An Autologous Human Adipose Stem Cell-Derived 3D Osteogenic Implant for Bone Grafting: From Development to First-in-Human Experience
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.1.1. Lumbar NVD003 Implantation
2.1.2. CSBD Model Implantation of NVD003
2.2. NVD003-CLN01 Study Design and Participants
Study CLN01 Endpoints and Assessments
2.3. Statistical Analysis
2.4. Compassionate Use Program Implantation of NVD003
3. Results
3.1. Manufacturing and Characterization of NVD003
3.2. Preclinical Development of NVD003
3.3. NVD003 in Adults with Recalcitrant Long Bone Non-Union
3.3.1. Efficacy
3.3.2. Safety
3.3.3. Long-Term Follow-Up
3.4. NVD003 in Pediatric Patients with Congenital Pseudarthrosis of the Tibia
3.4.1. Case 1
3.4.2. Case 2
3.4.3. Case 3
3.4.4. Case 4
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASC | Adipose-derived mesenchymal stem cell |
CPT | Congenital pseudarthrosis of the tibia |
CSBD | Critical-sized bone defect |
ECM | Extracellular matrix |
ELISA | Enzyme-linked immunosorbent assay |
eLSS | Extended Lane and Sandhu Scale |
FDA | United States Food and Drug Administration |
GMP | Good Manufacturing Practice |
GS | Grafting surgery |
HA/TCP | Hydroxyapatite/beta-tricalcium phosphate |
IGF-1 | Insulin-like growth factor-1 |
IHC | Immunohistochemistry |
ODD | Orphan Drug Designation |
rhBMP | Recombinant human bone morphogenic protein |
μCT | Micro-computed tomography |
VEGF | Vascular endothelial growth factor |
References
- Tsang, S.J.; Ferreira, N.; Simpson, A. The reconstruction of critical bone loss: The holy grail of orthopaedics. Bone Joint Res. 2022, 11, 409–412. [Google Scholar] [CrossRef]
- Nauth, A.; Schemitsch, E.; Norris, B.; Nollin, Z.; Watson, J.T. Critical-size bone defects: Is there a consensus for diagnosis and treatment? J. Orthop. Trauma. 2018, 32, S7–S11. [Google Scholar] [CrossRef]
- Fuchs, T.; Stolberg-Stolberg, J.; Michel, P.A.; Garcia, P.; Amler, S.; Wahnert, D.; Raschke, M.J. Effect of bone morphogenetic Protein-2 in the treatment of long bone non-unions. J. Clin. Med. 2021, 10, 4597. [Google Scholar] [CrossRef] [PubMed]
- Feltri, P.; Solaro, L.; Di Martino, A.; Candrian, C.; Errani, C.; Filardo, G. Union, complication, reintervention and failure rates of surgical techniques for large diaphyseal defects: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 9098. [Google Scholar] [CrossRef] [PubMed]
- Andrzejowski, P.; Giannoudis, P.V. The ‘diamond concept’ for long bone non-union management. J. Orthop. Traumatol. 2019, 20, 21. [Google Scholar] [CrossRef]
- Ding, Z.C.; Lin, Y.K.; Gan, Y.K.; Tang, T.T. Molecular pathogenesis of fracture nonunion. J. Orthop. Translat 2018, 14, 45–56. [Google Scholar] [CrossRef]
- Mouldavan, F. Recent Trends in Bioprinting. Procedia Manuf. 2019, 32, 95–101. [Google Scholar] [CrossRef]
- Xue, C.; Chen, L.; Wang, N.; Chen, H.; Xu, W.; Xi, Z.; Sun, Q.; Kang, R.; Xie, L.; Liu, X. Stimuli-responsive hydrogels for bone tissue engineering. Biomater. Transl. 2024, 5, 257–273. [Google Scholar]
- Lin, C.H.; Srioudom, J.R.; Sun, W.; Xing, M.; Yan, S.; Yu, L.; Yang, J. The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration. Biomater. Transl. 2024, 5, 236–256. [Google Scholar]
- RISystem. RatFix Surgical Technique Guide. Available online: https://files.designer.hoststar.ch/3a/96/3a96539c-7eed-412c-8071-abb437d77137.pdf (accessed on 8 July 2025).
- Calori, G.M.; Colombo, M.; Mazza, E.L.; Mazzola, S.; Malagoli, E.; Marelli, N.; Corradi, A. Validation of the non-union scoring system in 300 long bone non-unions. Injury 2014, 4, S93–S97. [Google Scholar] [CrossRef]
- Masquelet, A.; Kanakaris, N.K.; Obert, L.; Stafford, P.; Giannoudis, P.V. Bone repair using the masquelet technique. J. Bone Joint Surg. Am. 2019, 101, 1024–1036. [Google Scholar] [CrossRef]
- Lane, J.M.; Sandhu, H.S. Current approaches to experimental bone grafting. Orthop. Clin. N. Am. 1987, 18, 213–225. [Google Scholar] [CrossRef]
- Fleiss, J.L. Measuring nominal scale agreement among many raters. Psychol. Bull. 1971, 76, 378–382. [Google Scholar] [CrossRef]
- Wittauer, M.; Burch, M.A.; McNally, M.; Vandendriessche, T.; Clauss, M.; Della Rocca, G.J.; Giannoudis, P.V.; Metsemakers, W.J.; Morgenstern, M. Definition of long-bone nonunion: A scoping review of prospective clinical trials to evaluate current practice. Injury 2021, 52, 3200–3205. [Google Scholar] [CrossRef] [PubMed]
- Van Royen, K.; Brems, H.; Legius, E.; Lammens, J.; Laumen, A. Prevalence of neurofibromatosis type 1 in congenital pseudarthrosis of the tibia. Eur. J. Pediatr. 2016, 175, 1193–1198. [Google Scholar] [CrossRef]
- Zhu, G.; Zheng, Y.; Liu, Y.; Yan, A.; Hu, Z.; Yang, Y.; Xiang, S.; Li, L.; Chen, W.; Peng, Y.; et al. Identification and characterization of NF1 and non-NF1 congenital pseudarthrosis of the tibia based on germline NF1 variants: Genetic and clinical analysis of 75 patients. Orphanet J. Rare Dis. 2019, 14, 221. [Google Scholar] [CrossRef]
- Shah, H.; Rousset, M.; Canavese, F. Congenital pseudarthrosis of the tibia: Management and complications. Indian. J. Orthop. 2012, 46, 616–626. [Google Scholar] [CrossRef]
- Paley, D. Congenital pseudarthrosis of the tibia: Biological and biomechanical considerations to achieve union and prevent refracture. J. Child. Orthop. 2019, 13, 120–133. [Google Scholar] [CrossRef]
- Rastogi, A.; Agarwal, A. Surgical treatment options for congenital pseudarthrosis of tibia in children: Cross-union versus other options: A systematic review. J. Pediatr. Orthop. B 2022, 31, 139–149. [Google Scholar] [CrossRef]
- Shannon, C.E.; Huser, A.J.; Paley, D. Cross-union surgery for congenital pseudarthrosis of the tibia. Children 2021, 8, 547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fan, M.; Zhang, Y. Revolutionizing bone defect healing: The power of mesenchymal stem cells as seeds. Front. Bioeng. Biotechnol. 2024, 12, 1421674. [Google Scholar] [CrossRef]
- Kim, J.M.; Lin, C.; Stavre, Z.; Greenblatt, M.B.; Shim, J.H. Osteoblast-osteoclast communication and bone homeostasis. Cells 2020, 9, 2073. [Google Scholar] [CrossRef]
- Reible, B.; Schmidmaier, G.; Moghaddam, A.; Westhauser, F. Insulin-like growth factor-1 as a possible alternative to bone morphogenetic protein-7 to induce osteogenic differentiation of human mesenchymal stem cells in vitro. Int. J. Mol. Sci. 2018, 19, 1674. [Google Scholar] [CrossRef]
- Xian, L.; Wu, X.; Pang, L.; Lou, M.; Rosen, C.J.; Qiu, T.; Crane, J.; Frassica, F.; Zhang, L.; Rodriguez, J.P.; et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 2012, 18, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Olsen, B.R. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 2016, 91, 30–38. [Google Scholar] [CrossRef] [PubMed]
- De Pieri, A.; Rochev, Y.; Zeugolis, D.I. Scaffold-free cell-based tissue engineering therapies: Advances, shortfalls and forecast. NPJ Regen. Med. 2021, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Giannoudis, P.V.; Papakostidis, C.; Roberts, C. A review of the management of open fractures of the tibia and femur. J. Bone Joint Surg. Br. 2006, 88, 281–289. [Google Scholar] [CrossRef]
- Flierl, M.A.; Smith, W.R.; Mauffrey, C.; Irgit, K.; Williams, A.E.; Ross, E.; Peacher, G.; Hak, D.J.; Stahel, P.F. Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: A retrospective cohort study in 182 patients. J. Orthop. Surg. Res. 2013, 8, 33. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Liang, W.; Chen, G.; Ma, Y.; Zhou, Y.; Fen, R.; Jiang, K. Efficacy of adjuvant treatment for fracture nonunion/delayed union: A network meta-analysis of randomized controlled trials. BMC Musculoskelet. Disord. 2022, 23, 481. [Google Scholar] [CrossRef]
Parameter | Test Method | Acceptance Criterion |
---|---|---|
Appearance | Visual Inspection | A large patch (or several smaller patches) of whitish moldable 3D putty Absence of observable foreign particulate matter |
Sterility | USP<71>/Ph. Eur. 2.6.1 | No growth |
Mycoplasma | USP<63>/Ph. Eur. 2.6.7 | <10 CFU/mL (limit of detection) |
Endotoxin | USP<85>/Ph. Eur. 2.6.14 | ≤0.5 (endotoxin units/mL) |
Quantity (Mass) | Weighing | Whole quantity (mass) of the drug substance at the time of drug product formulation: ≥26 g |
Quantity (Cellular Density) | Histology | <14.5 (E07 cells/cm3) |
Composition (Fraction of ECM + Cells, Drug Product) | Weighing | Characterization (organic fraction, %) |
Viability (Apoptosis) | IHC CASP3 | ≤5 (% cleaved CASP-3+ cells) |
Viability (Proliferative) | IHC Ki67 | No specification (% Ki-67 + cells) |
Viability (Resting Cells) | IHC (calculated) | ≥70 (%) |
Potency | ELISA VEGF | 0.20–18 (pg/µg protein; secretion after 72 h) |
Potency | ELISA OPG | 16–455 (pg/µg protein; content after 72 h) |
Potency | ELISA IGF1 | 0.40–15 (pg/µg protein; content after 72 h) |
ID | PABE102 | PABE301 | PABE401 | PABE402 | PABE501 | PABE504 | PALU101 | PALU102 | PALU103 |
---|---|---|---|---|---|---|---|---|---|
Sex | Female | Female | Female | Female | Male | Male | Female | Male | Male |
Age (year) | 57 | 73 | 74 | 56 | 46 | 62 | 21 | 44 | 38 |
Weight (kg) | 58 | 72 | 92 | 64 | 88 | 79 | 51 | 82 | 92 |
Primary fracture date (year) | Apr-17 | Oct-16 | Sep-18 | Nov-18 | Nov-14 | Jun-16 | Aug-16 | Jul-13 | Jan-06 |
Primary fracture location | Femur (left) | Femur (right) | Tibia/Fibula (right) | Tibia/Fibula (right) | Femur (Right) | Tibia (left) | Femur (right) | Tibia/Fibula (right) | Femur (left) |
Fracture type | Trauma, closed high-velocity (triple) fracture | Trauma, closed low-velocity fracture | Trauma, closed low-velocity fracture (also including pelvic fracture) | Trauma, closed low-velocity fracture | Trauma, open grade IIIB/IIIC high-velocity fracture | Trauma, closed high-velocity fracture | Trauma, open grade 1 high-velocity fracture (also including rib fracture) | Trauma, open grade IIIB/IIC high-velocity fracture | Trauma, closed high-velocity fracture |
Non-Union Severity Score | 18 | 9 | 16 | 22 | 21 | 13 | 16 | 29 | 15 |
Height/Size of fracture defect (cm) | 0.5–1 | 0.5–1 | >1–≤3 | >3 | 0.5–1 | 0.5–1 | >3 | 0.5–1 | >3 |
Number of previous interventions | 1 | 1 | 3 | 4 | 8 | 6 | 1 | 18 | 4 |
Important medical history | Osteoporosis of the spine (2018), osteopenia of the hip (2018) | Bone resorption (2019) | Wound debridement and removal of initial bone graft (2018) | Left femoral fracture (1976), distal left tibial fracture (1980) | Osteomyelitis (2015–2017), multiple surgical site infections, device failures, and reinterventions with changes of fixation devices (2015–2017) | Osteomyelitis (2005–2019), arthrotic discopathy L4-L5 and L5-S1 (2019) | |||
Date grafting surgery | 12-Dec-18 | 07-Jan-19 | 27-Feb-20 | 08-May-20 | 15-Feb-19 | 20-Dec-19 | 16-Jan-19 | 04-Jul-19 | 15-Apr-20 |
Volume NVD003 used (cc) | 13.7 | 9.3 | 16.5 | 16.8 | 11.4 | 15.8 | 17.9 | 16.6 | 17.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerich, T.; Docquier, P.-L.; Carrino, J.A.; Boesen, M.; Schmid, N.; Hsu, G.; Yea, J.-H.; James, A.; Ashworth, J.; Episkopou, H.; et al. An Autologous Human Adipose Stem Cell-Derived 3D Osteogenic Implant for Bone Grafting: From Development to First-in-Human Experience. J. Clin. Med. 2025, 14, 6436. https://doi.org/10.3390/jcm14186436
Gerich T, Docquier P-L, Carrino JA, Boesen M, Schmid N, Hsu G, Yea J-H, James A, Ashworth J, Episkopou H, et al. An Autologous Human Adipose Stem Cell-Derived 3D Osteogenic Implant for Bone Grafting: From Development to First-in-Human Experience. Journal of Clinical Medicine. 2025; 14(18):6436. https://doi.org/10.3390/jcm14186436
Chicago/Turabian StyleGerich, Torsten, Pierre-Louis Docquier, John A. Carrino, Mikael Boesen, Nadine Schmid, Ginny Hsu, Ji-Hye Yea, Aaron James, Judy Ashworth, Hara Episkopou, and et al. 2025. "An Autologous Human Adipose Stem Cell-Derived 3D Osteogenic Implant for Bone Grafting: From Development to First-in-Human Experience" Journal of Clinical Medicine 14, no. 18: 6436. https://doi.org/10.3390/jcm14186436
APA StyleGerich, T., Docquier, P.-L., Carrino, J. A., Boesen, M., Schmid, N., Hsu, G., Yea, J.-H., James, A., Ashworth, J., Episkopou, H., & Dufrane, D. (2025). An Autologous Human Adipose Stem Cell-Derived 3D Osteogenic Implant for Bone Grafting: From Development to First-in-Human Experience. Journal of Clinical Medicine, 14(18), 6436. https://doi.org/10.3390/jcm14186436