Radiomics in Pituitary Adenomas: A Systematic Review of Clinical Applications and Predictive Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Extraction
2.2. Outcomes
2.3. Radiomics Quality Assessment
2.4. Risk of Bias Assessment
2.5. Statistical Analysis
3. Results
3.1. Literature Review
3.2. Data Analysis
4. Discussion
4.1. Radiomics Quality Assessment
4.2. Diagnostic and Subtype Classification
4.3. Prediction of Tumor Consistency
4.4. Assessment of Invasiveness and Aggressiveness
4.5. Prediction of Surgical Outcomes
4.6. Prediction of Response to Medical and Radiotherapy
4.7. Technical and Methodological Considerations
4.8. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Melmed, S. Pituitary-Tumor Endocrinopathies. N. Engl. J. Med. 2020, 382, 937–950. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro Oncol. 2022, 24, v1–v95. [Google Scholar] [CrossRef]
- Asa, S.L.; Mete, O.; Perry, A.; Osamura, R.Y. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr. Pathol. 2022, 33, 6–26. [Google Scholar] [CrossRef]
- Mehta, G.U.; Lonser, R.R. Management of Hormone-Secreting Pituitary Adenomas. Neuro Oncol. 2017, 19, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Raverot, G.; Dantony, E.; Beauvy, J.; Vasiljevic, A.; Mikolasek, S.; Borson-Chazot, F.; Jouanneau, E.; Roy, P.; Trouillas, J. Risk of Recurrence in Pituitary Neuroendocrine Tumors: A Prospective Study Using a Five-Tiered Classification. J. Clin. Endocrinol. Metab. 2017, 102, 3368–3374. [Google Scholar] [CrossRef] [PubMed]
- Molitch, M.E. Diagnosis and Treatment of Pituitary Adenomas: A Review. JAMA 2017, 317, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Scapicchio, C.; Gabelloni, M.; Barucci, A.; Cioni, D.; Saba, L.; Neri, E. A Deep Look into Radiomics. Radiol. Med. 2021, 126, 1296–1311. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Maniaci, A.; Lavalle, S.; Gagliano, C.; Lentini, M.; Masiello, E.; Parisi, F.; Iannella, G.; Cilia, N.D.; Salerno, V.; Cusumano, G.; et al. The Integration of Radiomics and Artificial Intelligence in Modern Medicine. Life 2024, 14, 1248. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Ugga, L.; Perillo, T.; Capasso, S.; Negroni, D.; Cuocolo, R. Radiomics in Meningiomas: Pathological and Biomolecular Correlation. In Meningiomas: From Pathology to Clinics; Maiuri, F., Del Basso De Caro, M., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 121–130. ISBN 978-3-031-76680-0. [Google Scholar]
- Zheng, B.; Zhao, Z.; Zheng, P.; Liu, Q.; Li, S.; Jiang, X.; Huang, X.; Ye, Y.; Wang, H. The Current State of MRI-Based Radiomics in Pituitary Adenoma: Promising but Challenging. Front. Endocrinol. 2024, 15, 1426781. [Google Scholar] [CrossRef] [PubMed]
- Taslicay, C.A.; Dervisoglu, E.; Ince, O.; Mese, I.; Taslicay, C.; Bayrak, B.Y.; Cabuk, B.; Anik, I.; Ceylan, S.; Anik, Y. A Novel Fusion of Radiomics and Semantic Features: MRI-Based Machine Learning in Distinguishing Pituitary Cystic Adenomas from Rathke’s Cleft Cysts. J. Belg. Soc. Radiol. 2024, 108, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, C.; Tian, Z.; Xu, J. Discrimination between Pituitary Adenoma and Craniopharyngioma Using MRI-Based Image Features and Texture Features. Jpn. J. Radiol. 2020, 38, 1125–1134. [Google Scholar] [CrossRef]
- Ugga, L.; Cuocolo, R.; Solari, D.; Guadagno, E.; D’Amico, A.; Somma, T.; Cappabianca, P.; Del Basso de Caro, M.L.; Cavallo, L.M.; Brunetti, A. Prediction of High Proliferative Index in Pituitary Macroadenomas Using MRI-Based Radiomics and Machine Learning. Neuroradiology 2019, 61, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Chai, Y.; Li, K.; Fang, H.; Mou, A.; Feng, S.; Feng, M.; Wang, R. Non-Invasive and Real-Time Proliferative Activity Estimation Based on a Quantitative Radiomics Approach for Patients with Acromegaly: A Multicenter Study. J. Endocrinol. Investig. 2020, 43, 755–765. [Google Scholar] [CrossRef]
- Shu, X.-J.; Chang, H.; Wang, Q.; Chen, W.-G.; Zhao, K.; Li, B.-Y.; Sun, G.-C.; Chen, S.-B.; Xu, B.-N. Deep Learning Model-Based Approach for Preoperative Prediction of Ki67 Labeling Index Status in a Noninvasive Way Using Magnetic Resonance Images: A Single-Center Study. Clin. Neurol. Neurosurg. 2022, 219, 107301. [Google Scholar] [CrossRef]
- Liu, F.; Zang, Y.; Feng, L.; Shi, X.; Wu, W.; Liu, X.; Song, Y.; Xu, J.; Gui, S.; Chen, X. Concomitant Prediction of the Ki67 and PIT-1 Expression in Pituitary Adenoma Using Different Radiomics Models. J. Imaging Inform. Med. 2024, 38, 394–409. [Google Scholar] [CrossRef]
- Sathya, A.; Goyal-Honavar, A.; Chacko, A.G.; Jasper, A.; Chacko, G.; Devakumar, D.; Seelam, J.A.; Sasidharan, B.K.; Pavamani, S.P.; Thomas, H.M.T. Is Radiomics a Useful Addition to Magnetic Resonance Imaging in the Preoperative Classification of PitNETs? Acta Neurochir. 2024, 166, 91. [Google Scholar] [CrossRef]
- Peng, A.; Dai, H.; Duan, H.; Chen, Y.; Huang, J.; Zhou, L.; Chen, L. A Machine Learning Model to Precisely Immunohistochemically Classify Pituitary Adenoma Subtypes with Radiomics Based on Preoperative Magnetic Resonance Imaging. Eur. J. Radiol. 2020, 125, 108892. [Google Scholar] [CrossRef]
- Zhang, S.; Song, G.; Zang, Y.; Jia, J.; Wang, C.; Li, C.; Tian, J.; Dong, D.; Zhang, Y. Non-Invasive Radiomics Approach Potentially Predicts Non-Functioning Pituitary Adenomas Subtypes before Surgery. Eur. Radiol. 2018, 28, 3692–3701. [Google Scholar] [CrossRef]
- Rui, W.; Qiao, N.; Wu, Y.; Zhang, Y.; Aili, A.; Zhang, Z.; Ye, H.; Wang, Y.; Zhao, Y.; Yao, Z. Radiomics Analysis Allows for Precise Prediction of Silent Corticotroph Adenoma among Non-Functioning Pituitary Adenomas. Eur. Radiol. 2022, 32, 1570–1578. [Google Scholar] [CrossRef]
- Wang, H.; Chang, J.; Zhang, W.; Fang, Y.; Li, S.; Fan, Y.; Jiang, S.; Yao, Y.; Deng, K.; Lu, L.; et al. Radiomics Model and Clinical Scale for the Preoperative Diagnosis of Silent Corticotroph Adenomas. J. Endocrinol. Invest. 2023, 46, 1843–1854. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Q.; Zhang, Y.; Sai, K.; Xu, L.; Mou, Y.; Xie, Y.; Ren, J.; Jiang, X. Image-Driven Classification of Functioning and Nonfunctioning Pituitary Adenoma by Deep Convolutional Neural Networks. Comput. Struct. Biotechnol. J. 2021, 19, 3077–3086. [Google Scholar] [CrossRef]
- Wang, X.; Dai, Y.; Lin, H.; Cheng, J.; Zhang, Y.; Cao, M.; Zhou, Y. Shape and Texture Analyses Based on Conventional MRI for the Preoperative Prediction of the Aggressiveness of Pituitary Adenomas. Eur. Radiol. 2023, 33, 3312–3321. [Google Scholar] [CrossRef]
- Park, Y.W.; Kang, Y.; Ahn, S.S.; Ku, C.R.; Kim, E.H.; Kim, S.H.; Lee, E.J.; Kim, S.H.; Lee, S.-K. Radiomics Model Predicts Granulation Pattern in Growth Hormone-Secreting Pituitary Adenomas. Pituitary 2020, 23, 691–700. [Google Scholar] [CrossRef]
- Liu, C.-X.; Heng, L.-J.; Han, Y.; Wang, S.-Z.; Yan, L.-F.; Yu, Y.; Ren, J.-L.; Wang, W.; Hu, Y.-C.; Cui, G.-B. Usefulness of the Texture Signatures Based on Multiparametric MRI in Predicting Growth Hormone Pituitary Adenoma Subtypes. Front. Oncol. 2021, 11, 640375. [Google Scholar] [CrossRef]
- Baysal, B.; Eser, M.B.; Dogan, M.B.; Kursun, M.A. Multivariable Diagnostic Prediction Model to Detect Hormone Secretion Profile From T2W MRI Radiomics with Artificial Neural Networks in Pituitary Adenomas. Medeni. Med. J. 2022, 37, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Zeynalova, A.; Kocak, B.; Durmaz, E.S.; Comunoglu, N.; Ozcan, K.; Ozcan, G.; Turk, O.; Tanriover, N.; Kocer, N.; Kizilkilic, O.; et al. Preoperative Evaluation of Tumour Consistency in Pituitary Macroadenomas: A Machine Learning-Based Histogram Analysis on Conventional T2-Weighted MRI. Neuroradiology 2019, 61, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Cuocolo, R.; Ugga, L.; Solari, D.; Corvino, S.; D’Amico, A.; Russo, D.; Cappabianca, P.; Cavallo, L.M.; Elefante, A. Prediction of Pituitary Adenoma Surgical Consistency: Radiomic Data Mining and Machine Learning on T2-Weighted MRI. Neuroradiology 2020, 62, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Fang, Q.; Huang, Y.; Xu, K. Semi-Supervised Method for Image Texture Classification of Pituitary Tumors via CycleGAN and Optimized Feature Extraction. BMC Med. Inform. Decis. Mak. 2020, 20, 215. [Google Scholar] [CrossRef]
- Wan, T.; Wu, C.; Meng, M.; Liu, T.; Li, C.; Ma, J.; Qin, Z. Radiomic Features on Multiparametric MRI for Preoperative Evaluation of Pituitary Macroadenomas Consistency: Preliminary Findings. J. Magn. Reson. Imaging 2022, 55, 1491–1503. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Li, S.; Fan, Y.; Feng, M.; Wang, R. Development and Evaluation of Deep Learning-Based Automated Segmentation of Pituitary Adenoma in Clinical Task. J. Clin. Endocrinol. Metab. 2021, 106, 2535–2546. [Google Scholar] [CrossRef]
- Chen, J.M.; Wan, Q.; Zhu, H.Y.; Ge, Y.Q.; Wu, L.L.; Zhai, J.; Ding, Z.M. The value of conventional magnetic resonance imaging based radiomic model in predicting the texture of pituitary macroadenoma. Zhonghua Yi Xue Za Zhi 2020, 100, 3626–3631. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, S.; Ma, S.; Diao, J.; Zhou, W.; Tian, J.; Zang, Y.; Jia, W. Preoperative Prediction of Cavernous Sinus Invasion by Pituitary Adenomas Using a Radiomics Method Based on Magnetic Resonance Images. Eur. Radiol. 2019, 29, 1625–1634. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, H.; Feng, M.; Chen, H.; Zhang, W.; Wei, L.; Pei, Z.; Wang, R.; Wang, S. Application of Convolutional Neural Network in the Diagnosis of Cavernous Sinus Invasion in Pituitary Adenoma. Front. Oncol. 2022, 12, 835047. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H.S.; Park, J.E.; Park, S.Y.; Kim, Y.-H.; Kim, S.J.; Lee, J.; Lebel, M.R. Thin-Slice Pituitary MRI with Deep Learning-Based Reconstruction for Preoperative Prediction of Cavernous Sinus Invasion by Pituitary Adenoma: A Prospective Study. AJNR Am. J. Neuroradiol. 2022, 43, 280–285. [Google Scholar] [CrossRef]
- Park, H.; Nam, Y.K.; Kim, H.S.; Park, J.E.; Lee, D.H.; Lee, J.; Kim, S.; Kim, Y.-H. Deep Learning-Based Image Reconstruction Improves Radiologic Evaluation of Pituitary Axis and Cavernous Sinus Invasion in Pituitary Adenoma. Eur. J. Radiol. 2023, 158, 110647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Heng, X.; Neng, W.; Chen, H.; Sun, A.; Li, J.; Wang, M. Prediction of High Infiltration Levels in Pituitary Adenoma Using MRI-Based Radiomics and Machine Learning. Chin. Neurosurg. J. 2022, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, H.; Cao, D.; Cai, S.; Qian, C.; Feng, M.; Zhang, W.; Cao, L.; Chen, H.; Wei, L.; et al. Multi-Center Application of a Convolutional Neural Network for Preoperative Detection of Cavernous Sinus Invasion in Pituitary Adenomas. Neuroradiology 2024, 66, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Fang, Y.; Pei, Z.; Li, Z.; Chen, H.; Hou, P.; Wei, L.; Wang, R.; Wang, S. A Convolutional Neural Network Model for Detecting Sellar Floor Destruction of Pituitary Adenoma on Magnetic Resonance Imaging Scans. Front. Neurosci. 2022, 16, 900519. [Google Scholar] [CrossRef]
- Kocak, B.; Durmaz, E.S.; Kadioglu, P.; Polat Korkmaz, O.; Comunoglu, N.; Tanriover, N.; Kocer, N.; Islak, C.; Kizilkilic, O. Predicting Response to Somatostatin Analogues in Acromegaly: Machine Learning-Based High-Dimensional Quantitative Texture Analysis on T2-Weighted MRI. Eur. Radiol. 2019, 29, 2731–2739. [Google Scholar] [CrossRef]
- Park, Y.W.; Eom, J.; Kim, S.; Kim, H.; Ahn, S.S.; Ku, C.R.; Kim, E.H.; Lee, E.J.; Kim, S.H.; Lee, S.-K. Radiomics With Ensemble Machine Learning Predicts Dopamine Agonist Response in Patients With Prolactinoma. J. Clin. Endocrinol. Metab. 2021, 106, e3069–e3077. [Google Scholar] [CrossRef]
- Machado, L.F.; Elias, P.C.L.; Moreira, A.C.; Dos Santos, A.C.; Murta Junior, L.O. MRI Radiomics for the Prediction of Recurrence in Patients with Clinically Non-Functioning Pituitary Macroadenomas. Comput. Biol. Med. 2020, 124, 103966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ko, C.-C.; Chen, J.-H.; Chang, K.-T.; Chen, T.-Y.; Lim, S.-W.; Tsui, Y.-K.; Su, M.-Y. Radiomics Approach for Prediction of Recurrence in Non-Functioning Pituitary Macroadenomas. Front. Oncol. 2020, 10, 590083. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Hsieh, H.-P.; Hung, K.-C.; Shih, Y.-J.; Lim, S.-W.; Kuo, Y.-T.; Chen, J.-H.; Ko, C.-C. Deep Learning for Prediction of Progression and Recurrence in Nonfunctioning Pituitary Macroadenomas: Combination of Clinical and MRI Features. Front. Oncol. 2022, 12, 813806. [Google Scholar] [CrossRef]
- Shen, C.; Liu, X.; Jin, J.; Han, C.; Wu, L.; Wu, Z.; Su, Z.; Chen, X. A Novel Magnetic Resonance Imaging-Based Radiomics and Clinical Predictive Model for the Regrowth of Postoperative Residual Tumor in Non-Functioning Pituitary Neuroendocrine Tumor. Medicina 2023, 59, 1525. [Google Scholar] [CrossRef]
- Cuocolo, R.; Imbriaco, M. Machine Learning Solutions in Radiology: Does the Emperor Have No Clothes? Eur. Radiol. 2021, 31, 3783–3785. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping | Radiology. Available online: https://pubs.rsna.org/doi/10.1148/radiol.2020191145 (accessed on 25 August 2025).
- Staartjes, V.E.; Serra, C.; Muscas, G.; Maldaner, N.; Akeret, K.; van Niftrik, C.H.B.; Fierstra, J.; Holzmann, D.; Regli, L. Utility of Deep Neural Networks in Predicting Gross-Total Resection after Transsphenoidal Surgery for Pituitary Adenoma: A Pilot Study. Neurosurg. Focus. 2018, 45, E12. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, Z.; Hou, B.; Li, L.; Liu, X.; Liu, Z.; Wang, R.; Lin, Y.; Feng, F.; Tian, J.; et al. Development and Validation of an MRI-Based Radiomic Signature for the Preoperative Prediction of Treatment Response in Patients with Invasive Functional Pituitary Adenoma. Eur. J. Radiol. 2019, 121, 108647. [Google Scholar] [CrossRef]
- Fan, Y.; Hua, M.; Mou, A.; Wu, M.; Liu, X.; Bao, X.; Wang, R.; Feng, M. Preoperative Noninvasive Radiomics Approach Predicts Tumor Consistency in Patients With Acromegaly: Development and Multicenter Prospective Validation. Front. Endocrinol. 2019, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Qiu, Y.; Li, C.-C.; Wang, Z.-Y.; Cao, B.-W.; Huang, H.-X.; Ni, Y.-H.; Chen, L.-L.; Sun, J.-Y. A Novel Diagnostic Method for Pituitary Adenoma Based on Magnetic Resonance Imaging Using a Convolutional Neural Network. Pituitary 2020, 23, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sun, M.; Fan, Y.; Wang, H.; Feng, M.; Zhou, S.; Wang, R. Machine Learning in Preoperative Prediction of Postoperative Immediate Remission of Histology-Positive Cushing’s Disease. Front. Endocrinol. 2021, 12, 635795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, C.; Huang, W.; Cheng, Y.; Teng, Y.; Zhang, L.; Xu, J. Machine Learning-Based Radiomics of the Optic Chiasm Predict Visual Outcome Following Pituitary Adenoma Surgery. J. Pers. Med. 2021, 11, 991. [Google Scholar] [CrossRef]
- Villalonga, J.F.; Solari, D.; Cuocolo, R.; De Lucia, V.; Ugga, L.; Gragnaniello, C.; Pailler, J.I.; Cervio, A.; Campero, A.; Cavallo, L.M.; et al. Clinical Application of the “Sellar Barrier’s Concept” for Predicting Intraoperative CSF Leak in Endoscopic Endonasal Surgery for Pituitary Adenomas with a Machine Learning Analysis. Front. Surg. 2022, 9, 934721. [Google Scholar] [CrossRef]
- Gargya, S.; Jain, S. CAD System Design for Pituitary Tumor Classification Based on Transfer Learning Technique. Curr. Med. Imaging 2023, 20, E15734056246146. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.; Huang, Z.; Teng, Y.; Chen, C.; Xu, J. Predicting Visual Recovery in Pituitary Adenoma Patients Post-Endoscopic Endonasal Transsphenoidal Surgery: Harnessing Delta-Radiomics of the Optic Chiasm from MRI. Eur. Radiol. 2023, 33, 7482–7493. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Huang, W.; Teng, Y.; Shu, X.; Zhao, F.; Xu, J.; Zhang, L. Preoperative Volume of the Optic Chiasm Is an Easily Obtained Predictor for Visual Recovery of Pituitary Adenoma Patients Following Endoscopic Endonasal Transsphenoidal Surgery: A Cohort Study. Int. J. Surg. 2023, 109, 896–904. [Google Scholar] [CrossRef]
- Behzadi, F.; Alhusseini, M.; Yang, S.D.; Mallik, A.K.; Germanwala, A.V. A Predictive Model for Intraoperative Cerebrospinal Fluid Leak During Endonasal Pituitary Adenoma Resection Using a Convolutional Neural Network. World Neurosurg. 2024, 189, e324–e330. [Google Scholar] [CrossRef]
- Da Mutten, R.; Zanier, O.; Ciobanu-Caraus, O.; Voglis, S.; Hugelshofer, M.; Pangalu, A.; Regli, L.; Serra, C.; Staartjes, V.E. Automated Volumetric Assessment of Pituitary Adenoma. Endocrine 2024, 83, 171–177. [Google Scholar] [CrossRef]
- Ishimoto, Y.; Ide, S.; Watanabe, K.; Oyu, K.; Kasai, S.; Umemura, Y.; Sasaki, M.; Nagaya, H.; Tatsuo, S.; Nozaki, A.; et al. Usefulness of Pituitary High-Resolution 3D MRI with Deep-Learning-Based Reconstruction for Perioperative Evaluation of Pituitary Adenomas. Neuroradiology 2024, 66, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, Z.; Zhao, Y.; Xu, J.; Chen, C.; Xu, J. Radiomics Using Multiparametric Magnetic Resonance Imaging to Predict Postoperative Visual Outcomes of Patients with Pituitary Adenoma. Asian J. Surg. 2024, 48, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Agosti, E.; Cuocolo, R.; Mangili, M.; Rampinelli, V.; Veiceschi, P.; Cappelletti, M.; Panciani, P.P.; Piazza, A.; Bove, I.; Solari, D.; et al. Radiomics for Preoperative Assessment of Pituitary Adenoma Consistency with T2-Weighted MRI: A Multicenter Study. J. Neurol. Surg. Part B Skull Base 2025. [Google Scholar] [CrossRef]
- Kocak, B.; Keles, A.; Kose, F.; Sendur, A. Quality of Radiomics Research: Comprehensive Analysis of 1574 Unique Publications from 89 Reviews. Eur. Radiol. 2025, 35, 1980–1992. [Google Scholar] [CrossRef]
- Galm, B.P.; Martinez-Salazar, E.L.; Swearingen, B.; Torriani, M.; Klibanski, A.; Bredella, M.A.; Tritos, N.A. MRI Texture Analysis as a Predictor of Tumor Recurrence or Progression in Patients with Clinically Non-Functioning Pituitary Adenomas. Eur. J. Endocrinol. 2018, 179, 191–198. [Google Scholar] [CrossRef]
- Fan, Y.; Jiang, S.; Hua, M.; Feng, S.; Feng, M.; Wang, R. Machine Learning-Based Radiomics Predicts Radiotherapeutic Response in Patients With Acromegaly. Front. Endocrinol. 2019, 10, 588. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
Author, Year | Method | RQS (36) | IBSI (%) |
---|---|---|---|
Zhang, 2018 [21] | Handcrafted | 14 | 43 |
Niu, 2018 [35] | Handcrafted | 16 | 43 |
Kocak, 2018 [42] | Handcrafted | 12 | 86 |
Staartjes, 2018 [52] | Deep Learning | 13 | 14 |
Zeynalova, 2019 [29] | Handcrafted | 14 | 86 |
Ugga, 2019 [15] | Handcrafted | 14 | 71 |
Fan, 2019 [53] | Handcrafted | 16 | 43 |
Fan, 2019 [16] | Handcrafted | 18 | 43 |
Fan, 2019 [54] | Handcrafted | 17 | 43 |
Qian, 2020 [55] | Deep Learning | 10 | 29 |
Peng, 2020 [20] | Handcrafted | 12 | 43 |
Cuocolo, 2020 [30] | Handcrafted | 14 | 71 |
Machado, 2020 [44] | Handcrafted | 10 | 86 |
Park, 2020 [26] | Handcrafted | 13 | 100 |
Zhu, 2020 [31] | Deep Learning | 9 | 29 |
Chen, 2020 [34] | Handcrafted | 14 | 43 |
Zhang, 2020 [45] | Handcrafted | 11 | 4 |
Li, 2021 [24] | Deep Learning | 13 | 71 |
Liu, 2021 [27] | Handcrafted | 14 | 14 |
Park, 2021 [43] | Handcrafted | 12 | 71 |
Wan, 2021 [32] | Handcrafted | 12 | 100 |
Wang, 2021 [33] | Handcrafted | 13 | 14 |
Zhang, 2021 [56] | Handcrafted | 14 | 14 |
Zhang, 2021 [57] | Handcrafted | 12 | 43 |
Baysal, 2022 [28] | Deep Learning | 18 | 57 |
Chen, 2022 [46] | Multimodal | 13 | 43 |
Fang, 2022 [36] | Deep Learning | 14 | 29 |
Feng, 2022 [41] | Deep Learning | 15 | 29 |
Kim, 2022 [37] | Deep Learning | 14 | 57 |
Park, 2022 [38] | Deep Learning | 13 | 57 |
Rui, 2022 [22] | Handcrafted | 17 | 29 |
Shu, 2022 [17] | Deep Learning | 13 | 57 |
Villalonga, 2022 [58] | Handcrafted | 13 | 14 |
Zhang, 2022 [39] | Handcrafted | 14 | 71 |
Gargya, 2023 [59] | Deep Learning | 10 | 57 |
Shen, 2023 [47] | Handcrafted | 16 | 86 |
Wang, 2023 [25] | Handcrafted | 16 | 57 |
Wang, 2023 [23] | Handcrafted | 15 | 86 |
Zhang, 2023 [60] | Handcrafted | 16 | 86 |
Zhang, 2023 [61] | Deeep Learning | 17 | 14 |
A, 2024 [19] | Handcrafted | 14 | 57 |
Behzadi, 2024 [62] | Deep Learning | 15 | 43 |
Da Mutten, 2024 [63] | Deep Learning | 13 | 43 |
Fang, 2024 [40] | Deep Learning | 14 | 29 |
Ishimoto, 2024 [64] | Deep Learning | −2 | 71 |
Liu, 2024 [18] | Combined | 19 | 86 |
Taslicay, 2024 [13] | Handcrafted | 14 | 86 |
Zhang, 2024 [65] | Handcrafted | 15 | 100 |
Agosti, 2025 [66] | Handcrafted | 15 | 71 |
Author, Year | Patients | MR Sequences | ML Algorithms Used or AI Model (ML or DL) | Software Used for Features Extraction | Type of Radiomic Features | Tumor Subtype | AUC ROC (or Accuracy %) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total (N) | Training Dataset (%) | Test Dataset (%) | Validation Dataset (%) | |||||||||||
Zhang, 2018 [21] | 112 | 67 | 33 | - | T1WI CE-T1WI | RBF-SVM | MatLab | Intensity Shape and size Texture Wavelet-based | NF | T1WI | Training | 0.831 | ||
Test | 0.804 | |||||||||||||
CE-T1WI | Training | 0.634 | ||||||||||||
Test | 0.510 | |||||||||||||
Niu, 2018 [35] | 194 | 50 | 50 | - | T2WI CE-T1WI | Linear SVM | MatLab | Intensity Shape and size Texture Wavelet-based ICA wrapped degree | Any | Training | 0.852 | |||
Test | 0.826 | |||||||||||||
Kocak, 2018 [42] | 47 | - | - | - | T2WI | kNN C4.5 | PyRadiomics (3D-Slicer extension) | FOS GLCM GLRLM GLSZM NGTDM GLDM Wavelet-based | GH | Quantitative TA | 0.847 | |||
ROI-based quantitative rSI | 0.581 | |||||||||||||
Staartjes, 2018 [52] | 140 | - | - | - | CE-T1WI | MLP (DL) LR | - | - | Any | MLP (DL) | 0.962 | |||
LR | 0.86 | |||||||||||||
Zeynalova, 2019 [29] | 55 | - | - | - | T2WI | ANN | PyRadiomics | - | Any (PMA) | 0.710 | ||||
Ugga, 2019 [15] | 89 | 60 | 40 | - | T2WI | kNN | PyRadiomics | Shape FOS GLCM GLRLM GLSZM NGTDM GLDM | Any | 0.87 | ||||
Fan, 2019 [53] | 163 | 66 | 34 | - | T1WI T2WI CE-T1WI | SVM | Inhouse program written in Matlab 2015b | Intensity Shape and size Texture Wavelet-based | Any (IFPA) | Training | 0.832 | |||
Validation | 0.811 | |||||||||||||
Fan, 2019 [16] | 138 | 65 | 35 | - | T1WI T2WI CE-T1WI | SVM | PyRadiomics | Shape FOS Texture Wavelet-based | GH | Training | 0.96 | |||
Validation | 0.89 | |||||||||||||
Fan, 2019 [54] | 188 | 53 | 31 | 16 | T1WI T2WI CE-T1WI | SVM LR | PyRadiomics | FOS Shape and size GLCM GLRLM GLSZM Wavelet-based | GH | Training | 0.83 | |||
Validation | 0.81 | |||||||||||||
Qian, 2020 [55] | 149 | 80 | 20 | - | T1WI T2WI | CNN | - | - | Any | - | ||||
Peng, 2020 [20] | 235 | - | - | - | T1WI T2WI CE-T1WI | SVM kNN NB | PyRadiomics | Shape GLCM GLRLM GLSZM GLDM | Any | SVM | T1WI | 0.8762 | ||
T2WI | 0.9549 | |||||||||||||
CE-T1WI | 0.8806 | |||||||||||||
KNN | T1WI | 0.8598 | ||||||||||||
T2WI | 0.9266 | |||||||||||||
CE-T1WI | 0.7947 | |||||||||||||
NB | T1WI | 0.8492 | ||||||||||||
T2WI | 0.9324 | |||||||||||||
CE-T1WI | 0.8309 | |||||||||||||
Cuocolo, 2020 [30] | 89 | 80 | 20 | - | T2WI | ET | PyRadiomics | Histogram GLCM GLRLM GLSZM NGTDM GLDM | Any | 0.99 | ||||
Machado, 2020 [44] | 27 | - | - | - | CE-T1WI | kNN RF LR SVM MLP | PyRadiomics | FOS GLCM GLRLM GLSZM NGTDM GLDM FOSW FOSG | NF | MLP | 0.929 | |||
RF | 0.877 | |||||||||||||
SVM | 0.860 | |||||||||||||
LR | 0.929 | |||||||||||||
kNN | 0.979 | |||||||||||||
Park, 2020 [26] | 69 | - | - | - | T2WI | - | PyRadiomics | Shape FOS GLCM GLRLM GLSZM NGTDM GLDM | GH | 0.834 | ||||
Zhu, 2020 [31] | 374 | - | - | - | T1WI T2WI | - | DenseNet-ResNet based Autoencoder framework CRNN | - | Any | - | ||||
Chen, 2020 [34] | 101 | 71 | 29 | - | T1WI T2WI CE-T1WI | - | - | - | Any | T1WI | Training | 0.90 | ||
Test | 0.91 | |||||||||||||
T2WI | Training | 0.86 | ||||||||||||
Test | 0.83 | |||||||||||||
CE-T1WI | Training | 0.90 | ||||||||||||
Test | 0.89 | |||||||||||||
Combined | Training | 0.92 | ||||||||||||
Test | 0.91 | |||||||||||||
Zhang, 2020 [45] | 50 | - | - | - | T2WI CE-T1WI | SVM | Python (v. 3.10.7) | SVR GLCM NGTDM | NF | 0.87 | ||||
Li, 2021 [24] | 185 | 54 | Group 1 24 Group 2 13 | 9 | T1WI T2WI CE-T1WI T2WI-FLAIR | CNN | - | - | Any | Internal Validation 1 | 0.8063 | |||
Internal validation 2 | 0.7881 | |||||||||||||
External independent testing | 0.8478 | |||||||||||||
Liu, 2021 [27] | 49 | - | - | - | T1WI T2WI CE-T1WI | - | PyRadiomics | Shape FOS GLCM GLRLM GLSZM NGTDM GLDM | GH | ROI1 | T1C | 0.893 | ||
T1WI | 0.918 | |||||||||||||
T2WI | 0.823 | |||||||||||||
Radiomics | 0.908 | |||||||||||||
ROI2 | T1C | 0.860 | ||||||||||||
T1WI | 0.898 | |||||||||||||
T2WI | 0.812 | |||||||||||||
Radiomics | 0.880 | |||||||||||||
Park, 2021 [43] | 177 | 80 | 20 | - | T2WI | RF LightGBM ET | PyRadiomics | FOS GLCM GLRLM GLSZM | PRL | Training | 0.81 | |||
Test | 0.81 | |||||||||||||
Wan, 2021 [32] | 156 | 69 | 31 | - | T1WI T2WI CE-T1WI | RF SVM | MatLab | - | Any (PMA) | 0.90 | ||||
Wang, 2021 [33] | 163 | 80 | 20 | - | T1WI T2WI CE-T1WI | Linear SVM RF ET kNN DT GDBT AdaBoost MLP XGBoost | PyRadiomics | Knosp grade adenoma volume adenoma diameters OC height ICA contact degree | Any | Linear SVC | 0.762 | |||
RF | 0.824 | |||||||||||||
ET | 0.865 | |||||||||||||
KNN | 0.920 | |||||||||||||
DT | 0.597 | |||||||||||||
GBDT | 0.807 | |||||||||||||
AdaBoost | 0.817 | |||||||||||||
MLP | 0.856 | |||||||||||||
XGBoost | 0.826 | |||||||||||||
Zhang, 2021 [56] | 1045 | 80 | 20 | - | T1WI T2WI CE-T1WI | GBDT RF AdaBoost XGBoost LR NB DT MLP | - | - | ACTH | XGBoost | 0.712 | |||
GBDT | 0.734 | |||||||||||||
RF | 0.726 | |||||||||||||
AdaBoost | 0.699 | |||||||||||||
NB | 0.681 | |||||||||||||
LR | 0.701 | |||||||||||||
DT | 0.664 | |||||||||||||
MLP | 0.700 | |||||||||||||
Stacking | 0.743 | |||||||||||||
Zhang, 2021 [57] | 131 | - | - | - | T2WI | SVM RF LDA | PyRadiomics | Shape FOS GLCM GLRLM GLSZM NGTDM GLDM | Any | SVM | 0.824 | |||
LDA | 0.801 | |||||||||||||
RF | 0.751 | |||||||||||||
Baysal, 2022 [28] | 130 | 70 | 15 | 15 | T2WI | ANN (BFGS algorithm) | PyRadiomics | Shape FOS High order features | Any | NF | 0.87 | |||
GH | 0.89 | |||||||||||||
PRL | 0.95 | |||||||||||||
ACTH | 0.94 | |||||||||||||
PH | 0.74 | |||||||||||||
FSH-LH | 0.96 | |||||||||||||
TSH | 0.95 | |||||||||||||
Chen, 2022 [46] | 78 | 80 | - | 20 | T2WI CE-T1WI | MLP CNN | - | - | NF | CNN | 0.84 | |||
MLP | 0.73 | |||||||||||||
Multimodal CNN-MLP | 0.85 | |||||||||||||
Fang, 2022 [36] | 371 | - | - | - | CE-T1WI | CNN | - | - | Validation fold 1 | 0.89 | ||||
Validation fold 2 | 0.98 | |||||||||||||
Validation fold 3 | 0.89 | |||||||||||||
Validation fold 4 | 0.96 | |||||||||||||
Validation fold 5 | 0.93 | |||||||||||||
Feng, 2022 [41] | 695 | - | - | - | CE-T1WI | CNN | - | Any | 0.98 | |||||
Kim, 2022 [37] | 67 | - | - | - | CE-T1WI | DL | - | Depth of Invasion Degree of contact with intracavernous ICA | Any | 1-mm-slice MR | 0.79 | |||
3-mm-slice MR | 0.61 | |||||||||||||
Park, 2022 [38] | 104 | - | - | - | CE-T1WI | DL | - | - | Any | Reader 1 | 1-mm-slice MR 0.91 3-mm-slice MR 0.88 | |||
Reader 2 | 1-mm-slice MR 0.92 3-mm-slice MR 0.87 | |||||||||||||
Rui, 2022 [22] | 302 | 80 | 20 | - | T1WI T2WI CE-T1WI | LDA SVM RF GBM | PyRadiomics (3D-Slicer extension) | Shape (3D) Shape (2D) FOS GLCM GLRLM GLSZM NGTDM GLDM | NF | Ensemble | 0.927 | |||
Shu, 2022 [17] | 261 | 80 | 20 | - | T2WI CE-T1WI | DL | U-net neural network | - | Any | CE-T1WI | 87.4%, | |||
T2WI | 89.4% | |||||||||||||
CE-T1WI + T2WI | 89.2% | |||||||||||||
Villalonga, 2022 [58] | 144 | 80 | 20 | - | T1WI T2WI CE-T1WI | IF local outlier factor oSVM | Python | - | Any | - | ||||
Zhang, 2022 [39] | 196 | 90 | - | 10 | CE-T1WI | SVM | PyRadiomics | FOS Shape (3D) GLCM GLSZM GLRLM NGTDM GLDM | Any | 0.86 | ||||
Gargya, 2023 [59] | - | - | - | - | - | CNN (VGG 16, VGG19, ResNet-50, Inception V3) SVM kNN PNN | - | - | Any | VGG16 | 89% | |||
VGG19 | 91.5% | |||||||||||||
Resnet 50 | 91% | |||||||||||||
Inception V3 | 96% | |||||||||||||
Shen, 2023 [47] | 114 | 70 | 30 | - | T1WI T2WI CE-T1WI | LR | R software | Shape FOS GLCM GLRLM GLSZM NGTDM Wavelet-based | NF | Clinical + radiomics features | 0.929 | |||
Only radiomics features | 0.844 | |||||||||||||
Wang, 2023 [25] | 246 | 78 | 22 | - | CE-T1WI | LR | LIFEx | SHAPE_Volume (mL) SHAPE_Volume (vx) SHAPE_Sphericity SHAPE_Surface area SHAPE_Compacity DISCRETIZED_Q3 DISCRETIZED_Kurtosis GLCM GLRM NGLDM GLZLM | Any | Training | 0.916 | |||
Test | 0.935 | |||||||||||||
Wang, 2023 [23] | 295 | 88 | 12 | - | T1WI T2WI CE-T1WI | Elasticnet LinearSVC RF ET kNN DT GBDT AdaBoost MLP XGBoost | PyRadiomics | - | NF | LinearSVC | Training | 0.931 | ||
Test | 0.937 | |||||||||||||
Elasticnet | Training | 0.908 | ||||||||||||
Test | 0.915 | |||||||||||||
RF | Training | 0.848 | ||||||||||||
Test | 0.82 | |||||||||||||
ET | Training | 0.831 | ||||||||||||
Test | 0.845 | |||||||||||||
KNN | Training | 0.836 | ||||||||||||
Test | 0.762 | |||||||||||||
DT | Training | 0.615 | ||||||||||||
Test | 0.622 | |||||||||||||
GBDT | Training | 0.862 | ||||||||||||
Test | 0.819 | |||||||||||||
AdaBoost | Training | 0.667 | ||||||||||||
Test | 0.793 | |||||||||||||
MLP | Training | 0.903 | ||||||||||||
Test | 0.905 | |||||||||||||
XGBoost | Training | 0.879 | ||||||||||||
Test | 0.868 | |||||||||||||
Zhang, 2023 [60] | 130 | 70 | 30 | - | T2WI | Linear SVM | PyRadiomics | Shape Histogram Texture Wavelet-based | Any | Delta-radiomic model | Training | 0.821 | ||
Test | 0.811 | |||||||||||||
Combined model | Training | 0.841 | ||||||||||||
Test | 0.840 | |||||||||||||
Zhang, 2023 [61] | 220 | 80 | 20 | - | T2WI | CNN | - | - | Any | - | ||||
A, 2024 [19] | 222 | 67 | 33 | - | T1WI T2WI CE-T1WI | SVM LR RF MLP | PyRadiomics | Shape features FOS GLCM GLRLM GLSZM | Any | Multi-sequence (LR) | Training | 0.935 | ||
Test | 0.886 | |||||||||||||
Validation | 0.840 | |||||||||||||
Any | Multi-sequence (MLP) | Training | 0.957 | |||||||||||
Test | 0.913 | |||||||||||||
Validation | 0.758 | |||||||||||||
Behzadi, 2024 [62] | 220 | 70 | 30 | - | T1WI T2WI | CNN | - | - | Any | 0.898 | ||||
Da Mutten, 2024 [63] | 213 | 91 | 9 | - | CE-T1WI | CNN | - | - | Any | - | ||||
Fang, 2024 [40] | 729 | 89 | 11 | - | CE-T1WI | CNN (ResNet-50) | - | - | Any | 0.92 | ||||
Ishimoto, 2024 [64] | 24 | - | - | - | CE-T1WI | DL | - | SNR CNR | Any | - | ||||
Liu, 2024 [18] | 247 | 80 | 20 | - | T1WI T2WI CE-T1WI | LR SVM MLP | PyRadiomics (ML model) ResNet50 (DL model) | FOS Shape Texture | Any | ML model | LR | Training | 0.789 | |
Test | 0.547 | |||||||||||||
SVM | Training | 0.904 | ||||||||||||
Test | 0.645 | |||||||||||||
MLP | Training | 0.812 | ||||||||||||
Test | 0.620 | |||||||||||||
DL model | LR | Training | 1.000 | |||||||||||
Test | 0.808 | |||||||||||||
SVM | Training | 1.000 | ||||||||||||
Test | 0.812 | |||||||||||||
MLP | Training | 1.000 | ||||||||||||
Test | 0.765 | |||||||||||||
DLR model | LR | Training | 1.000 | |||||||||||
Test | 0.810 | |||||||||||||
SVM | Training | 1.000 | ||||||||||||
Test | 0.810 | |||||||||||||
MLP | Training | 0.994 | ||||||||||||
Test | 0.778 | |||||||||||||
Taslicay, 2024 [13] | 65 | - | - | - | T1WI T2WI CE-T1WI | SVM LR LGB | PyRadiomics (3D-slicer) | FOS GLCM GLRLM GLSZM NGTDM GLDM | Any (CPA) | SVM | 0.956 | |||
LR | 0.956 | |||||||||||||
LGB | 0.951 | |||||||||||||
Zhang, 2024 [65] | 152 | 70 | 30 | - | T1WI T2WI CE-T1WI | SVM | PyRadiomics | FOS Shape (3D) Shape (2D) GLCM GLRLM GLSZM NGTDM GLDM | Any | T1WI | Training | 0.784 | ||
Test | 0.767 | |||||||||||||
T2WI | Training | 0.724 | ||||||||||||
Test | 0.763 | |||||||||||||
CE-T1WI | Training | 0.822 | ||||||||||||
Test | 0.794 | |||||||||||||
Multiparametric | Training | 0.851 | ||||||||||||
Test | 0.847 | |||||||||||||
Agosti, 2025 [66] | 394 | 80 | 10 | 10 | T2WI | ET | PyRadiomics | Shape FOS GLCM GLRLM GLSZM NGTDM Wavelet-based | Any | 0.59 |
General Field of Application | Specific Endpoint | Author, Year |
---|---|---|
Prediction of consistency | Distinction between soft and fibrous tumors | Zeynalova, 2019 [29] |
Fan, 2019 [54] | ||
Cuocolo, 2020 [30] | ||
Zhu, 2020 [31] | ||
Chen, 2020 [34] | ||
Wan, 2021 [32] | ||
Wang, 2021 [33] | ||
Agosti, 2025 [66] | ||
Prediction of invasiveness | Prediction of CS invasion | Niu, 2018 [35] |
Fang, 2022 [36] | ||
Kim, 2022 [37] | ||
Park, 2022 [38] | ||
Zhang, 2022 [39] | ||
Fang, 2024 [40] | ||
Prediction of SF invasion | Feng, 2022 [41] | |
Prediction of histopathological features | Preoperative prediction of Ki67 | Ugga, 2019 [15] |
Fan, 2019 [16] | ||
Shu, 2022 [17] | ||
Prediction of Ki67 and PIT-1 | Liu, 2024 [18] | |
Distinction between high-risk and low-risk PitNETs (WHO 2021 classifcation) | A, 2024 [19] | |
Distinction among Tpit, Pit-1, and SF-1 subfamilies | Peng, 2020 [20] | |
Distinction between NCAs and other NFPA subtypes | Zhang, 2018 [21] | |
Distinction between SCAs and other NFPA subtypes | Rui, 2022 [22] | |
Wang, 2023 [23] | ||
Distinction between functioning and nonfunctioning PAs | Li, 2021 [24] | |
Prediction of aggressiveness (Ki-67 ≥ 3%, positive p53 staining, high mitotic count) | Wang, 2023 [25] | |
Prediction of granulation pattern of GH-secreting PAs | Park, 2020 [26] | |
Liu, 2021 [27] | ||
Prediction of hormonal secretion patterns | Baysal, 2022 [28] | |
Prediction of response to surgical treatment | Prediction of post-surgical recurrence or regrowth | Machado, 2020 [44] |
Zhang, 2020 [45] | ||
Chen, 2022 [46] | ||
Shen, 2023 [47] | ||
Prediction of post-surgical visual outcome | Zhang, 2021 [57] | |
Zhang, 2023 [61] | ||
Zhang, 2023 [60] | ||
Zhang, 2024 [65] | ||
Prediction of post-surgical biochemical remission | Fan, 2019 [53] | |
Zhang, 2021 [56] | ||
Prediction of intraoperative CSF leak | Villalonga, 2022 [58] | |
Behzadi, 2024 [62] | ||
Prediction of the likelihood of GTR | Staartjes, 2018 [52] | |
Prediction of response to non-surgical treatment | Prediction of response to SA in GH-secreting PMAs | Kocak, 2018 [42] |
Prediction of response to DAs | Park, 2021 [43] | |
Diagnose PAs | Detection of pituitary tumors from brain MRI | Qian, 2020 [55] |
Gargya, 2023 [59] | ||
Ishimoto, 2024 [64] | ||
Distinction between pituitary cystic adenomas and Rathke’s cleft cysts | Taslicay, 2024 [13] | |
Automated tumor segmentation and volumetry | Lesion detection, evaluation of progression of pituitary incidentalomas and detection of residual tumor. | Da Mutten, 2024 [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agosti, E.; Mangili, M.; Panciani, P.P.; Ugga, L.; Rampinelli, V.; Ravanelli, M.; Fiorindi, A.; Fontanella, M.M. Radiomics in Pituitary Adenomas: A Systematic Review of Clinical Applications and Predictive Models. J. Clin. Med. 2025, 14, 6595. https://doi.org/10.3390/jcm14186595
Agosti E, Mangili M, Panciani PP, Ugga L, Rampinelli V, Ravanelli M, Fiorindi A, Fontanella MM. Radiomics in Pituitary Adenomas: A Systematic Review of Clinical Applications and Predictive Models. Journal of Clinical Medicine. 2025; 14(18):6595. https://doi.org/10.3390/jcm14186595
Chicago/Turabian StyleAgosti, Edoardo, Marcello Mangili, Pier Paolo Panciani, Lorenzo Ugga, Vittorio Rampinelli, Marco Ravanelli, Alessandro Fiorindi, and Marco Maria Fontanella. 2025. "Radiomics in Pituitary Adenomas: A Systematic Review of Clinical Applications and Predictive Models" Journal of Clinical Medicine 14, no. 18: 6595. https://doi.org/10.3390/jcm14186595
APA StyleAgosti, E., Mangili, M., Panciani, P. P., Ugga, L., Rampinelli, V., Ravanelli, M., Fiorindi, A., & Fontanella, M. M. (2025). Radiomics in Pituitary Adenomas: A Systematic Review of Clinical Applications and Predictive Models. Journal of Clinical Medicine, 14(18), 6595. https://doi.org/10.3390/jcm14186595