Sequential AI-ECG Diagnostic Protocol for Opportunistic Atrial Fibrillation Screening: A Retrospective Single-Center Study
Abstract
1. Introduction
2. Method
2.1. Study Design and Oversight
2.2. ECG Acquisition and Preprocessing
2.3. Outcome Definition and Adjudication
2.4. Cohorts and Splitting
2.5. Model Development
2.6. Threshold Selection and Decision Logic
2.7. Metrics and Statistical Analysis
2.8. Proposed Algorithm for Screening Atrial Fibrillation (Figure 2)
3. Results
3.1. Baseline Characteristics (Table 1) for Developing Two AI Models
3.2. Performance of the Proposed Algorithm
4. Discussion
4.1. Principal Findings
4.2. How This Work Relates to Prior Evidence
4.3. Alignment with Guidance and the Screening Debate
4.4. Interpreting the False-Positive Burden and Threshold Selection
4.5. Clinical and Health-System Implications
4.6. Comparison with Other AI Experiences in Electrophysiology
4.7. Strengths and Limitations
4.8. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): Developed by the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC), with the Special Contribution of the European Heart Rhythm Association (EHRA) of the ESC. Endorsed by the European Stroke Organisation (ESO). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef]
- Wolf, P.A.; Abbott, R.D.; Kannel, W.B. Atrial Fibrillation as an Independent Risk Factor for Stroke: The Framingham Study. Stroke 1991, 22, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Sanna, T.; Diener, H.-C.; Passman, R.S.; Di Lazzaro, V.; Bernstein, R.A.; Morillo, C.A.; Rymer, M.M.; Thijs, V.; Rogers, T.; Beckers, F.; et al. Cryptogenic Stroke and Underlying Atrial Fibrillation. N. Engl. J. Med. 2014, 370, 2478–2486. [Google Scholar] [CrossRef] [PubMed]
- Steinhubl, S.R.; Waalen, J.; Edwards, A.M.; Ariniello, L.M.; Mehta, R.R.; Ebner, G.S.; Carter, C.; Baca-Motes, K.; Felicione, E.; Sarich, T.; et al. Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation: The mSToPS Randomized Clinical Trial. JAMA 2018, 320, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, G.; Attia, Z.I.; Van Houten, H.K.; Yao, X.; Carter, R.E.; Lopez-Jimenez, F.; Kapa, S.; Noseworthy, P.A.; Friedman, P.A. Artificial Intelligence—Electrocardiography to Detect Atrial Fibrillation: Trend of Probability before and after the First Episode. Eur. Heart J. Digit. Health 2022, 3, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An Artificial Intelligence-Enabled ECG Algorithm for the Identification of Patients with Atrial Fibrillation during Sinus Rhythm: A Retrospective Analysis of Outcome Prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Song, S.-H.; Kim, H.; Kim, J.; Park, H.; Jeon, J.; Hong, J.; Gwag, H.B.; Lee, S.H.; Lee, J.; et al. Machine Learning Algorithm to Predict Atrial Fibrillation Using Serial 12-Lead ECGs Based on Left Atrial Remodeling. J. Am. Heart Assoc. 2024, 13, e034154. [Google Scholar] [CrossRef] [PubMed]
- Cost-Effectiveness of AF Screening with 2-Week Patch Monitors: The mSToPS Study|Circulation: Cardiovascular Quality and Outcomes. Available online: https://www.ahajournals.org/doi/full/10.1161/CIRCOUTCOMES.122.009751?utm_source=chatgpt.com (accessed on 6 September 2025).
- Manetas-Stavrakakis, N.; Sotiropoulou, I.M.; Paraskevas, T.; Maneta Stavrakaki, S.; Bampatsias, D.; Xanthopoulos, A.; Papageorgiou, N.; Briasoulis, A. Accuracy of Artificial Intelligence-Based Technologies for the Diagnosis of Atrial Fibrillation: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 6576. [Google Scholar] [CrossRef] [PubMed]
- US Preventive Services Task Force. Screening for Atrial Fibrillation: US Preventive Services Task Force Recommendation Statement. JAMA 2022, 327, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.J.; Calster, B.V.; Steyerberg, E.W. Net Benefit Approaches to the Evaluation of Prediction Models, Molecular Markers, and Diagnostic Tests. BMJ 2016, 352, i6. [Google Scholar] [CrossRef] [PubMed]
- Cersosimo, A.; Zito, E.; Pierucci, N.; Matteucci, A.; La Fazia, V.M. A Talk with ChatGPT: The Role of Artificial Intelligence in Shaping the Future of Cardiology and Electrophysiology. J. Pers. Med. 2025, 15, 205. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.J.; van Calster, B.; Steyerberg, E.W. A Simple, Step-by-Step Guide to Interpreting Decision Curve Analysis. Diagn. Progn. Res. 2019, 3, 18. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 164,793) | NSR Group (n = 154,058) | AF Group (n = 10,735) | p Value | |
---|---|---|---|---|
Age, years | 57.3 ± 13.7 | 56.5 ± 13.5 | 65.7 ± 13.0 | <0.001 |
Male, n (%) | 77,983 (47.3) | 72,201 (46.9) | 5782 (53.9) | <0.001 |
Number of ECGs per patient | 2.4 ± 2.1 | 2.1 ± 1.6 | 3.5 ± 3.8 | <0.001 |
AUROC | Sensitivity | Specificity | PPV | NPV | Accuracy | F1 Score |
---|---|---|---|---|---|---|
0.908 | 0.881 | 0.787 | 0.302 | 0.984 | 0.796 | 0.450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-H.; Song, S.-H.; Kim, J.; Jeon, J.; Woo, K.; Cho, S.J.; Park, S.-J.; On, Y.K.; Kim, J.Y.; Park, K.-M. Sequential AI-ECG Diagnostic Protocol for Opportunistic Atrial Fibrillation Screening: A Retrospective Single-Center Study. J. Clin. Med. 2025, 14, 6675. https://doi.org/10.3390/jcm14186675
Choi J-H, Song S-H, Kim J, Jeon J, Woo K, Cho SJ, Park S-J, On YK, Kim JY, Park K-M. Sequential AI-ECG Diagnostic Protocol for Opportunistic Atrial Fibrillation Screening: A Retrospective Single-Center Study. Journal of Clinical Medicine. 2025; 14(18):6675. https://doi.org/10.3390/jcm14186675
Chicago/Turabian StyleChoi, Ji-Hoon, Sung-Hee Song, Jongwoo Kim, JaeHu Jeon, KyungChang Woo, Soo Jin Cho, Seung-Jung Park, Young Keun On, Ju Youn Kim, and Kyoung-Min Park. 2025. "Sequential AI-ECG Diagnostic Protocol for Opportunistic Atrial Fibrillation Screening: A Retrospective Single-Center Study" Journal of Clinical Medicine 14, no. 18: 6675. https://doi.org/10.3390/jcm14186675
APA StyleChoi, J.-H., Song, S.-H., Kim, J., Jeon, J., Woo, K., Cho, S. J., Park, S.-J., On, Y. K., Kim, J. Y., & Park, K.-M. (2025). Sequential AI-ECG Diagnostic Protocol for Opportunistic Atrial Fibrillation Screening: A Retrospective Single-Center Study. Journal of Clinical Medicine, 14(18), 6675. https://doi.org/10.3390/jcm14186675