhancing Functional Capacity Following Colorectal Cancer Surgery: The PREHAB Randomized Clinical Trial. JAMA Surg. 2023, 158, 572–581. [Google Scholar] [CrossRef]
- Perry, R.; Herbert, G.; Atkinson, C.; England, C.; Northstone, K.; Baos, S.; Brush, T.; Chong, A.; Ness, A.; Harris, J.; et al. Pre-admission interventions (prehabilitation) to improve outcome after major elective surgery: A systematic review and meta-analysis. BMJ Open 2021, 11, e050806. [Google Scholar] [CrossRef]
- Steinmetz, C.; Bjarnason-Wehrens, B.; Walther, T.; Schaffland, T.; Walther, C. Efficacy of Prehabilitation Before Cardiac Surgery: A Systematic Review and Meta-analysis. Am. J. Phys. Med. Rehabil. 2023, 102, 323–330. [Google Scholar] [CrossRef]
- Dagorno, C.; Sommacale, D.; Laurent, A.; Attias, A.; Mongardon, N.; Levesque, E.; Langeron, O.; Rhaiem, R.; Leroy, V.; Amaddeo, G.; et al. Prehabilitation in hepato-pancreato-biliary surgery: A systematic review and meta-analysis. J. Visc. Surg. 2022, 159, 362–372. [Google Scholar] [CrossRef]
- Molenaar, C.J.; van Rooijen, S.J.; Fokkenrood, H.J.; Roumen, R.; Janssen, L.; Slooter, G. Prehabilitation versus no prehabilitation to improve functional capacity, reduce postoperative complications and improve quality of life in colorectal cancer surgery. Cochrane Database Syst. Rev. 2023, 5, CD013259. [Google Scholar] [CrossRef]
- McIsaac, D.I.; Gill, M.; Boland, L.; Hutton, B.; Branje, K.; Shaw, J.; Grudzinski, A.; Barone, N.; Gillis, C.V.; Akhtar, S.; et al. Prehabilitation in adult patients undergoing surgery: An umbrella review of systematic reviews. Br. J. Anaesth. 2022, 128, 244–257. [Google Scholar] [CrossRef]
- McIsaac, D.I.; Kidd, G.; Gillis, C.; Branje, K.; Al-Bayati, M.; Baxi, A.; Grudzinski, A.; Boland, L.; Veroniki, A.; Wolfe, D.; et al. Relative efficacy of prehabilitation interventions and their components: Systematic review with network and component network meta-analyses of randomised controlled trials. BMJ 2025, 388, e081164. [Google Scholar] [CrossRef]
- Nederlandse Vereniging voor Heelkunde. Standpunt Prehabilitatie: Voorbereiding van Patiënten Met Colorectaal Carcinoom op de Operatie. Available online: https://assets.heelkunde.nl/p/491520/none/Standpunt%20Prehabilitatie%20-%20definitief.pdf (accessed on 10 May 2025).
- Nederlandse Vereniging voor Anesthesiologie. Kennisagenda Anesthesiologie 2022. Available online: https://www.anesthesiologie.nl/uploads/files/KENNISAGENDA_ANESTHESIOLOGIE_2022.pdf (accessed on 10 May 2025).
- Raichurkar, P.; Denehy, L.; Solomon, M.; Koh, C.; Pillinger, N.; Hogan, S.; McBride, K.; Carey, S.; Bartyn, J.; Hirst, N.; et al. Research Priorities in Prehabilitation for Patients Undergoing Cancer Surgery: An International Delphi Study. Ann. Surg. Oncol. 2023, 30, 7226–7235. [Google Scholar] [CrossRef]
- Kennisinstituut van de Federatie Medisch Specialisten. Financiële Impact van Aanbevelingen van Het Standpunt Prehabilitatie. Available online: https://assets.heelkunde.nl/p/491520/none/BIA%20Prehabilitatie%20-%20rapportage.pdf (accessed on 10 May 2025).
- Rijksoverheid. Integraal Zorgakkoord: ‘Samen Werken aan Gezonde Zorg’. Available online: https://www.rijksoverheid.nl/documenten/rapporten/2022/09/16/integraal-zorgakkoord-samen-werken-aan-gezonde-zorg (accessed on 10 May 2025).
- Zorginstituut Nederland. Multimodale Prehabilitatie vóór een Operatie bij Hoogrisicopatiënten Met Darmkanker. Available online: https://www.zorginstituutnederland.nl/publicaties/standpunten/2024/02/13/standpunt-multimodale-prehabilitatie (accessed on 10 May 2025).
Year | First Author | Study Design | Study Population | Prehabilitation Method | Results (Statistically Significant Only) |
---|---|---|---|---|---|
2021 | Dagorno [57] | Systematic review of 3 RCTs and 1 propensity score matched cohort | Adult patients undergoing HPB surgery |
| Length of hospital stay (MD (95% CI))
|
2021 | Perry [55] | Systematic review of 178 RCTs | Adult patients undergoing major surgery and preoperative intervention |
| Length of hospital stay (MD (95% CI))
|
2022 | Molenaar [58] | Systematic review of 3 RCTs | Adult patients undergoing colorectal surgery |
| 6MWT preoperatively (MD (95% CI))
|
2022 | McIsaac [59] | Umbrella review of systematic reviews | Adult patients undergoing surgery |
| Postoperative complications (OR (95% CI)
|
2023 | Steinmetz [56] | Systematic review of 6 studies | Adult patients undergoing cardiac surgery (CABG and/or valve surgery) |
| 6MWT preoperatively (MD (95% CI))
|
2023 | Molenaar [54] | RCT (PREHAB trial) | Adult patients undergoing colorectal cancer surgery |
|
|
2025 | McIsaac [60] | Systematic review of 186 RCTs | Adult patients undergoing surgery |
| Postoperative complications (OR (95% CI))
|
Research Priority | Description |
---|---|
1. Effectiveness of prehabilitation on surgical outcomes | Investigate how prehabilitation affects postoperative complications, 30-day mortality, length of hospital stay, intensive care unit admission, and readmissions. |
2. Identifying patient groups who benefit most | Determine which patients (based on factors like age, sex, fitness, frailty) benefit most from prehabilitation. |
3. Optimal composition of prehabilitation programs | Understand the added value of a multimodal approach (e.g., nutrition, physical training, psychosocial support, medical optimization). |
4. Standardization of outcome measures | Develop a core set of outcomes to uniformly assess and compare prehabilitation effectiveness in both practice and research. |
5. Effect on functional outcomes | Study how prehabilitation impacts physical performance, mobility, and daily living after surgery. |
6. Impact on patient-reported outcomes | Examine how prehabilitation contributes to quality of life, well-being, and other patient-reported outcome measures (PROMs). |
7. Cost-effectiveness of prehabilitation | Conduct cost–benefit analyses of interventions and determine the resources required to implement prehabilitation programs. |
8. Improving adherence and engagement | Develop strategies to enhance patient participation and persistence in prehabilitation programs. |
9. Applicability during neoadjuvant therapies | Investigate whether prehabilitation can be safely and effectively implemented during chemotherapy or other pre-treatment regimens. |
10. Delivery models and accessibility | Compare delivery models such as telehealth, home-based programs, center-based, and community models—particularly in rural vs. urban settings. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Koningsveld-Couperus, B.H.; de Rooij, T.; van Meeteren, N.L.; Preckel, B.; Hollmann, M.W.; Nieuwenhuijs-Moeke, G.J. Prehabilitation: A Catalyst for Transforming Toward Value-Based, Personalized Perioperative Health and Care. J. Clin. Med. 2025, 14, 6747. https://doi.org/10.3390/jcm14196747
van Koningsveld-Couperus BH, de Rooij T, van Meeteren NL, Preckel B, Hollmann MW, Nieuwenhuijs-Moeke GJ. Prehabilitation: A Catalyst for Transforming Toward Value-Based, Personalized Perioperative Health and Care. Journal of Clinical Medicine. 2025; 14(19):6747. https://doi.org/10.3390/jcm14196747
Chicago/Turabian Stylevan Koningsveld-Couperus, Brenda H., Thijs de Rooij, Nico L. van Meeteren, Benedikt Preckel, Markus W. Hollmann, and Gertrude J. Nieuwenhuijs-Moeke. 2025. "Prehabilitation: A Catalyst for Transforming Toward Value-Based, Personalized Perioperative Health and Care" Journal of Clinical Medicine 14, no. 19: 6747. https://doi.org/10.3390/jcm14196747
APA Stylevan Koningsveld-Couperus, B. H., de Rooij, T., van Meeteren, N. L., Preckel, B., Hollmann, M. W., & Nieuwenhuijs-Moeke, G. J. (2025). Prehabilitation: A Catalyst for Transforming Toward Value-Based, Personalized Perioperative Health and Care. Journal of Clinical Medicine, 14(19), 6747. https://doi.org/10.3390/jcm14196747