Evaluation of Automated Vasopressor Administration Algorithms Using Lower-Limit Control for Intraoperative Hypotension: A Simulation Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Simulation Software
2.2. Simulation Framework
2.3. Baseline Systolic Blood Pressure (sBP)
2.4. Model Building
- BP generation model
- Blood pressure elevation data from small doses of a specific vasopressor are used to construct the function of blood pressure increase over time (ΔBP = f(t)), where t is the elapsed time in minutes after administration.
- The elevation in BP over time following a bolus dose M [mg] is expressed as the waveform ΔBP = (Figure 3a).
- Assuming a linear dose–response relationship, administering half the dose (½ M [mg]) produces a waveform with half the effect, represented as ½ (Figure 3a).
- For continuous administration at a constant rate C [mg/min], the waveform ΔBP = is generated every minute. Cumulative BP elevation at t minutes after starting continuous administration is expressed as the sum of t + 1 waveforms.
- For constant continuous administration at rate C [mg/min], BP elevation at t min after starting continuous administration is expressed as . For example, BP elevation at 4 min after initiating continuous administration at rate C [mg/min] is expressed as ΔBP = , corresponding to the sum of five waveforms (Figure 3b). The transition of BP elevation during continuous administration is shown in Figure 3c.
- At time t [min], ΔBP is calculated by cumulatively summing the contributions from each waveform generated at one-minute intervals up to t minutes. This ΔBP is then added to the baseline sBP to obtain the generated sBP. In each simulation run, a random error variation of ±5% is applied to ΔBP.
- The vasopressor administration model
- Algorithm (A) administers a fixed dose M (mg) repeatedly whenever sBP < 85 mmHg.
- Algorithm (B) administers a fixed dose M (mg) upon the first occurrence of sBP < 85 mmHg, followed by a fixed half-dose of M/2 (mg) for subsequent occurrences.
- Algorithm (C) follows the same dosing protocol as (B) but combines it with continuous infusion starting at the time of the second administration.
- Algorithm (D) is similar to (C), but continuous infusion is suspended when the generated sBP exceeds 105 mmHg.
2.5. Simulation Setup
2.6. Evaluation Metrics and Analysis Method
- Proportion of time below threshold (PTBT)
- Mean value below threshold (MVBT)
- Average sBP
- Median performance error (MDPE) and median absolute performance error (MDAPE)
PEij denotes the i-minute data point in the jth simulation. |
PEij (%) = (sBPij − target sBPij) × 100/target sBPij |
i = 0, 1, 2…, 100 (min); j = 1, 2, 3…, 10 (simulation number). |
MDPEj and MDAPEj are the values for the jth simulation, based on the median of PEij. |
MDPEj and the MDAPEj are the data for the jth simulation. |
MDPEj (%) = median {PEij, i = 0, 1, 2…, 100} |
MDAPEj (%) = median {|PEij|, i = 0, 1, 2…, 100} |
i = 0,1,2…,100 (min); j = 1, 2, 3…, 10 (simulation number). |
Final MDPE and MDAPE values are calculated as the mean of MDPEj and MDAPEj across all simulations: |
MDPE (%) = mean {MDPEj, j = 1, 2, 3…,10} |
MDAPE (%) = mean {MDAPEj, j = 1, 2, 3…, 10} |
j = 1, 2, 3…, 10 (simulation number). |
2.7. Analysis Method
3. Results
3.1. Visual-Based Assessment
3.2. Metric-Based Assessment
4. Discussion
4.1. Summary
4.2. Strengths and Reproducibility of the Simulation Framework
4.3. Comparison with Previous Studies and Model Validity
4.4. Evaluation of Algorithms Under Lower-Limit Control
4.5. Clinical Interpretation of Algorithms
4.6. Limitations
4.7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP | Blood pressure |
sBP | Systolic blood pressure |
PID | Proportional–integral–derivative |
NIBP | Noninvasive blood pressure |
PE | Percentage performance error |
MDPE | Median performance error |
MDAPE | Median absolute performance error |
AUT | Area under the threshold |
References
- Wesselink, E.M.; Kappen, T.H.; Torn, H.M.; Slooter, A.J.C.; van Klei, W.A. Intraoperative hypotension and the risk of postoperative adverse outcomes: A systematic review. Br. J. Anaesth. 2018, 121, 706–721. [Google Scholar] [CrossRef]
- Gregory, A.; Stapelfeldt, W.H.; Khanna, A.K.; Smischney, N.J.; Boero, I.J.; Chen, Q.; Stevens, M.; Shaw, A.D. Intraoperative hypotension is associated with adverse clinical outcomes after noncardiac surgery. Anesth. Analg. 2021, 132, 1654–1665. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Devereaux, P.J.; Garg, A.X.; Kurz, A.; Turan, A.; Rodseth, R.N.; Cywinski, J.; Thabane, L.; Sessler, D.I. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: Toward an empirical definition of hypotension. Anesthesiology 2013, 119, 507–515. [Google Scholar] [CrossRef]
- Monk, T.G.; Bronsert, M.R.; Henderson, W.G.; Mangione, M.P.; Sum-Ping, S.T.; Bentt, D.R.; Nguyen, J.D.; Richman, J.S.; Meguid, R.A.; Hammermeister, K.E. Association between intraoperative hypotension and hypertension and 30-day postoperative mortality in noncardiac surgery. Anesthesiology 2015, 123, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Futier, E.; Lefrant, J.Y.; Guinot, P.G.; Godet, T.; Lorne, E.; Cuvillon, P.; Bertran, S.; Leone, M.; Pastene, B.; Piriou, V.; et al. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: A randomized clinical trial. JAMA 2017, 318, 1346–1357. [Google Scholar] [CrossRef] [PubMed]
- Stapelfeldt, W.H.; Khanna, A.K.; Shaw, A.D.; Shenoy, A.V.; Hwang, S.; Stevens, M.; Smischney, N.J. Association of perioperative hypotension with subsequent greater healthcare resource utilization. J. Clin. Anesth. 2021, 75, 110516. [Google Scholar] [CrossRef] [PubMed]
- Sng, B.L.; Tan, H.S.; Sia, A.T. Closed-loop double-vasopressor automated system vs manual bolus vasopressor to treat hypotension during spinal anaesthesia for caesarean section: A randomised controlled trial. Anaesthesia 2014, 69, 37–45. [Google Scholar] [CrossRef]
- Ngan Kee, W.D.; Khaw, K.S.; Ng, F.F.; Tam, Y.H. Randomized comparison of closed-loop feedback computer-controlled with manual-controlled infusion of phenylephrine for maintaining arterial pressure during spinal anaesthesia for caesarean delivery. Br. J. Anaesth. 2013, 110, 59–65. [Google Scholar] [CrossRef]
- Ngan Kee, W.D.; Khaw, K.S.; Tam, Y.H.; Ng, F.F.; Lee, S.W. Performance of a closed-loop feedback computer-controlled infusion system for maintaining blood pressure during spinal anaesthesia for caesarean section: A randomized controlled comparison of norepinephrine versus phenylephrine. J. Clin. Monit. Comput. 2017, 31, 617–623. [Google Scholar] [CrossRef]
- Joosten, A.; Alexander, B.; Duranteau, J.; Taccone, F.S.; Creteur, J.; Vincent, J.L.; Cannesson, M.; Rinehart, J. Feasibility of closed-loop titration of norepinephrine infusion in patients undergoing moderate- and high-risk surgery. Br. J. Anaesth. 2019, 123, 430–438. [Google Scholar] [CrossRef]
- Rinehart, J.; Lee, S.; Saugel, B.; Joosten, A. Automated blood pressure control. Semin. Respir. Crit. Care Med. 2021, 42, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Joosten, A.; Delaporte, A.; Alexander, B.; Su, F.; Creteur, J.; Vincent, J.L.; Cannesson, M.; Rinehart, J. Automated titration of vasopressor infusion using a closed-loop controller: In vivo feasibility study using a swine model. Anesthesiology 2019, 130, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Ho, A.; Joosten, A.; Rinehart, J. In-silico analysis of closed-loop vasopressor control of phenylephrine versus norepinephrine. J. Clin. Monit. Comput. 2022, 36, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Rinehart, J.; Ma, M.; Calderon, M.D.; Cannesson, M. Feasibility of automated titration of vasopressor infusions using a novel closed-loop controller. J. Clin. Monit. Comput. 2018, 32, 5–11. [Google Scholar] [CrossRef]
- Nagata, O.; Morinushi, E.; Kuroyanagi, A.; Yasuma, F. Development and evaluation of an automated phenylephrine delivery system by lower limit control for managing intraoperative hypotension. J. Anesth. 2025, 39, 372–388. [Google Scholar] [CrossRef]
- Varvel, J.R.; Donoho, D.L.; Shafer, S.L. Measuring the predictive performance of computer controlled infusion pumps. J. Pharmacokinet. Biopharm. 1992, 20, 63–94. [Google Scholar] [CrossRef]
- Lee, H.C.; Ryu, H.G.; Jung, C.W. Performance measurement of intraoperative systolic arterial pressure to predict in-hospital mortality in adult liver transplantation. Sci. Rep. 2017, 7, 7030. [Google Scholar] [CrossRef]
- Ngan Kee, W.D. A random-allocation graded dose–response study of norepinephrine and phenylephrine for treating hypotension during spinal anesthesia for cesarean delivery. Anesthesiology 2017, 127, 934–941. [Google Scholar] [CrossRef]
- Flancbaum, L.; Dick, M.; Dasta, J.; Sinha, R.; Choban, P. A dose–response study of phenylephrine in critically ill, septic surgical patients. Eur. J. Clin. Pharmacol. 1997, 51, 461–465. [Google Scholar] [CrossRef]
- Lamontagne, F.; Marshall, J.C.; Adhikari, N.K.J. Permissive hypotension during shock resuscitation: Equipoise in all patients? Intensive Care Med. 2018, 44, 87–90. [Google Scholar] [CrossRef]
- Endo, A.; Yamakawa, K.; Tagami, T.; Umemura, Y.; Wada, T.; Yamamoto, R.; Nagasawa, H.; Takayama, W.; Yagi, M.; Takahashi, K.; et al. Efficacy of targeting high mean arterial pressure for older patients with septic shock (OPTPRESS): A multicentre, pragmatic, open-label, randomised controlled trial. Intensive Care Med. 2025, 51, 883–892. [Google Scholar] [CrossRef]
- Roberts, R.J.; Miano, T.A.; Hammond, D.A.; Patel, G.P.; Chen, J.T.; Phillips, K.M.; Lopez, N.; Kashani, K.; Qadir, N.; Cairns, C.B.; et al. Evaluation of Vasopressor Exposure and Mortality in Patients with Septic Shock. Crit. Care Med. 2020, 48, 1445–1453. [Google Scholar] [CrossRef]
- Kotani, Y.; Belletti, A.; D’Andria Ursoleo, J.; Salvati, S.; Landoni, G. Norepinephrine Dose Should Be Reported as Base Equivalence in Clinical Research Manuscripts. J. Cardiothorac. Vasc. Anesth. 2023, 37, 1523–1524. [Google Scholar] [CrossRef]
- Wieruszewski, P.M.; Leone, M.; Kaas-Hansen, B.S.; Dugar, S.; Legrand, M.; McKenzie, C.A.; Turpin, B.D.B.; Messina, A.; Nasa, P.; Schorr, C.A.; et al. Position Paper on the Reporting of Norepinephrine Formulations in Critical Care from the Society of Critical Care Medicine and European Society of Intensive Care Medicine Joint Task Force. Crit. Care Med. 2024, 52, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Bergholz, A.; Grüßer, L.; Khader, W.T.A.K.; Sierzputowski, P.; Krause, L.; Hein, M.; Wallqvist, J.; Ziemann, S.; Thomsen, K.K.; Flick, M.; et al. Personalized Perioperative Blood Pressure Management in Patients Having Major Non-Cardiac Surgery: A Bicentric Pilot Randomized Trial. J. Clin. Anesth. 2025, 100, 111687. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, F.; Kotani, Y.; Borello, M.; Colombo, M.; Rumore, F.; Papale, F.; Losiggio, R.; Landoni, G. Reevaluating the Lower Limit of Renal Autoregulation: Does One Size Fit All? Signa Vitae 2025, 21, 1–9. [Google Scholar] [CrossRef]
- Pang, Z.; Liang, S.; Zhou, N.; Zhu, X.; Guo, Q.; Sessler, D.I.; Zou, W. Individualized blood pressure regulation and acute kidney injury in older patients having major abdominal surgery: A pilot randomized trial. Int. J. Surg. 2025, 111, 2894–2902. [Google Scholar] [CrossRef]
- Lamontagne, F.; Richards-Belle, A.; Thomas, K.; Harrison, D.A.; Sadique, M.Z.; Grieve, R.D.; Camsooksai, J.; Darnell, R.; Gordon, A.C.; Henry, D.; et al. Effect of Reduced Exposure to Vasopressors on 90-Day Mortality in Older Critically Ill Patients with Vasodilatory Hypotension: A Randomized Clinical Trial. JAMA 2020, 323, 938–949. [Google Scholar] [CrossRef]
- D’Amico, F.; Pruna, A.; Putowski, Z.; Dormio, S.; Ajello, S.; Scandroglio, A.M.; Lee, T.C.; Zangrillo, A.; Landoni, G. Low versus High Blood Pressure Targets in Critically Ill and Surgical Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit. Care Med. 2024, 52, 1427–1438. [Google Scholar] [CrossRef]
- Guinot, P.G.; Martin, A.; Berthoud, V.; Voizeux, P.; Bartamian, L.; Santangelo, E.; Bouhemad, B.; Nguyen, M. Vasopressor-Sparing Strategies in Patients with Shock: A Scoping-Review and an Evidence-Based Strategy Proposition. J. Clin. Med. 2021, 10, 3164. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morinushi, E.; Nagata, O.; Yasuma, F.; Kuroyanagi, A.; Uchida, K. Evaluation of Automated Vasopressor Administration Algorithms Using Lower-Limit Control for Intraoperative Hypotension: A Simulation Study. J. Clin. Med. 2025, 14, 6615. https://doi.org/10.3390/jcm14186615
Morinushi E, Nagata O, Yasuma F, Kuroyanagi A, Uchida K. Evaluation of Automated Vasopressor Administration Algorithms Using Lower-Limit Control for Intraoperative Hypotension: A Simulation Study. Journal of Clinical Medicine. 2025; 14(18):6615. https://doi.org/10.3390/jcm14186615
Chicago/Turabian StyleMorinushi, Emi, Osamu Nagata, Fumiyo Yasuma, Aya Kuroyanagi, and Kanji Uchida. 2025. "Evaluation of Automated Vasopressor Administration Algorithms Using Lower-Limit Control for Intraoperative Hypotension: A Simulation Study" Journal of Clinical Medicine 14, no. 18: 6615. https://doi.org/10.3390/jcm14186615
APA StyleMorinushi, E., Nagata, O., Yasuma, F., Kuroyanagi, A., & Uchida, K. (2025). Evaluation of Automated Vasopressor Administration Algorithms Using Lower-Limit Control for Intraoperative Hypotension: A Simulation Study. Journal of Clinical Medicine, 14(18), 6615. https://doi.org/10.3390/jcm14186615