Rethinking the Diabetes–Cardiovascular Disease Continuum: Toward Integrated Care
Abstract
1. Introduction: A Converging Pathology
2. From Parallel Paths to a Common Road: Lessons from Trials and Models
3. Beyond Glucose and Lipids: A Web of Shared Pathophysiology
3.1. Emerging Mechanisms Beyond Traditional Risk Factors
3.2. Organ Crosstalk and the Multisystem Basis of Cardiometabolic Disease
4. Lifestyle and Preventive Strategies
4.1. Physical Activity and Exercise
4.2. Nutritional Recommendations
4.3. Nutraceuticals
5. From Innovation to Integration: The Therapeutic Shift
5.1. Metformin: The Foundational Therapy
5.2. GLP-1 Receptor Agonists and SGLT2 Inhibitors
5.3. An Emerging Therapy: Tirzepatide
5.4. Other Glucose-Lowering Drugs
5.5. Lipid-Lowering and Cardioprotective Therapies Beyond Glucose Control
6. Integrated Care and Inequity
6.1. Examples of Integrated Models
6.2. Economic Considerations
6.3. Equity Measures
6.4. Global Perspective
7. Future Thinking: Predictive Tools and Holistic Models
8. Conclusions: Breaking the Silos
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, C.; Zhou, J. Global, regional, and national burden of cardiovascular disease, 1990-2021: Results from the 2021 Global Burden of Disease Study. Cureus 2024, 16, e74333. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Z.; Mo, C.; Kang, Y.; Wang, F.; Wei, X.; Huang, S.; Qin, F.; Jiang, J.; Liang, H.; et al. The global burden of cardiovascular diseases and type 2 diabetes attributable to low physical activity, 1990-2019: An analysis from the global burden of disease study. Front. Cardiovasc. Med. 2023, 10, 1247705. [Google Scholar] [CrossRef]
- Caturano, A.; Rocco, M.; Tagliaferri, G.; Piacevole, A.; Nilo, D.; Di Lorenzo, G.; Iadicicco, I.; Donnarumma, M.; Galiero, R.; Acierno, C.; et al. Oxidative stress and cardiovascular complications in type 2 diabetes: From pathophysiology to lifestyle modifications. Antioxidants 2025, 14, 72. [Google Scholar] [CrossRef]
- Ndumele, C.E.; Neeland, I.J.; Tuttle, K.R.; Chow, S.L.; Mathew, R.O.; Khan, S.S.; Coresh, J.; Baker-Smith, C.M.; Carnethon, M.R.; Després, J.P.; et al. A synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: A scientific statement from the American Heart Association. Circulation 2023, 148, 1636–1664. [Google Scholar] [CrossRef] [PubMed]
- Mutruc, V.; Bologa, C.; Șorodoc, V.; Ceasovschih, A.; Morărașu, B.C.; Șorodoc, L.; Catar, O.E.; Lionte, C. Cardiovascular-Kidney-Metabolic Syndrome: A New Paradigm in Clinical Medicine or Going Back to Basics? J. Clin. Med. 2025, 14, 2833. [Google Scholar] [CrossRef]
- Neppala, S.; Rajan, J.; Yang, E.; DeFronzo, R.A. Unexplained residual risk in type 2 diabetes: How big is the problem? Curr. Cardiol. Rep. 2024, 26, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Genuth, S.; Eastman, R.; Kahn, R.; Klein, R.; Lachin, J.; Lebovitz, H.; Nathan, D.; Vinicor, F.; American Diabetes Association. Implications of the United Kingdom Prospective Diabetes Study. Diabetes Care 2003, 26 (Suppl. 1), S28–S32. [Google Scholar] [CrossRef]
- Skyler, J.S.; Bergenstal, R.; Bonow, R.O.; Buse, J.; Deedwania, P.; Gale, E.A.; Howard, B.V.; Kirkman, M.S.; Kosiborod, M.; Reaven, P.; et al. Intensive glycemic control and the prevention of cardiovascular events: Implications of the ACCORD, ADVANCE, and VA Diabetes Trials: A position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. J. Am. Coll. Cardiol. 2009, 53, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Nevola, R.; Alfano, M.; Pafundi, P.C.; Brin, C.; Gragnano, F.; Calabrò, P.; Adinolfi, L.E.; Rinaldi, L.; Sasso, F.C.; Caturano, A. Cardiorenal impact of SGLT-2 inhibitors: A conceptual revolution in the management of type 2 diabetes, heart failure and chronic kidney disease. Rev. Cardiovasc. Med. 2022, 23, 106. [Google Scholar] [CrossRef]
- Le, R.; Nguyen, M.T.; Allahwala, M.A.; Psaltis, J.P.; Marathe, C.S.; Marathe, J.A.; Psaltis, P.J. Cardiovascular protective properties of GLP-1 receptor agonists: More than just diabetic and weight loss drugs. J. Clin. Med. 2024, 13, 4674. [Google Scholar] [CrossRef] [PubMed]
- Petrie, M.C.; Udell, J.A.; Anker, S.D.; Harrington, J.; Jones, W.S.; Mattheus, M.; Gasior, T.; van der Meer, P.; Amir, O.; Bahit, M.C.; et al. Empagliflozin in acute myocardial infarction in patients with and without type 2 diabetes: A pre-specified analysis of the EMPACT-MI trial. Eur. J. Heart Fail. 2025, 27, 577–588. [Google Scholar] [CrossRef]
- James, S.; Erlinge, D.; Storey, R.F.; McGuire, D.K.; de Belder, M.; Eriksson, N.; Andersen, K.; Austin, D.; Arefalk, G.; Carrick, D.; et al. Dapagliflozin in myocardial infarction without diabetes or heart failure. NEJM Evid. 2024, 3, EVIDoa2300286. [Google Scholar] [CrossRef]
- Siniawski, D.; Masson, G.; Masson, W.; Barbagelata, L.; Destaville, J.; Lynch, S.; Vitagliano, L.; Parodi, J.B.; Berton, F.; Indavere, A.; et al. Residual cardiovascular risk, use of standard care treatments, and achievement of treatment goals in patients with cardiovascular disease. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 18, 200198. [Google Scholar] [CrossRef]
- Kern, L.M.; Bynum, J.P.W.; Pincus, H.A. Care fragmentation, care continuity, and care coordination—How they differ and why it matters. JAMA Intern. Med. 2024, 184, 236–237. [Google Scholar] [CrossRef]
- Scheen, A.J. Bridging the gap in cardiovascular care in diabetic patients: Are cardioprotective antihyperglycemic agents underutilized? Expert Rev. Clin. Pharmacol. 2023, 16, 1053–1062. [Google Scholar] [CrossRef]
- Perone, F.; Bernardi, M.; Spadafora, L.; Betti, M.; Cacciatore, S.; Saia, F.; Fogacci, F.; Jaiswal, V.; Asher, E.; Paneni, F.; et al. Non-traditional cardiovascular risk factors: Tailored assessment and clinical implications. J. Cardiovasc. Dev. Dis. 2025, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Gkrinia, E.M.M.; Belančić, A. The mechanisms of chronic inflammation in obesity and potential therapeutic strategies: A narrative review. Curr. Issues Mol. Biol. 2025, 47, 357. [Google Scholar] [CrossRef] [PubMed]
- Mafra, D.; Alvarenga, L.; de Velasco, P.C.; de Mattos Manhães, L.; de Santana, E.; Santana, L.D.; Borges, N.A. The gut microbiota-NLRP3 inflammasome connection: Current evidence and perspectives for non-communicable diseases. Mol. Cell. Biochem. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Russo, V.; Malvezzi Caracciolo D’Aquino, M.; Caturano, A.; Scognamiglio, G.; Pezzullo, E.; Fabiani, D.; Del Giudice, C.; Carbone, A.; Bottino, R.; Caso, V.; et al. Improvement of global longitudinal strain and myocardial work in type 2 diabetes patients on sodium-glucose cotransporter 2 inhibitors therapy. J. Cardiovasc. Pharmacol. 2023, 82, 196–200. [Google Scholar] [CrossRef]
- Palmiero, G.; Cesaro, A.; Galiero, R.; Loffredo, G.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Salvatore, T.; Ruggiero, R.; Di Palo, M.R.; et al. Impact of gliflozins on cardiac remodeling in patients with type 2 diabetes mellitus and reduced ejection fraction heart failure: A pilot prospective study (GLISCAR study). Diabetes Res. Clin. Pract. 2023, 200, 110686. [Google Scholar] [CrossRef] [PubMed]
- Schirone, L.; Forte, M.; Palmerio, S.; Yee, D.; Nocella, C.; Angelini, F.; Pagano, F.; Schiavon, S.; Bordin, A.; Carrizzo, A.; et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid. Med. Cell. Longev. 2017, 2017, 3920195. [Google Scholar] [CrossRef] [PubMed]
- Morciano, C.; Gugliandolo, S.; Capece, U.; Di Giuseppe, G.; Mezza, T.; Ciccarelli, G.; Soldovieri, L.; Brunetti, M.; Avolio, A.; Splendore, A.; et al. SGLT2 inhibition and adipose tissue metabolism: Current outlook and perspectives. Cardiovasc. Diabetol. 2024, 23, 449. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.; Zhang, M.; Lv, W.; Ren, J.; Fan, X. Role of epicardial adipose tissue in cardiac remodeling. Diabetes Res. Clin. Pract. 2024, 217, 111878. [Google Scholar] [CrossRef]
- Fernandes Silva, L.; Laakso, M. Advances in metabolomics: A comprehensive review of type 2 diabetes and cardiovascular disease interactions. Int. J. Mol. Sci. 2025, 26, 3572. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Kontaridis, M.I. Interorgan Crosstalk in Heart Failure and Cardiometabolic Diseases: A Compendium. Circ. Res. 2025, 136, 1167–1169. [Google Scholar] [CrossRef]
- Marassi, M.; Fadini, G.P. The Cardio-Renal-Metabolic Connection: A Review of the Evidence. Cardiovasc. Diabetol. 2023, 22, 195. [Google Scholar] [CrossRef]
- Vincenzi, M.; Nebigil, C.G. Uncovering the Role of Prokineticin Pathway on Epicardial Adipose Tissue (EAT) Development and EAT-Associated Cardiomyopathy. Trends Cardiovasc. Med. 2025, 35, 328–338. [Google Scholar] [CrossRef]
- Caturano, A.; Galiero, R.; Vetrano, E.; Sardu, C.; Rinaldi, L.; Russo, V.; Monda, M.; Marfella, R.; Sasso, F.C. Insulin-heart axis: Bridging physiology to insulin resistance. Int. J. Mol. Sci. 2024, 25, 8369. [Google Scholar] [CrossRef]
- Muttiah, B.; Hanafiah, A. Gut Microbiota and Cardiovascular Diseases: Unraveling the Role of Dysbiosis and Microbial Metabolites. Int. J. Mol. Sci. 2025, 26, 4264. [Google Scholar] [CrossRef]
- Wu, N.; Wang, J.; Hu, Y.; Du, T.; Shu, P.; Shen, C.; Chen, X. Global Burden of Cardiovascular Disease Due to Low Physical Activity, 1990–2021. Sci. Rep. 2025, 15, 25636. [Google Scholar] [CrossRef] [PubMed]
- Małkowska, P. Positive Effects of Physical Activity on Insulin Signaling. Curr. Issues Mol. Biol. 2024, 46, 5467–5487. [Google Scholar] [CrossRef]
- Thyfault, J.P.; Bergouignan, A. Exercise and Metabolic Health: Beyond Skeletal Muscle. Diabetologia 2020, 63, 1464–1474. [Google Scholar] [CrossRef]
- Scheffer, D.D.L.; Latini, A. Exercise-Induced Immune System Response: Anti-Inflammatory Status on Peripheral and Central Organs. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165823. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Rozanski, A. New Principles, the Benefits, and Practices for Fostering a Physically Active Lifestyle. Prog. Cardiovasc. Dis. 2023, 77, 37–49. [Google Scholar] [CrossRef]
- Miller, V.; Webb, P.; Micha, R.; Mozaffarian, D.; Global Dietary Database. Defining Diet Quality: A Synthesis of Dietary Quality Metrics and Their Validity for the Double Burden of Malnutrition. Lancet Planet Health 2020, 4, e352–e370. [Google Scholar] [CrossRef] [PubMed]
- Caprara, G. The Mediterranean Diet. In Nutritional Health; Temple, N.J., Wilson, T., Jacobs, D.R., Jr., Bray, G.A., Eds.; Humana: Cham, Switzerland, 2023; pp. 1–18. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.Á.; Hernández Hernández, A. Effect of the Mediterranean Diet in Cardiovascular Prevention. Rev. Esp. Cardiol. 2024, 77, 574–582. [Google Scholar] [CrossRef]
- Derosa, G.; D’Angelo, A.; Angelini, F.; Belli, L.; Cicero, A.F.G.; Da Ros, R.; De Pergola, G.; Gaudio, G.V.; Lupi, A.; Sartore, G.; et al. Nutraceuticals and Supplements in Management of Prediabetes and Diabetes. Nutrients 2025, 17, 14. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Cardona, S.; Garrido-Miguel, M.; Pascual-Morena, C.; Berlanga-Macías, C.; Lucerón-Lucas-Torres, M.; Alfaro-González, S.; Martínez-García, I. Effect of Coenzyme Q10 Supplementation on Lipid and Glycaemic Profiles: An Umbrella Review. J. Cardiovasc. Dev. Dis. 2024, 11, 377. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48 (Suppl. 1), S181–S206. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, C.; Li, M.; Xu, G. Comparison of the effects of SGLT-2i versus GLP-1RA on cardiovascular and renal outcomes in patients with type 2 diabetes, based on baseline renal function. Diabetes 2025, 74, 672–681. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Lin, J.; Zhou, L.; Yang, W.; Yin, X.; Xu, C.; Cao, Z.; Wang, Y. Proteomic signatures of type 2 diabetes predict the incidence of coronary heart disease. Cardiovasc. Diabetol. 2025, 24, 120. [Google Scholar] [CrossRef]
- Olukorode, J.O.; Orimoloye, D.A.; Nwachukwu, N.O.; Onwuzo, C.N.; Oloyede, P.O.; Fayemi, T.; Odunaike, O.S.; Ayobami-Ojo, P.S.; Divine, N.; Alo, D.J.; et al. Recent advances and therapeutic benefits of glucagon-like peptide-1 (GLP-1) agonists in the management of type 2 diabetes and associated metabolic disorders. Cureus 2024, 16, e72080. [Google Scholar] [CrossRef] [PubMed]
- Badve, S.V.; Bilal, A.; Lee, M.M.Y.; Sattar, N.; Gerstein, H.C.; Ruff, C.T.; McMurray, J.J.V.; Rossing, P.; Bakris, G.; Mahaffey, K.W.; et al. Effects of GLP-1 receptor agonists on kidney and cardiovascular disease outcomes: A meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol. 2025, 13, 15–28. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, B.; Ashique, S.; Yasmin, S.; Venkatesan, K.; Islam, A.; Ghosh, S.; Sahu, A.; Bhui, U.; Ansari, M.Y. A critical review on SGLT2 inhibitors for diabetes mellitus, renal health, and cardiovascular conditions. Diabetes Res. Clin. Pract. 2025, 221, 112050. [Google Scholar] [CrossRef]
- Caturano, A.; Galiero, R.; Rocco, M.; Tagliaferri, G.; Piacevole, A.; Nilo, D.; Di Lorenzo, G.; Sardu, C.; Vetrano, E.; Monda, M.; et al. Modern challenges in type 2 diabetes: Balancing new medications with multifactorial care. Biomedicines 2024, 12, 2039. [Google Scholar] [CrossRef]
- Nong, K.; Jeppesen, B.T.; Shi, Q.; Agoritsas, T.; Guyatt, G.H.; White, H.; Gao, Y.; Agarwal, A.; Macdonald, H.; Zou, X.; et al. Medications for Adults with Type 2 Diabetes: A Living Systematic Review and Network Meta-Analysis. BMJ 2025, 390, e083039. [Google Scholar] [CrossRef]
- Cinti, F.; Leccisotti, L.; Sorice, G.P.; Capece, U.; D’Amario, D.; Lorusso, M.; Gugliandolo, S.; Morciano, C.; Guarneri, A.; Guzzardi, M.A.; et al. Dapagliflozin treatment is associated with a reduction of epicardial adipose tissue thickness and epicardial glucose uptake in human type 2 diabetes. Cardiovasc. Diabetol. 2023, 22, 349. [Google Scholar] [CrossRef] [PubMed]
- Hacil, A.; Antakly Hanon, Y.; Lacour, A.; David, J.P.; Khalifa, T.; Piccoli, M.; Clemencin, A.; Assayag, P.; Vidal, J.S.; Hanon, O. Efficacy and safety of SGLT2 inhibitors in heart failure: Observational evidence in geriatric patients (AGING-HF). Circ. Heart Fail. 2025, e012794. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, W.K. Multidisciplinary care: A missing solution to SGLT2 inhibitor underuse in heart failure. ESC Heart Fail. 2025, 12, 3763. [Google Scholar] [CrossRef]
- Botana López, M.; Camafort Babkowski, M.; Campuzano Ruiz, R.; Cebrián Cuenca, A.; Gargallo Fernández, M.; David de Paz, H.; Redondo-Antón, J.; Artime, E.; Díaz-Cerezo, S.; Rubio de Santos, M. Barriers and strategies to optimize the use of glucagon-like peptide 1 receptor agonists in people with type 2 diabetes and high cardiovascular risk or established cardiovascular disease: A Delphi consensus in Spain. Adv. Ther. 2024, 41, 3569–3584. [Google Scholar] [CrossRef]
- Wang, T.; Tan, J.B.; Liu, X.L.; Zhao, I. Barriers and enablers to implementing clinical practice guidelines in primary care: An overview of systematic reviews. BMJ Open 2023, 13, e062158. [Google Scholar] [CrossRef]
- McClellan, M.B.; Bleser, W.K.; Joynt Maddox, K.E. Advancing value-based cardiovascular care: The American Heart Association Value in Healthcare Initiative. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e006610. [Google Scholar] [CrossRef]
- Sokary, S.; Bawadi, H. The promise of tirzepatide: A narrative review of metabolic benefits. Prim. Care Diabetes 2025, 19, 229–237. [Google Scholar] [CrossRef]
- Eli Lilly and Company. Lilly’s Mounjaro (Tirzepatide), a GIP/GLP-1 Dual Agonist, Demonstrated Cardiovascular Protection in Landmark Head-To-Head Trial. News Release, 31 July 2025. Available online: https://investor.lilly.com/news-releases/news-release-details/lillys-mounjaro-tirzepatide-gipglp-1-dual-agonist-demonstrated (accessed on 20 August 2025).
- Franchi, M.; Pellegrini, G.; Avogaro, A.; Buzzetti, G.; Candido, R.; Cavaliere, A.; Consoli, A.; Marzona, I.; Mennini, F.S.; Palcic, S.; et al. Comparing the Effectiveness and Cost-Effectiveness of Sulfonylureas and Newer Diabetes Drugs as Second-Line Therapy for Patients with Type 2 Diabetes. BMJ Open Diabetes Res. Care 2024, 12, e003991. [Google Scholar] [CrossRef] [PubMed]
- Gallwitz, B. Clinical Use of DPP-4 Inhibitors. Front. Endocrinol. 2019, 10, 389. [Google Scholar] [CrossRef]
- Nkonge, K.M.; Nkonge, D.K.; Nkonge, T.N. Insulin Therapy for the Management of Diabetes Mellitus: A Narrative Review of Innovative Treatment Strategies. Diabetes Ther. 2023, 14, 1801–1831. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Koskinas, K.C.; Roeters van Lennep, J.E.; Tokgözoğlu, L.; Badimon, L.; Baigent, C.; Benn, M.; Binder, C.J.; Catapano, A.L.; De Backer, G.G.; et al. 2025 Focused Update of the 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Developed by the Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 2025, ehaf190. [Google Scholar] [CrossRef] [PubMed]
- Vavlukis, M.; Vavlukis, A. Adding Ezetimibe to Statin Therapy: Latest Evidence and Clinical Implications. Drugs Context 2018, 7, 212534. [Google Scholar] [CrossRef]
- Jeswani, B.M.; Sharma, S.; Rathore, S.S.; Nazir, A.; Bhatheja, R.; Kapoor, K. PCSK9 Inhibitors: The Evolving Future. Health Sci. Rep. 2024, 7, e70174. [Google Scholar] [CrossRef]
- Banerjee, Y.; Pantea Stoian, A.; Cicero, A.F.G.; Fogacci, F.; Nikolic, D.; Sachinidis, A.; Rizvi, A.A.; Janez, A.; Rizzo, M. Inclisiran: A Small Interfering RNA Strategy Targeting PCSK9 to Treat Hypercholesterolemia. Expert Opin. Drug Saf. 2022, 21, 9–20. [Google Scholar] [CrossRef]
- Afzal, M.A.; Khalid, N.; Abdullah, M.; Haiy, A.U.; Hassan, M.A.; Sana, H.; Elkattawy, S.; Malik, A.A.; Michael, P.; Vasudev, R.; et al. The Latest Evidence on Bempedoic Acid: Meta-Analysis of Safety and Efficacy in High Cardiovascular Risk Patients With Hypercholesterolemia. J. Community Hosp. Intern. Med. Perspect. 2024, 14, 12–22. [Google Scholar] [CrossRef]
- Pecoits-Filho, R.; Wong, M.M.Y.; Moorthy, M.; Banerjee, D.; Behera, S.; Calice-Silva, V.; Chothia, M.Y.; Colbert, G.B.; Gulati, M.; Herzog, C.A.; et al. Optimization of Renin-Angiotensin-Aldosterone Inhibitor Therapies for Evidence-Based Indications: A Call to Action from the Cardio-Kidney Community. ESC Heart Fail. 2025, 12, 2597–2604. [Google Scholar] [CrossRef] [PubMed]
- Mefford, M.T.; Zhuang, Z.; Liang, Z.; Chen, W.; Koyama, S.Y.; Taitano, M.T.; Watson, H.L.; Lee, M.S.; Sidney, S.; Reynolds, K.; et al. Temporal Trends in Heart Failure Mortality in an Integrated Healthcare Delivery System, California, and the US, 2001–2017. BMC Cardiovasc. Disord. 2021, 21, 261. [Google Scholar] [CrossRef]
- Piera-Jiménez, J.; Dedeu, T.; Pagliari, C.; Trupec, T. Strengthening Primary Health Care in Europe with Digital Solutions. Aten. Primaria 2024, 56, 102904. [Google Scholar] [CrossRef]
- Knaus, L.; Quarella, M.; Buser, M.; Maeder, M.T.; Renström, F.; Brändle, M. Screening for Heart Failure in Patients with Diabetes Mellitus in Tertiary Care—A SwissDiab Study. Diabetes Res. Clin. Pract. 2024, 209, 111565. [Google Scholar] [CrossRef]
- Liu, Z.; Zeng, B.; Sun, F.; Xia, Q. Cost-Effectiveness of Semaglutide Compared With Other Glucose-Lowering Medications in Treating Type 2 Diabetes: A Comprehensive Systematic Review and Meta-Analysis. Diabetes Care 2025, 48, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Capehorn, M.; Hallén, N.; Baker-Knight, J.; Glah, D.; Hunt, B. Evaluating the Cost-Effectiveness of Once-Weekly Semaglutide 1 mg Versus Empagliflozin 25 mg for Treatment of Patients with Type 2 Diabetes in the UK Setting. Diabetes Ther. 2021, 12, 537–555. [Google Scholar] [CrossRef]
- Sandhu, A.T.; Cohen, D.J. Cost-Effectiveness of Sodium-Glucose Cotransporter-2 Inhibitors for Patients With Heart Failure and Preserved Ejection Fraction—Living on the Edge. JAMA Cardiol. 2023, 8, 415–416. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.S.; Vaduganathan, M.; Claggett, B.L.; Kulac, I.J.; Anand, I.S.; Desai, A.S.; Fang, J.C.; Hernandez, A.F.; Jhund, P.S.; Kosiborod, M.N.; et al. Cost Effectiveness of Dapagliflozin for Heart Failure Across the Spectrum of Ejection Fraction: An Economic Evaluation Based on Pooled, Individual Participant Data From the DELIVER and DAPA-HF Trials. J. Am. Heart Assoc. 2024, 13, e032279. [Google Scholar] [CrossRef]
- Trinh, D.; McDonald, M. Formulary Management of Sodium-Glucose Cotransporter-2 Inhibitors and Glucagon-Like Peptide-1 Receptor Agonists: Environmental Scan; Report No.: ES0370; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, USA, 2024. [Google Scholar]
- Reuters. Brazil’s Hypera to Launch an Ozempic Generic in 2026, CEO Says. Reuters, 2025. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/brazils-hypera-launch-an-ozempic-generic-2026-ceo-says-2025-03-21/ (accessed on 10 September 2025).
- Pearson, S.D.; Whaley, C.M.; Emond, S.K. Affordable Access to GLP-1 Obesity Medications: Strategies to Guide Market Action and Policy Solutions in the US. J. Comp. Eff. Res. 2025, 14, e250083. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. Summary of Revisions: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48 (Suppl. 1), S6–S13. [Google Scholar] [CrossRef] [PubMed]
- Moise, N.; Cené, C.W.; Tabak, R.G.; Young, D.R.; Mills, K.T.; Essien, U.R.; Anderson, C.A.M.; Lopez-Jimenez, F.; American Heart Association Council on Epidemiology and Prevention; Council on Hypertension; et al. Leveraging Implementation Science for Cardiovascular Health Equity: A Scientific Statement From the American Heart Association. Circulation 2022, 146, e260–e278. [Google Scholar] [CrossRef]
- Palmas, W.; March, D.; Darakjy, S.; Findley, S.E.; Teresi, J.; Carrasquillo, O.; Luchsinger, J.A. Community Health Worker Interventions to Improve Glycemic Control in People with Diabetes: A Systematic Review and Meta-Analysis. J. Gen. Intern. Med. 2015, 30, 1004–1012. [Google Scholar] [CrossRef]
- Badr, J.; Motulsky, A.; Denis, J.L. Digital Health Technologies and Inequalities: A Scoping Review of Potential Impacts and Policy Recommendations. Health Policy 2024, 146, 105122. [Google Scholar] [CrossRef]
- Shekelle, P.G.; Begashaw, M.M.; Miake-Lye, I.M.; Booth, M.; Myers, B.; Renda, A. Effect of Interventions for Non-Emergent Medical Transportation: A Systematic Review and Meta-Analysis. BMC Public Health 2022, 22, 799. [Google Scholar] [CrossRef]
- Wang, L.; Lauren, B.N.; Hager, K.; Zhang, F.F.; Wong, J.B.; Kim, D.D.; Mozaffarian, D. Health and Economic Impacts of Implementing Produce Prescription Programs for Diabetes in the United States: A Microsimulation Study. J. Am. Heart Assoc. 2023, 12, e029215. [Google Scholar] [CrossRef]
- Doyle, J.; Alsan, M.; Skelley, N.; Lu, Y.; Cawley, J. Effect of an Intensive Food-as-Medicine Program on Health and Health Care Use: A Randomized Clinical Trial. JAMA Intern. Med. 2024, 184, 154–163. [Google Scholar] [CrossRef]
- de Silva Etges, A.P.B.; Liu, H.H.; Jones, P.; Polanczyk, C.A. Value-Based Reimbursement as a Mechanism to Achieve Social and Financial Impact in the Healthcare System. J. Health Econ. Outcomes Res. 2023, 10, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Otieno, P.; Agyemang, C.; Wao, H.; Wambiya, E.; Ng’oda, M.; Mwanga, D.; Oguta, J.; Kibe, P.; Asiki, G. Effectiveness of Integrated Chronic Care Models for Cardiometabolic Multimorbidity in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. BMJ Open 2023, 13, e073652. [Google Scholar] [CrossRef]
- Gabbay, J.; Kennedy, A.G.; Hitt, J.; Gilbert, M.; Barrett, K. The Cardiometabolic Clinic: Bridging Gaps in Care. J. Endocrinol. Metab. 2024, 14, 221–225. [Google Scholar] [CrossRef]
- Zarora, R.; Immanuel, J.; Chivese, T.; MacMillan, F.; Simmons, D. Effectiveness of Integrated Diabetes Care Interventions Involving Diabetes Specialists Working in Primary and Community Care Settings: A Systematic Review and Meta-Analysis. Int. J. Integr. Care 2022, 22, 11. [Google Scholar] [CrossRef]
- Eastwood, S.V.; Hemani, G.; Watkins, S.H.; Scally, A.; Davey Smith, G.; Chaturvedi, N. Ancestry, Ethnicity, and Race: Explaining Inequalities in Cardiometabolic Disease. Trends Mol. Med. 2024, 30, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Gerdts, E.; Regitz-Zagrosek, V. Sex Differences in Cardiometabolic Disorders. Nat. Med. 2019, 25, 1657–1666. [Google Scholar] [CrossRef]
- Broni, E.K.; Ndumele, C.E.; Echouffo-Tcheugui, J.B.; Kalyani, R.R.; Bennett, W.L.; Michos, E.D. The Diabetes-Cardiovascular Connection in Women: Understanding the Known Risks, Outcomes, and Implications for Care. Curr. Diab. Rep. 2022, 22, 11–25. [Google Scholar] [CrossRef]
- Aggarwal, P.; Woolford, S.J.; Patel, H.P. Multi-Morbidity and Polypharmacy in Older People: Challenges and Opportunities for Clinical Practice. Geriatrics 2020, 5, 85. [Google Scholar] [CrossRef]
- Akam, E.Y.; Nuako, A.A.; Daniel, A.K.; Stanford, F.C. Racial Disparities and Cardiometabolic Risk: New Horizons of Intervention and Prevention. Curr. Diab. Rep. 2022, 22, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.J.; Barrientos-Gutiérrez, T.; Corvalan, C.; Hyder, A.A.; Lazo-Porras, M.; Oni, T.; Wells, J.C.K. Understanding the Rise of Cardiometabolic Diseases in Low- and Middle-Income Countries. Nat. Med. 2019, 25, 1667–1679. [Google Scholar] [CrossRef] [PubMed]
- Anand, T.N.; Joseph, L.M.; Geetha, A.V.; Prabhakaran, D.; Jeemon, P. Task Sharing with Non-Physician Health-Care Workers for Management of Blood Pressure in Low-Income and Middle-Income Countries: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2019, 7, e761–e771. [Google Scholar] [CrossRef]
- Balasubramanya, B.; Isaac, R.; Philip, S.; Prashanth, H.R.; Abraham, P.; Poobalan, A.; Thomas, N.; Jeyaseelan, L.; Mammen, J.; Devarasetty, P.; et al. Task Shifting to Frontline Community Health Workers for Improved Diabetes Care in Low-Resource Settings in India: A Phase II Non-Randomized Controlled Clinical Trial. J. Glob. Health Rep. 2020, 4, e2020097. [Google Scholar] [CrossRef]
- Ingenhoff, R.; Munana, R.; Weswa, I.; Gaal, J.; Sekitoleko, I.; Mutabazi, H.; Bodnar, B.E.; Rabin, T.L.; Siddharthan, T.; Kalyesubula, R.; et al. Principles for Task Shifting Hypertension and Diabetes Screening and Referral: A Qualitative Study Exploring Patient, Community Health Worker and Healthcare Professional Perceptions in Rural Uganda. BMC Public Health 2023, 23, 881. [Google Scholar] [CrossRef]
- Ojo, T.; Lester, L.; Iwelunmor, J.; Gyamfi, J.; Obiezu-Umeh, C.; Onakomaiya, D.; Aifah, A.; Nagendra, S.; Opeyemi, J.; Oluwasanmi, M.; et al. Feasibility of Integrated, Multilevel Care for Cardiovascular Diseases (CVD) and HIV in Low- and Middle-Income Countries (LMICs): A Scoping Review. PLoS ONE 2019, 14, e0212296. [Google Scholar] [CrossRef]
- Li, J.J.; Yeo, K.K.; Tan, K.; Ako, J.; Krittayaphong, R.; Tan, R.S.; Aylward, P.E.; Lam, C.P.; Baek, S.H.; Dalal, J.; et al. Tackling Cardiometabolic Risk in the Asia Pacific Region. Am. J. Prev. Cardiol. 2020, 4, 100096. [Google Scholar] [CrossRef]
- Thacharodi, A.; Singh, P.; Meenatchi, R.; Tawfeeq Ahmed, Z.H.; Kumar, R.R.S.; V, N.; Kavish, S.; Maqbool, M.; Hassan, S. Revolutionizing healthcare and medicine: The impact of modern technologies for a healthier future—A comprehensive review. Health Care Sci. 2024, 3, 329–349. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Kiran, M.; Xie, Y.; Anjum, N.; Ball, G.; Pierscionek, B.; Russell, D. Machine learning and artificial intelligence in type 2 diabetes prediction: A comprehensive 33-year bibliometric and literature analysis. Front. Digit. Health 2025, 7, 1557467. [Google Scholar] [CrossRef]
- Nur, A.; Tjandra, S.; Yumnanisha, D.A.; Keane, A.; Bachtiar, A. Predicting the risks of stroke, cardiovascular disease, and peripheral vascular disease among people with type 2 diabetes with artificial intelligence models: A systematic review and meta-analysis. Narra J. 2025, 5, e2116. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-León, C.; Villalonga, C.; Munoz-Torres, M.; Ruiz, J.R.; Banos, O. Mobile and wearable technology for the monitoring of diabetes-related parameters: Systematic review. JMIR Mhealth Uhealth 2021, 9, e25138. [Google Scholar] [CrossRef] [PubMed]
- Hilty, D.M.; Armstrong, C.M.; Edwards-Stewart, A.; Gentry, M.T.; Luxton, D.D.; Krupinski, E.A. Sensor, wearable, and remote patient monitoring competencies for clinical care and training: Scoping review. J. Technol. Behav. Sci. 2021, 6, 252–277. [Google Scholar] [CrossRef]
- Marfella, R.; Sasso, F.C.; Cacciapuoti, F.; Portoghese, M.; Rizzo, M.R.; Siniscalchi, M.; Carbonara, O.; Ferraraccio, F.; Torella, M.; Petrella, A.; et al. Tight Glycemic Control May Increase Regenerative Potential of Myocardium During Acute Infarction. J. Clin. Endocrinol. Metab. 2012, 97, 933–942. [Google Scholar] [CrossRef]
- Sardu, C.; Massetti, M.; Testa, N.; Martino, L.D.; Castellano, G.; Turriziani, F.; Sasso, F.C.; Torella, M.; De Feo, M.; Santulli, G.; et al. Effects of Sodium-Glucose Transporter 2 Inhibitors (SGLT2-I) in Patients With Ischemic Heart Disease (IHD) Treated by Coronary Artery Bypass Grafting via MiECC: Inflammatory Burden, and Clinical Outcomes at 5 Years of Follow-Up. Front. Pharmacol. 2021, 12, 777083. [Google Scholar] [CrossRef]
- Ezeamii, V.C.; Okobi, O.E.; Wambai-Sani, H.; Perera, G.S.; Zaynieva, S.; Okonkwo, C.C.; Ohaiba, M.M.; William-Enemali, P.C.; Obodo, O.R.; Obiefuna, N.G. Revolutionizing healthcare: How telemedicine is improving patient outcomes and expanding access to care. Cureus 2024, 16, e63881. [Google Scholar] [CrossRef]
- Lee, M.A.; Song, M.; Bessette, H.; Roberts Davis, M.; Tyner, T.E.; Reid, A. Use of wearables for monitoring cardiometabolic health: A systematic review. Int. J. Med. Inform. 2023, 179, 105218. [Google Scholar] [CrossRef] [PubMed]
- Rizo-Roca, D.; Henderson, J.D.; Zierath, J.R. Metabolomics in cardiometabolic diseases: Key biomarkers and therapeutic implications for insulin resistance and diabetes. J. Intern. Med. 2025, 297, 584–607. [Google Scholar] [CrossRef]
- Clemmensen, C.; Gerhart-Hines, Z.; Schwartz, T.W.; Zierath, J.R.; Sakamoto, K. Shaping the future of cardiometabolic innovation: Advances and opportunities. Nat. Metab. 2025, 7, 1495–1497. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, T.; Capone, F.; Schiattarella, G.G. The evolving landscape of cardiometabolic diseases. EBioMedicine 2024, 109, 105447. [Google Scholar] [CrossRef] [PubMed]
- Odoms-Young, A.; Brown, A.G.M.; Agurs-Collins, T.; Glanz, K. Food insecurity, neighborhood food environment, and health disparities: State of the science, research gaps and opportunities. Am. J. Clin. Nutr. 2024, 119, 850–861. [Google Scholar] [CrossRef]
- Vlaanderen, F.P.; Tanke, M.A.; Bloem, B.R.; Faber, M.J.; Eijkenaar, F.; Schut, F.T.; Jeurissen, P.P.T. Design and effects of outcome-based payment models in healthcare: A systematic review. Eur. J. Health Econ. 2019, 20, 217–232. [Google Scholar] [CrossRef]
- Melvin, C.L.; Jefferson, M.S.; Rice, L.J.; Nemeth, L.S.; Wessell, A.M.; Nietert, P.J.; Hughes-Halbert, C. A systematic review of lifestyle counseling for diverse patients in primary care. Prev. Med. 2017, 100, 67–75. [Google Scholar] [CrossRef]
Category | Traditional (Established) Risk Factors | Emerging (Novel) Risk Factors |
---|---|---|
Metabolic | Hyperglycemia, Dyslipidemia (↑ LDL-C, ↓ HDL-C, ↑ TG, ↑ TC), Obesity | Insulin resistance, Adipose tissue dysfunction (visceral ectopic fat, EAT), LDL-ox, adipokines |
Vascular | Hypertension, Endothelial dysfunction | Arterial stiffness, Microvascular rarefaction |
Inflammatory | CRP elevation (as a marker), Chronic low-grade inflammation | NLRP3 inflammasome activation, IL-6, TNF-α (as markers) |
Thrombotic | Platelet activity | Coagulation cascade imbalance, Endothelial-to-mesenchymal transition |
Genetic/Epigenetic | Family history | miRNAs, SNPs affecting metabolic and vascular genes |
Organ Crosstalk | — | Adipo-cardiac axis, Hepato-metabolic signaling |
Microbiota-Derived | — | Gut microbiota dysbiosis, TMAO, SCFA imbalance, endotoxemia |
Fibrotic/Structural | — | Myocardial fibrosis, Epicardial fat expansion |
Residual Risk Factors | Post-treatment LDL, HbA1c control, Microalbuminuria | Elevated Lp(a), Inflammation despite target achievement, High-sensitivity cardiac troponin, Natriuretic peptides (BNP/NT-proBNP) |
Category | Evidence from Trials | Real-World Barriers | Potential Benchmarks |
---|---|---|---|
Therapeutics | SGLT2i, GLP-1 RA, tirzepatide reduce MACE, HF, CKD | Low adoption, cost/access | ≥70% of eligible high-risk patients prescribed guideline-recommended agents within 12 months |
Risk Stratification | CV risk calculators, renal markers | Underused, lack of personalization | Routine HF and CKD screening in ≥80% of T2D visits |
Preventive Frameworks | Lifestyle + pharmacotherapy reduce progression | Limited access to counseling, socioeconomic gap | Documentation of nutrition/exercise counseling in ≥75% of clinic visits |
Interdisciplinary Care | Multispecialty teams improve outcomes | Siloed care, fragmented reimbursement | Implementation of structured cardiometabolic clinics or pathways across ≥50% of health systems |
Drug Class | Key Benefits | Main Risks/Adverse Events | Contraindications |
---|---|---|---|
Metformin | ↓ HbA1c (1–1.5%), modest weight loss, durable glycemic effect, ↓ CVD events (UKPDS), low cost | GI intolerance, vitamin B12 deficiency (long-term), rare lactic acidosis | eGFR < 30 mL/min/1.73 m2, advanced liver disease, severe hypoxia, alcohol abuse |
Sulfonylureas | ↓ HbA1c (1–1.5%), inexpensive, widely available | Hypoglycemia, weight gain, possible ↑ CV risk (older agents) | History of severe hypoglycemia, caution in elderly/frail |
DPP-4 inhibitors | Modest ↓ HbA1c (0.5–0.8%), weight neutral, well tolerated | Rare pancreatitis, joint pain, possible ↑ HF hospitalization (saxagliptin, alogliptin) | History of pancreatitis, avoid saxagliptin/alogliptin in HF |
Insulin | Most potent glucose-lowering (no dose ceiling), improves catabolic symptoms | Hypoglycemia, weight gain, injection burden | Hypoglycemia unawareness (relative), caution in frail elderly |
SGLT2 inhibitors | ↓ HbA1c (0.5–1%), weight loss, ↓ HF hospitalization, ↓ CKD progression, ↓ CV mortality | Genital infections, volume depletion, euglycemic DKA, rare amputations/fractures (mainly reported with canagliflozin in high-risk patients; controversies persist) | Type 1 diabetes, recurrent DKA, severe dehydration |
GLP-1 receptor agonists | ↓ HbA1c (1–1.5%), significant weight loss, ↓ MACE, ↓ kidney outcomes | GI intolerance, gallbladder disease, rare pancreatitis, thyroid C-cell tumors in rodents | Personal/family history of MTC or MEN2, severe gastroparesis |
Tirzepatide (GIP/GLP-1 RA) | Greater ↓ HbA1c and weight than GLP-1 alone, possible renal/CV benefit (emerging) | GI intolerance (higher than GLP-1 RA), potential hypoglycemia with insulin/SU | Same as GLP-1 RA (MTC, MEN2), caution in severe GI disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caturano, A.; Morciano, C.; Zielińska, K.; Russo, V.; Perrone, M.A.; Berra, C.C.; Conte, C. Rethinking the Diabetes–Cardiovascular Disease Continuum: Toward Integrated Care. J. Clin. Med. 2025, 14, 6678. https://doi.org/10.3390/jcm14186678
Caturano A, Morciano C, Zielińska K, Russo V, Perrone MA, Berra CC, Conte C. Rethinking the Diabetes–Cardiovascular Disease Continuum: Toward Integrated Care. Journal of Clinical Medicine. 2025; 14(18):6678. https://doi.org/10.3390/jcm14186678
Chicago/Turabian StyleCaturano, Alfredo, Cassandra Morciano, Katarzyna Zielińska, Vincenzo Russo, Marco Alfonso Perrone, Cesare Celeste Berra, and Caterina Conte. 2025. "Rethinking the Diabetes–Cardiovascular Disease Continuum: Toward Integrated Care" Journal of Clinical Medicine 14, no. 18: 6678. https://doi.org/10.3390/jcm14186678
APA StyleCaturano, A., Morciano, C., Zielińska, K., Russo, V., Perrone, M. A., Berra, C. C., & Conte, C. (2025). Rethinking the Diabetes–Cardiovascular Disease Continuum: Toward Integrated Care. Journal of Clinical Medicine, 14(18), 6678. https://doi.org/10.3390/jcm14186678