The Relevance of Experimental Models in Assessing the Impact of Oxidative Stress on Intestinal Pathology
Abstract
1. Introduction
2. Materials and Methods
3. Intestinal Morphology and Redox Biology
3.1. Intestinal Morphology
3.2. Intestinal Antioxidant Defense System
3.3. Glutathione Synthesis and Its Particular Role in the Gut
3.4. Redox Signaling in the Gut
4. Oxidative Stress Involved in Inflammation-Based Intestinal Diseases
4.1. Collateral Damage to Digestive Tissues Induced by Reactive Oxygen Species
4.2. Toxin/Drug Exposure
4.3. Ischemia–Reperfusion and Postoperative Injury
4.4. Congenital Pathologies
4.5. Inflammation and Infection
4.6. Cancer
5. Experimental Models of Inflammatory Bowel Diseases
5.1. Mice
5.1.1. DSS- and TNBS-Induced Colitis Models
5.1.2. Oxazolone-Induced Colitis Model
5.1.3. Adoptive T-Cell Transfer Experimental Model
5.1.4. IL-10 Knockout Model
5.1.5. SAMP1/YitFc Colitis
5.1.6. Microbiome-Induced Mouse Models
5.2. Guinea Pigs
5.3. The New Zealand White Rabbit
5.4. Dogs
5.5. Pigs
5.6. Monkeys
5.7. Zebrafish
5.8. Drosophila melanogaster
5.9. Worms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aviello, G.; Knaus, U.G. ROS in gastrointestinal inflammation: Rescue or Sabotage? Br. J. Pharmacol. 2017, 174, 1704–1718. [Google Scholar] [CrossRef]
- Zhang, S. From Challenge to Opportunity: Addressing Oxidative Stress in Animal Husbandry. Antioxidants 2023, 12, 1543. [Google Scholar] [CrossRef] [PubMed]
- Balmus, M.I.; Ciobica, A.; Trifan, A.; Stanciu, C. The implications of oxidative stress and antioxidant therapies in Inflammatory Bowel Disease: Clinical aspects and experimental models. Saudi J. Gastroenterol. 2016, 22, 3–17. [Google Scholar]
- Razvani, M. Oxidative Stress induced Gastrointestinal Disease: Biology and Nanomedicine—A Review. BioChem 2024, 4, 189–216. [Google Scholar] [CrossRef]
- Moine, L.; Rivoira, M.; Díaz de Barboza, G.; Pérez, A.; Tolosa de Talamoni, N. Glutathione depleting drugs, antioxidants and intestinal calcium absorption. World J. Gastroenterol. 2018, 24, 4979–4988. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.T.; Colgan, S.P. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 2017, 17, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.L.; Bruyninckx, W.J.; Kelly, C.J.; Glover, L.E.; McNamee, E.N.; Bowers, B.E.; Bayless, A.J.; Scully, M.; Saeedi, B.J.; Golden-Mason, L.; et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 2014, 40, 66–77. [Google Scholar] [CrossRef]
- Chang, S.Y.; Ko, H.J.; Kweon, M.N. Mucosal dendritic cells shape mucosal immunity. Exp. Mol. Med. 2014, 46, e84. [Google Scholar] [CrossRef]
- Yajie, W.; Yue, C.; Xiaoyu, Z. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J. Funct. Foods 2020, 75, 104248. [Google Scholar] [CrossRef]
- Rampon, C.; Volovitch, M.; Joliot, A.; Vriz, S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants 2018, 7, 159. [Google Scholar] [CrossRef]
- Liang, X.; Wen, K.; Chen, Y.; Fang, G.; Yang, S.; Li, Q. Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease. Int. J. Nanomed. 2022, 17, 4843–4860. [Google Scholar] [CrossRef]
- Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Gevezova, M.; Sarafian, V.; Maes, M. Redox regulation of the immune response. Cell. Mol. Immunol. 2022, 19, 1079–1101. [Google Scholar] [CrossRef]
- Iborra, M.; Moret, I.; Busó, E.; García-Giménez, J.L.; Ricart, E.; Gisbert, J.P.; Cabré, E.; Esteve, M.; Márquez-Mosquera, L.; García-Planella, E. The Genetic Diversity and Dysfunctionality of Catalase Associated with a Worse Outcome in Crohn’s Disease. Int. J. Mol. Sci. 2022, 23, 15881. [Google Scholar] [CrossRef] [PubMed]
- Elste, V.; Troesch, B.; Eggersdorfer, M.; Weber, P. Emerging Evidence on Neutrophil Motility Supporting Its Usefulness to Define Vitamin C Intake Requirements. Nutrients 2017, 9, 503. [Google Scholar] [CrossRef]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The role of vitamin e in human health and some diseases. Sultan Qaboos Univ. Med. J. 2014, 14, e157–e165. [Google Scholar] [CrossRef]
- Gammoh, N.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef]
- Avery, J.; Hoffmann, P. Selenium, Selenoproteins, and Immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef]
- Miazek, K.; Beton, K.; Śliwińska, A.; Brożek-Płuska, B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022, 12, 1087. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Balbuena, E.; Miller, B.; Eroglu, A. The Role of β-Carotene in Colonic Inflammation and Intestinal Barrier Integrity. Front. Nutr. 2021, 27, 723480. [Google Scholar] [CrossRef]
- Li, G.; Ding, K.; Qiao, Y.; Zhang, L.; Zheng, L.; Pan, T.; Zhang, L. Flavonoids Regulate Inflammation and Oxidative Stress in Cancer. Molecules 2020, 25, 5628. [Google Scholar] [CrossRef]
- Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother. 2022, 146, 112442. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhao, F.; Yuan, J.; Liu, H.; Wang, Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Loveikyte, R.; Bourgonje, A.R.; van Goor, H.; Dijkstra, G.; van der Meulen-de Jong, A.E. The effect of iron therapy on oxidative stress and intestinal microbiota in inflammatory bowel diseases: A review on the conundrum. Redox Biol. 2023, 68, 102950. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef]
- Circu, M.L.; Aw, T.Y. Intestinal redox biology and oxidative stress. Semin. Cell Dev. Biol. 2012, 23, 729–737. [Google Scholar] [CrossRef]
- Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Campbell, E.L.; Colgan, S.P. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 106–120. [Google Scholar]
- Patlevič, P.; Vašková, J.; Švorc, P., Jr.; Vaško, L.; Švorc, P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res. 2016, 5, 250–258. [Google Scholar] [CrossRef]
- Xiang, X.; Wang, H.; Zhou, W.; Wang, C.; Guan, P.; Xu, G.; Zhao, Q.; He, L.; Yin, Y.; Li, T. Glutathione Protects against Paraquat-Induced Oxidative Stress by Regulating Intestinal Barrier, Antioxidant Capacity, and CAR Signaling Pathway in Weaned Piglets. Nutrients 2022, 15, 198. [Google Scholar] [CrossRef]
- Stojiljković, V.; Pejić, S.; Kasapović, J.; Gavrilović, L.; Stojiljković, S.; Nikolić, D.; Pajović, S.B. Glutathione redox cycle in small intestinal mucosa and peripheral blood of pediatric celiac disease patients. An. Acad. Bras. Cienc. 2012, 84, 175–184. [Google Scholar]
- Huang, C.; De Ravin, S.S.; Paul, A.R.; Heller, T.; Ho, N.; Wu Datta, L.; Zerbe, C.S.; Marciano, B.E.; Kuhns, D.B.; Kader, H.A.; et al. Genetic Risk for Inflammatory Bowel Disease Is a Determinant of Crohn’s Disease Development in Chronic Granulomatous Disease. Inflamm. Bowel Dis. 2016, 22, 2794–2801. [Google Scholar]
- Hebuterne, X.; Filippi, J.; Schneider, S.M. Nutrition in adult patients with inflammatory bowel disease. Curr. Drug Targets 2014, 15, 1030–1038. [Google Scholar] [CrossRef]
- Hering, N.A.; Fromm, M.; Schulzke, J.D. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J. Physiol. 2012, 590, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Capaldo, C.T.; Nusrat, A. Cytokine regulation of tight junctions. Biochim. Biophys. Acta 2009, 1788, 864–871. [Google Scholar]
- Tolstanova, G.; Deng, X.; French, S.W.; Lungo, W.; Paunovic, B.; Khomenko, T.; Ahluwalia, A.; Kaplan, T.; Dacosta-Iyer, M.; Tarnawski, A.; et al. Early endothelial damage and increased colonic vascular permeability in the development of experimental ulcerative colitis in rats and mice. Lab. Investig. 2012, 92, 9–21. [Google Scholar]
- Brown, I.A.; McClain, J.L.; Watson, R.E.; Patel, B.A.; Gulbransen, B.D. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 77–91. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, E.H.; Hahm, K.B. Oxidative stress in inflammation-based gastrointestinal tract diseases: Challenges and opportunities. J. Gastroenterol. Hepatol. 2012, 27, 1004–1010. [Google Scholar] [CrossRef]
- Stavely, R.; Ott, L.C.; Rashidi, N.; Sakkal, S.; Nurgali, K. The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders. Biomolecules 2023, 13, 1586. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Bian, Y.; Liu, L.; Liu, L.; Liu, X.; Ma, S. Molecular pathways associated with oxidative stress and their potential applications in radiotherapy. Int. J. Mol. Med. 2022, 49, 65. [Google Scholar] [CrossRef] [PubMed]
- Galati, G.; Tafazoli, S.; Sabzevari, O.; Chan, T.S.; O’Brien, P.J. Idiosyncratic NSAID drug induced oxidative stress. Chem.-Biol. Interact. 2002, 142, 25–41. [Google Scholar] [CrossRef]
- De Vries, D.K.; Kortekaas, K.A.; Tsikas, D.; Wijermars, L.G.; van Noorden, C.J.; Suchy, M.T.; Cobbaert, C.M.; Klautz, R.J.; Schaapherder, A.F.; Lindeman, J.H. Oxidative damage in clinical ischemia/reperfusion injury: A reappraisal. Antioxid. Redox Signal. 2013, 19, 535–545. [Google Scholar] [CrossRef]
- Bauer, A.J.; Boeckxstaens, G.E. Mechanisms of postoperative ileus. Neurogastroenterol. Motil. 2004, 16, 54–60. [Google Scholar] [CrossRef]
- Prasad, R.; Kowalczyk, J.; Meimaridou, E.; Storr, H.; Metherell, L. Oxidative stress and adrenocortical insufficiency. J. Endocrinol. 2014, 221, 63. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, B.; Xie, H.; Du, C.; Tang, J.; Tang, W. Intrauterine exposure to oxidative stress induces caspase-1-dependent enteric nerve cell pyroptosis. Pediatr. Surg. Int. 2022, 38, 1555–1567. [Google Scholar] [CrossRef]
- Torres, J.; Mehandru, S.; Colombel, J.-F.; Peyrin-Biroulet, L. Crohn’s Disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef]
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.-F. Ulcerative Colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- Hackam, D.J.; Sodhi, C.P.; Good, M. New insights into necrotizing enterocolitis: From laboratory observation to personalized prevention and treatment. J. Pediatr. Surg. 2019, 54, 398–404. [Google Scholar] [CrossRef]
- Silva, K.D.A.; Nunes, J.P.S.; Andrieux, P.; Brochet, P.; Almeida, R.R.; Kuramoto Takara, A.C.K.; Pereira, N.B.; Abel, L.; Cobat, A.; Zaniratto, R.C.F. Chagas Disease Megaesophagus Patients Carrying Variant MRPS18B P260A Display Nitro-Oxidative Stress and Mitochondrial Dysfunction in Response to IFN-γ; Stimulus. Biomedicines 2022, 10, 2215. [Google Scholar] [CrossRef]
- Weimers, P.; Munkholm, P. The Natural History of IBD: Lessons Learned. Curr. Treat. Options Gastroenterol. 2018, 16, 101–111. [Google Scholar] [CrossRef]
- Yalchin, M.; Baker, A.M.; Graham, T.A.; Hart, A. Predicting Colorectal Cancer Occurrence in IBD. Cancers 2021, 13, 2908. [Google Scholar] [CrossRef]
- Ullman, T.A.; Itzkowitz, S.H. Intestinal inflammation and cancer. Gastroenterology 2011, 140, 1807–1816. [Google Scholar] [CrossRef]
- Peng, D.; Zaika, A.; Que, J.; El-Rifai, W. The antioxidant response in Barrett’s tumorigenesis: A double-edged sword. Redox Biol. 2021, 41, 101894. [Google Scholar] [CrossRef]
- McQuade, R.M.; Carbone, S.E.; Stojanovska, V.; Rahman, A.; Gwynne, R.M.; Robinson, A.M.; Goodman, C.A.; Bornstein, J.C.; Nurgali, K. Role of oxidative stress in oxaliplatin-induced enteric neuropathy and colonic dysmotility in mice. Br. J. Pharmacol. 2016, 173, 3502–3521. [Google Scholar] [CrossRef]
- Al-Asmari, A.K.; Khan, A.Q.; Al-Asmari, S.A.; Al-Rawi, A.; Al-Omani, S. Alleviation of 5-fluorouracil-induced intestinal mucositis in rats by vitamin E via targeting oxidative stress and inflammatory markers. J. Complement. Integr. Med. 2016, 13, 377–385. [Google Scholar] [CrossRef]
- Musa, A.E.; Shabeeb, D.; Alhilfi, H.S.Q. Protective effect of melatonin against radiotherapy-induced small intestinal oxidative stress: Biochemical evaluation. Medicina 2019, 55, 308. [Google Scholar] [CrossRef]
- Nagano, Y.; Matsui, H.; Shimokawa, O.; Hirayama, A.; Tamura, M.; Nakamura, Y.; Kaneko, T.; Rai, K.; Indo, H.; Majima, H. Rebamipide attenuates nonsteroidal anti-inflammatory drugs (NSAID) induced lipid peroxidation by the manganese superoxide dismutase (MnSOD) overexpression in gastrointestinal epithelial cells. J. Physiol. Pharmacol. 2012, 63, 137. [Google Scholar]
- Samak, G.; Gangwar, R.; Meena, A.S.; Rao, R.G.; Shukla, P.K.; Manda, B.; Narayanan, D.; Jaggar, J.H.; Rao, R. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers. Sci. Rep. 2016, 6, 38899. [Google Scholar] [CrossRef]
- Sasaki, M.; Joh, T. Oxidative stress and ischemia-reperfusion injury in gastrointestinal tract and antioxidant, protective agents. J. Clin. Biochem. Nutr. 2007, 40, 1–12. [Google Scholar] [CrossRef]
- Matsumoto, K.; Kawanaka, H.; Hori, M.; Kusamori, K.; Utsumi, D.; Tsukahara, T.; Amagase, K.; Horie, S.; Yamamoto, A.; Ozaki, H. Role of transient receptor potential melastatin 2 in surgical inflammation and dysmotility in a mouse model of postoperative ileus. Am. J. Physiol.-Gastrointest. Liver Physiol. 2018, 315, G104–G116. [Google Scholar] [CrossRef]
- Sahakian, L.; Filippone, R.T.; Stavely, R.; Robinson, A.M.; Yan, X.S.; Abalo, R.; Eri, R.; Bornstein, J.C.; Kelley, M.R.; Nurgali, K. Inhibition of APE1/Ref-1 redox signaling alleviates intestinal dysfunction and damage to myenteric neurons in a mouse model of spontaneous chronic colitis. Inflamm. Bowel Dis. 2021, 27, 388–406. [Google Scholar]
- Aydemir, C.; Dilli, D.; Uras, N.; Ulu, H.O.; Oguz, S.S.; Erdeve, O.; Dilmen, U. Total oxidant status and oxidative stress are increased in infants with necrotizing enterocolitis. J. Pediatr. Surg. 2011, 46, 2096–2100. [Google Scholar] [CrossRef]
- Carini, F.; Mazzola, M.; Rappa, F.; Jurjus, A.; Geagea, A.G.; Al Kattar, S.; Bou-Assi, T.; Jurjus, R.; Damiani, P.; Leone, A. Colorectal carcinogenesis: Role of oxidative stress and antioxidants. Anticancer Res. 2017, 37, 4759–4766. [Google Scholar]
- Jiménez, P.; Piazuelo, E.; Sánchez, M.T.; Ortego, J.; Soteras, F.; Lanas, A. Free radicals and antioxidant systems in reflux esophagitis and Barrett’s esophagus. World J. Gastroenterol. 2005, 11, 2697–2703. [Google Scholar]
- Bao, S.; Carr, E.D.; Xu, Y.H.; Hunt, N.H. Gp91(phox) contributes to the development of experimental inflammatory bowel disease. Immunol. Cell Biol. 2011, 89, 853–860. [Google Scholar] [PubMed]
- Strober, W.; Fuss, I.J.; Blumberg, R.S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 2002, 20, 495–549. [Google Scholar] [CrossRef]
- Baydi, Z.; Limami, Y.; Khalki, L.; Zaid, N.; Naya, A.; Mtairag, E.M.; Oudghiri, M.; Zaid, Y. An Update of Research Animal Models of Inflammatory Bowel Disease. Sci. World J. 2021, 2021, 7479540. [Google Scholar] [CrossRef]
- Powrie, F.; Mason, D. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: Prevention by the OX-22low subset. J. Exp. Med. 1990, 172, 1701–1708. [Google Scholar]
- Mombaerts, P.; Mizoguchi, E.; Grusby, M.J.; Glimcher, L.H.; Bhan, A.K.; Tonegawa, S. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 1993, 75, 274–282. [Google Scholar] [CrossRef]
- Kühn, R.; Löhler, J.; Rennick, D.; Rajewsky, K.; Müller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993, 75, 263–274. [Google Scholar] [CrossRef]
- Khor, B.; Gardet, A.; Xavier, R.J. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011, 474, 307–317. [Google Scholar] [CrossRef]
- Pizarro, T.T.; Arseneau, K.O.; Cominelli, F. Lessons from genetically engineered animal models XI. Novel mouse models to study pathogenic mechanisms of Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 278, G665–G669. [Google Scholar] [CrossRef] [PubMed]
- Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 2014, 104, 15–25. [Google Scholar] [CrossRef]
- da Silva, M.S.; Sánchez-Fidalgo, S.; Talero, E.; Cárdeno, A.; da Silva, M.A.; Villegas, W.; Souza Brito, A.R.; de La Lastra, C.A. Anti-inflammatory intestinal activity of Abarema cochliacarpos (Gomes) Barneby & Grimes in TNBS colitis model. J. Ethnopharmacol. 2010, 128, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Kojima, R.; Kuroda, S.; Ohkishi, T.; Nakamaru, K.; Hatakeyama, S. Oxazolone-induced colitis in BALB/C mice: A new method to evaluate the efficacy of therapeutic agents for ulcerative colitis. J. Pharmacol. Sci. 2004, 96, 307–313. [Google Scholar] [CrossRef]
- Corazza, N.; Eichenberger, S.; Eugster, H.P.; Mueller, C. Nonlymphocyte-derived tumor necrosis factor is required for induction of colitis in recombination activating gene (RAG)2(−/−) mice upon transfer of CD4(+)CD45RB(hi) T cells. J. Exp. Med. 1999, 190, 1479–1492. [Google Scholar]
- Datta, K.; Suman, S.; Kallakury, B.V.S.; Fornace, A.J., Jr. Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine. PLoS ONE 2012, 7, e42224. [Google Scholar] [CrossRef]
- Kosiewicz, M.M.; Nast, C.C.; Krishnan, A.; Rivera-Nieves, J.; Moskaluk, C.A.; Matsumoto, S.; Kozaiwa, K.; Cominelli, F. Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn’s disease. J. Clin. Investig. 2001, 107, 695–702. [Google Scholar] [PubMed]
- Crespo, I.; San-Miguel, B.; Mauriz, J.L.; Ortiz de Urbina, J.J.; Almar, M.; Tuñón, M.J.; González-Gallego, J. Protective Effect of Protocatechuic Acid on TNBS-Induced Colitis in Mice Is Associated with Modulation of the SphK/S1P Signaling Pathway. Nutrients 2017, 9, 288. [Google Scholar] [CrossRef]
- Nemoto, Y.; Kanai, T.; Makita, S. Bone marrow retaining colitogenic CD4+ T cells may be a pathogenic reservoir for chronic colitis. Gastroenterology 2007, 132, 176–189. [Google Scholar] [CrossRef]
- Nemoto, Y.; Kanai, T.; Kameyama, K. Long-lived colitogenic CD4+ memory T cells residing outside the intestine participate in the perpetuation of chronic colitis. J. Immunol. 2009, 183, 5059–5068. [Google Scholar] [PubMed]
- Nemoto, Y.; Kanai, T.; Shinohara, T. Luminal CD4+ T cells penetrate gut epithelial monolayers and egress from lamina propria to blood circulation. Gastroenterology 2011, 141, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, Y.; Kanai, T.; Takahara, M. Bone marrow-mesenchymal stem cells are a major source of interleukin-7 and sustain colitis by forming the niche for colitogenic CD4 memory T cells. Gut 2013, 62, 1142–1152. [Google Scholar] [CrossRef]
- Pickert, G.; Neufert, C.; Leppkes, M. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 2009, 206, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Kaser, A.; Lee, A.H.; Franke, A. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008, 134, 743–756. [Google Scholar] [CrossRef]
- Adolph, T.E.; Tomczak, M.F.; Niederreiter, L. Paneth cells as a site of origin for intestinal inflammation. Nature 2013, 503, 272–276. [Google Scholar] [CrossRef]
- Garrett, W.S.; Lord, G.M.; Punit, S. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 2007, 131, 33–45. [Google Scholar] [CrossRef]
- Panwala, C.M.; Jones, J.C.; Viney, J.L. A novel model of inflammatory bowel disease: Mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J. Immunol. 1998, 161, 5733–5744. [Google Scholar] [CrossRef]
- Resta-Lenert, S.; Smitham, J.; Barrett, K.E. Epithelial dysfunction associated with the development of colitis in conventionally housed mdr1a−/− mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 289, G153–G162. [Google Scholar]
- Collett, A.; Tanianis-Hughes, J.; Carlson, G.L. Comparison of P-glycoprotein-mediated drug-digoxin interactions in Caco-2 with human and rodent intestine: Relevance to in vivo prediction. Eur. J. Pharm. Sci. 2005, 26, 386–393. [Google Scholar]
- Velcich, A.; Yang, W.; Heyer, J. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002, 295, 1726–1729. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluis, M.; De Koning, B.A. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006, 131, 117–129. [Google Scholar] [CrossRef]
- Wen, C.; Chen, D.; Zhong, R.; Peng, X. Animal models of inflammatory bowel disease: Category and evaluation indexes. Gastroenterol. Rep. 2024, 12, goae021. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Baeza, Y.; Hyde, E.R.; Suchodolski, J.S.; Knight, R. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat. Microbiol. 2016, 1, 16177. [Google Scholar] [CrossRef]
- Nielsen, T.S.; Fredborg, M.; Theil, P.K.; Yue, Y.; Bruhn, L.V.; Andersen, V.; Purup, S. Dietary Red Meat Adversely Affects Disease Severity in a Pig Model of DSS-Induced Colitis Despite Reduction in Colonic Pro-Inflammatory Gene Expression. Nutrients 2020, 9, 1728. [Google Scholar] [CrossRef]
- Pistol, G.C.; Bulgaru, C.V.; Marin, D.E.; Oancea, A.G.; Taranu, I. Dietary Grape Seed Meal Bioactive Compounds Alleviate Epithelial Dysfunctions and Attenuates Inflammation in Colon of DSS-Treated Piglets. Foods 2021, 10, 530. [Google Scholar] [CrossRef]
- Roediger, W.E.W. Causation of human ulcerative colitis: A lead from an animal model that mirrors human disease. JGH Open 2019, 3, 277–280. [Google Scholar] [CrossRef]
- Wang, J.; Lv, M.; He, L.; Wang, X.; Lan, Y.; Chen, J.; Chen, M.; Zhang, C.; Tang, R.; Zhou, D.; et al. Transcriptomic landscape of persistent diarrhoea in rhesus macaques and comparison with humans and mouse models with inflammatory bowel disease. Gene 2021, 800, 145837. [Google Scholar] [CrossRef]
- Flores, E.M.; Nguyen, A.T.; Odem, M.A.; Eisenhoffer, G.T.; Krachler, A.M. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell. Microbiol. 2020, 22, e13152. [Google Scholar] [CrossRef] [PubMed]
- Uyttebroek, L.; Pype, C.; Hubens, G.; Timmermans, J.P.; Van Nassauw, L. Effect of TNBS-induced colitis on enteric neuronal subpopulations in adult zebrafish. Eur. J. Histochem. 2020, 64, 3161. [Google Scholar] [CrossRef]
- Di Paola, D.; Natale, S.; Iaria, C.; Cordaro, M.; Crupi, R.; Siracusa, R.; D’Amico, R.; Fusco, R.; Impellizzeri, D.; Cuzzocrea, S.; et al. Intestinal Disorder in Zebrafish Larvae (Danio rerio): The Protective Action of N-Palmitoylethanolamide-oxazoline. Life 2022, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Hanyang, L.; Xuanzhe, L.; Xuyang, C.; Yujia, Q.; Jiarong, F.; Jun, S.; Zhihua, R. Application of Zebrafish Models in Inflammatory Bowel Disease. Front. Immunol. 2017, 8, 501. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Clark, C.W.; Conlin, S.M.; Brown, S.E.; Timme-Laragy, A.R. Mapping glutathione utilization in the developing zebrafish (Danio rerio) embryo. Redox Biol. 2019, 26, 101235. [Google Scholar] [CrossRef]
- Massarsky, A.; Kozal, J.S.; Di Giulio, R.T. Glutathione and zebrafish: Old assays to address a current issue. Chemosphere 2017, 168, 707–715. [Google Scholar] [CrossRef]
- Lin, C.H.; Hwang, P.P. The Control of Calcium Metabolism in Zebrafish (Danio rerio). Int. J. Mol. Sci. 2016, 17, 1783. [Google Scholar] [CrossRef]
- Lin, J.; Hackam, D.J. Worms, flies and four-legged friends: The applicability of biological models to the understanding of intestinal inflammatory diseases. Dis. Model. Mech. 2011, 4, 447–456. [Google Scholar] [CrossRef]
- Buchon, N.; Broderick, N.A.; Poidevin, M.; Pradervand, S.; Lemaitre, B. Drosophila intestinal response to bacterial infection: Activation of host defense and stem cell proliferation. Cell Host Microbe 2009, 5, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Madi, J.R.; Outa, A.A.; Ghannam, M.; Hussein, H.M.; Shehab, M.; Hasan, Z.A.K.H.; Fayad, A.A.; Shirinian, M.; Rahal, E.A. Drosophila melanogaster as a Model System to Assess the Effect of Epstein-Barr Virus DNA on Inflammatory Gut Diseases. Front. Immunol. 2021, 12, 586930. [Google Scholar] [CrossRef]
- Haerty, W.; Artieri, C.; Khezri, N.; Singh, R.S.; Gupta, B.P. Comparative analysis of function and interaction of transcription factors in nematodes: Extensive conservation of orthology coupled to rapid sequence evolution. BMC Genom. 2008, 9, 399. [Google Scholar] [CrossRef]
- Aboobaker, A.A.; Blaxter, M.L. Medical significance of Caenorhabditis elegans. Ann. Med. 2000, 32, 23–30. [Google Scholar] [CrossRef]
- Heylen, M.; Ruyssers, N.E.; Gielis, E.M.; Vanhomwegen, E.; Pelckmans, P.A.; Moreels, T.G.; De Man, J.G.; De Winter, B.Y. Of worms, mice and man: An overview of experimental and clinical helminth-based therapy for inflammatory bowel disease. Pharmacol. Ther. 2014, 143, 153–167. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, S.; Wadhwa, J. Improved uptake and therapeutic intervention of curcumin via designing binary lipid nanoparticulate formulation for oral delivery in inflammatory bowel disorder. Artif. Cells Nanomed. Biotechnol. 2019, 47, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, C.; Zhang, C.; Luo, Y.; Cheng, Q.; Yu, L.; Sun, Z. Evaluation of the Effects of Different Bacteroides vulgatus Strains against DSS-Induced Colitis. J. Immunol. Res. 2021, 2021, 9117805. [Google Scholar] [CrossRef]
- Lei, H.; Johnson, L.A.; Eaton, K.A.; Liu, S.; Ni, J.; Wang, X.; Higgins, P.D.R.; Xu, G. Characterizing intestinal strictures of Crohn’s disease in vivo by endoscopic photoacoustic imaging. Biomed. Opt. Express 2019, 10, 2542–2555. [Google Scholar] [CrossRef]
- Otoni, C.C.; Heilmann, R.M.; García-Sancho, M.; Sainz, A.; Ackermann, M.R.; Suchodolski, J.S.; Steiner, J.M.; Jergens, A.E. Serologic and fecal markers to predict response to induction therapy in dogs with idiopathic inflammatory bowel disease. J. Vet. Intern. Med. 2018, 32, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, X.J.; Su, S.L.; Yan, H.; Guo, S.; Qian, D.W.; Duan, J.A. Evaluation of Anti-Inflammatory and Antioxidant Effectsof Chrysanthemum Stem and Leaf Extract on Zebrafish Inflammatory Bowel Disease Model. Molecules 2022, 27, 2114. [Google Scholar] [CrossRef] [PubMed]
Substance | Mechanism of Action | Author and Year |
---|---|---|
Superoxide dismutase | Superoxide dismutase converts superoxide radicals to hydrogen peroxide and molecular oxygen, reducing oxidative stress. | Rampon et al., 2018 [10] |
Superoxide dismutase | Superoxide dismutase inhibits the production of pro-inflammatory cytokines, reducing colitis symptoms. | Liang et al., 2022 [11] |
Glutathione (GSH) | Glutathione protects against reactive oxygen and nitrogen species, playing a crucial role in maintaining redox homeostasis and regulating immune responses. | Vašková et al., 2023 [12] |
Glutathione peroxidase (GPx) | Glutathione peroxidase regulates Th17 lymphocyte differentiation, promoting immune regulation and antioxidant defenses. | Morris et al., 2022 [13] |
Catalase | Low catalase levels reduce autophagy-dependent cell death, which may exacerbate conditions like Crohn’s disease. | Iborra et al., 2022 [14] |
Vitamin C | Vitamin C improves neutrophil chemokinesis and chemotaxis, enhancing immune response. | Elste et al., 2017 [15] |
Vitamin E | Vitamin E inhibits reactive oxygen species production during fat oxidation and free radical reactions. | Rizvi et al., 2014 [16] |
Zinc | Zinc deficiency increases pro-inflammatory cytokines like TNF-α and IL-6, impacting immune function. | Gammoh et al., 2017 [17] |
Selenium | Selenium affects immune cells by influencing antioxidant functions and signaling pathways in cells like NK cells and T lymphocytes. | Avery et al., 2018 [18] |
Betacarotene | Betacarotene scavenges superoxide radicals and quenches singlet oxygen, reducing oxidative stress. | Miazek et al., 2022 [19] |
Betacarotene | Betacarotene reduces inflammation by downregulating the TLR4 signaling pathway. | Cheng et al., 2021 [20] |
Flavonoids | Flavonoids inhibit the NF-κB cascade, which is involved in inflammatory responses. | Li et al., 2020 [21] |
Flavonoids | Flavonoids chelate metal ions, uptake reactive oxygen species, and stimulate detoxification enzymes. | Slika et al., 2022 [22] |
Short-chain fatty acids (e.g., butyrate) produced by gut bacteria | Certain gut bacteria ferment dietary fiber to produce short-chain fatty acids; butyrate stimulates mitochondrial biogenesis, improves respiratory capacity, and activates antioxidant enzyme activity, enhancing antioxidant defenses and modulating redox signaling. | Zhao et al., 2023 [23] |
Metal-binding proteins (ceruloplasmin, ferritin) | Ceruloplasmin oxidizes ferrous iron to ferric iron and binds it to transferrin for safe transport, while ferritin stores iron within enterocytes. By sequestering free iron, these proteins limit iron-mediated production of reactive oxygen species. | Loveikyte et al., 2023 [24] |
Pathology | Mechanism of Action | Author and Year |
---|---|---|
Drug/Toxin Exposure—Chemotherapy | Chemotherapy causes excessive production of ROS, leading to intestinal side effects such as mucositis. ROS and inflammatory mediators contribute to tissue damage in the gut. | McQuade et al., 2016 [54] Al-Asmari et al., 2016 [55] |
Drug/Toxin Exposure—Radiotherapy | Radiation reduces the body’s enzymatic antioxidant defenses, impairing the ability to neutralize oxidative stress, which may cause long-term damage to the gut. | Musa et al., 2019 [56] |
Drug/Toxin Exposure—NSAIDs | NSAIDs like indomethacin increase mitochondrial superoxide and xanthine oxidase levels in colonic epithelial cells, leading to higher superoxide production and oxidative stress. | Nagano et al., 2012 [57] |
Drug/Toxin Exposure—Alcohol | Alcohol metabolites like ethanol and acetaldehyde cause oxidative stress in epithelial cells, disrupting tight junction integrity and raising superoxide levels, leading to increased gut permeability. | Samak et al., 2016 [58] |
Ischemia–Reperfusion | During intestinal ischemia–reperfusion, xanthine dehydrogenase converts to xanthine oxidase, which produces free radicals upon reoxygenation, leading to oxidative stress and tissue injury. | Sasaki et al., 2007 [59] |
Postoperative Injury | Oxidative stress can occur independently of inflammation after tissue injury, possibly promoting further inflammation in postoperative injury scenarios. | Matsumoto et al., 2018 [60] |
Congenital Pathologies—Triple-A syndrome | In Triple-A syndrome, mutations in the AAAS gene disrupt the redox balance, increasing susceptibility to oxidative stress-induced cell death, particularly in tumors. | Prasad et al., 2014 [44] |
Congenital Pathologies—Hirschsprung’s disease | Oxidative stress during development impairs the formation of the enteric nervous system, contributing to congenital pathologies like Hirschsprung’s disease. | Zhou et al., 2022 [45] |
Inflammation—Inflammatory bowel disease | Oxidative stress plays a significant role in IBD, leading to chronic inflammation and tissue damage in colitis models. | Sahakian et al., 2021 [61] |
Inflammation—Necrotizing enterocolitis | Elevated oxidant levels are observed in patients with necrotizing enterocolitis, contributing to oxidative damage and inflammation in the gut. | Aydemir et al., 2011 [62] |
Infection | The MRPS18B P260A variant in Chagas megaesophagus patients affects mitochondrial function and induces nitro-oxidative stress, exacerbating the disease. | Silva et al., 2022 [49] |
Cancer | In colorectal cancer, free radicals from various sources induce oxidative stress, leading to genomic instability and transforming normal colon cells into dysplastic and neoplastic cells. | Carini et al., 2017 [63] |
Cancer | In Barrett’s esophagus, oxidative stress is indicated by high levels of peroxynitrite, superoxide, and glutathione, which contribute to tissue damage and may lead to esophageal cancer. | Jiménez et al., 2005 [64] |
Species/Strain | Induction/Intervention Method | Oxidative Stress Markers Assessed | Main Outcomes | Limitations | Author and Year |
---|---|---|---|---|---|
Mouse (various; commonly C57BL/6/BALB/c) | DSS-induced colitis | Not reported | Epithelial denudation, barrier disruption, acute inflammation with increased ROS and lipid peroxidation | Models acute injury; limited chronicity; dosing/time dependence | Chassaing et al., 2014 [73] |
Rat/Mouse | TNBS-induced colitis | MPO (Myeloperoxidase) | Th1-mediated colitis; oxidative injury with elevated ROS/MPO and mucosal damage | Sensitization-dependent; variability in severity; solvent effects | da Silva et al., 2010 [74] |
Mouse (BALB/c) | Oxazolone-induced colitis | Not reported | Th2/NKT-driven colitis mimicking UC features; mucosal inflammation, microulcerations | Primarily distal colon; model reproducibility varies | Kojima et al., 2004 [75] |
Mouse (Rag2−/− recipients) | Adoptive CD4+ T-cell transfer | Not reported | Chronic colitis via Th1 effector responses; sustained inflammation | Requires immunodeficient hosts; labor-intensive | Corazza et al., 1999 [76] |
Mouse (C57BL/6J; 6 to 8 weeks; female) | Heavy-ion radiation-induced intestinal oxidative stress in mice | Intracellular ROS, mitochondrial superoxide, NADPH oxidase activity, mitochondrial membrane potential, DNA oxidative damage, mitotic activity | ^56Fe radiation caused persistent increases in mitochondrial ROS, enhanced NADPH oxidase activity, mitochondrial dysfunction, and oxidative DNA damage in intestinal epithelial cells compared with γ-irradiation | Only one post-exposure time point (1 year); no assessment of early dynamic changes; applicability limited to radiation-induced oxidative stress | Datta et al., 2012 [77] |
Mouse (SAMP1/YitFc) | Spontaneous mutation model | Not reported | Spontaneous CD-like ileitis; chronic inflammation; extraintestinal features | Strain-specific; limited availability | Kosiewicz et al., 2001 [78] |
Mice (TNBS model) | Colitis induced with TNBS; treatment with Protocatechuic Acid (PCA) | GSH, GSSG/GSH ratio, SOD, CAT, Nrf2 expression | TNBS colitis decreased antioxidant defenses (↓ GSH, ↓ SOD, ↓ CAT, ↓ Nrf2). PCA treatment restored antioxidant enzyme activity, improved GSH balance, and reduced oxidative stress and inflammation | Only one antioxidant compound tested; short-term study, no long-term outcomes assessed | Crespo et al., 2017 [79] |
Mouse (IL-7 transgenic) | Genetic—IL-7 overexpression | Not reported | Persistence of colitogenic CD4+ memory T cells; chronic colitis | Immune-niche specific; not a pure OS model | Nemoto et al., 2007 [80] Nemoto et al., 2009 [81] Nemoto et al., 2011 [82] Nemoto et al., 2013 [83] |
Mouse (IEC STAT3/IL-22 axis) | Genetic—IL-22 deficiency/impaired STAT3 | Not reported | Defective mucosal healing; worsened colitis | Focused on repair pathways; OS not primary endpoint, but secondary effect | Pickert et al., 2009 [84] |
Mouse (XBP1 in IECs) | Genetic—XBP1 disruption (ER stress) | Not reported | Paneth/goblet cell defects; inflammation driven by ER stress | Emphasizes ER stress; OS not primary endpoint, but secondary effect | Kaser et al., 2008 [85] Adolph et al., 2013 [86] |
Mouse (T-bet−/−Rag2−/−; TRUC) | Genetic—TRUC model | Not reported | Communicable UC-like colitis; microbiota-immune interactions | Complex immune/microbiota interplay; OS not primary endpoint, but secondary effect | Garrett et al., 2007 [87] |
Mouse (Mdr1a−/−) | Genetic—Mdr1a−/− colitis | Not reported | Barrier dysfunction; bacterial translocation; chronic colitis | Transporter-specific; strain housing effects | Panwala et al., 1998 [88] Resta-Lenert et al., 2005 [89] Collett et al., 2005 [90] |
Mouse (Muc2−/−) | Genetic—Muc2−/− deficiency | Not reported | Mucus barrier loss; spontaneous colitis; tumor risk | Strong barrier phenotype; OS readouts often indirect | Velcich et al., 2002 [91] Van der Sluis et al., 2006 [92] |
Species/Strain | Induction/Intervention Method | Oxidative Stress Markers Assessed | Main Outcomes | Limitations | Author and Year |
---|---|---|---|---|---|
Guinea pig | DSS colitis + curcumin C-SLNs | LPO, protein carbonyl, MPO | ↓ leucocyte infiltration, ↓ OS, ↓ TNF-α; preserved colonic structure | Species cost; limited resources | Sharma et al., 2019 [112] |
Guinea pig | DSS colitis + B. vulgatus 7K1 | Not reported | Microbiota modulation; ↓ colitis severity | Probiotic strain specificity; OS not a primary endpoint (secondary/indirect effect) | Li et al., 2021 [113] |
New Zealand White rabbit | DSS colitis; endoscopic monitoring | Not reported | Enables longitudinal endoscopic/bioptic assessment | OS markers not detailed | Lei et al., 2019 [114] |
Dog (spontaneous IBD) | Clinical evaluation | Not OS; fecal canine calprotectin (cCP) | cCP as non-invasive inflammation biomarker | OS markers not measured | Otoni et al., 2018 [115] |
Pig / Piglet | DSS colitis; diet interventions | Mostly inflammatory gene expression; OS not reported | UC-like features; dietary effects on mucosal immunity | High cost; OS readouts variable | Nielsen et al., 2020 [95] |
Rhesus macaque (spontaneous enteritis) | Natural disease | Not reported | Immune expression profiles overlap with human IBD | Limited availability; ethics; OS not a primary endpoint (secondary/indirect effect) | Wang et al., 2021 [98] |
Zebrafish (larvae/juvenile) | DSS/TNBS; toxicants; extracts | Not reported | Mirrors microbiota/immune shifts; neuronal changes in colitis | Developmental stage-dependent | Uyttebroek et al., 2020 [100] |
Zebrafish | Chemical; viral components | Not reported | Innate immunity and epithelial repair pathways in GI inflammation | Invertebrate; translational limits | Hanyang et al., 2017 [102] |
Zebrafish | Bacteria–epithelial interactions | SOD | Conserved TFs/pathways; drug screening utility | No adaptive immunity/circulation | Li et al., 2022 [116] |
Drosophila melanogaster | Chemical; viral components | Not reported | Innate immunity and epithelial repair pathways in GI inflammation | Invertebrate; translational limits | Madi et al., 2021 [108] |
Caenorhabditis elegans | Bacteria–epithelial interactions | Not reported | Conserved TFs/pathways; drug screening utility | No adaptive immunity/circulation | Haerty et al., 2008 [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavel, C.D.; Gales, C.; Pavel, I.A.; Zamfir, C.L. The Relevance of Experimental Models in Assessing the Impact of Oxidative Stress on Intestinal Pathology. J. Clin. Med. 2025, 14, 6569. https://doi.org/10.3390/jcm14186569
Pavel CD, Gales C, Pavel IA, Zamfir CL. The Relevance of Experimental Models in Assessing the Impact of Oxidative Stress on Intestinal Pathology. Journal of Clinical Medicine. 2025; 14(18):6569. https://doi.org/10.3390/jcm14186569
Chicago/Turabian StylePavel, Cristian Dan, Cristina Gales, Irina Andreea Pavel, and Carmen Lăcrămioara Zamfir. 2025. "The Relevance of Experimental Models in Assessing the Impact of Oxidative Stress on Intestinal Pathology" Journal of Clinical Medicine 14, no. 18: 6569. https://doi.org/10.3390/jcm14186569
APA StylePavel, C. D., Gales, C., Pavel, I. A., & Zamfir, C. L. (2025). The Relevance of Experimental Models in Assessing the Impact of Oxidative Stress on Intestinal Pathology. Journal of Clinical Medicine, 14(18), 6569. https://doi.org/10.3390/jcm14186569