High-Energy Lasers in Oral Oncology: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
1.1. Rationale
1.2. Aims
2. Methods
2.1. Focused Question
2.2. Search Strategy
2.3. Risk of Bias in Individual Studies
2.4. Data Analysis and Outcome Measures
3. Results
3.1. Risk of Bias Assessment
3.2. GRADE Assessment of the Quality of Evidence on the Clinical Efficacy of Laser Systems for OSCC
4. Discussion
4.1. Results in the Context of Other Studies
4.2. Comparative Efficiency: Laser Versus Traditional Methods
Results of the Meta-Analysis
4.3. Specific Clinical Scenarios and Adjuvant Use of Lasers
4.4. Subgroup Analysis of Effectiveness Depending on the Type of Laser Used
4.5. Analysis of the Asymmetry of Publication Sources
4.6. Limitations
4.7. Clinical Implications
4.8. Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
CI | Confidence Interval |
CO2 | Carbon Dioxide (laser) |
EORTC QLQ-C30 | European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 |
Er,Cr:YSGG | Erbium, Chromium-doped Yttrium Scandium Gallium Garnet (laser) |
Er:YAG | Erbium-doped Yttrium Aluminum Garnet (laser) |
F | F-statistic |
HR | Hazard Ratio |
I2 | I-squared statistic (heterogeneity indicator) |
IL-1β | Interleukin-1 beta |
LLLT | Low-Level Laser Therapy |
MDADI | MD Anderson Dysphagia Inventory |
Nd:YAG | Neodymium-doped Yttrium Aluminum Garnet (laser) |
OR | Odds Ratio |
OSCC | Oral Squamous Cell Carcinoma |
PICO | Population, Intervention, Comparison, Outcome |
PDT | Photodynamic Therapy |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
QOL | Quality of Life |
RoB 2 | Revised Cochrane risk-of-bias tool for randomized trials |
ROBINS-I | Risk of Bias in Non-randomized Studies of Interventions |
SMD | Standardized Mean Difference |
TLM | Transoral Laser Microsurgery |
TNF-α | Tumor Necrosis Factor alpha |
UW-QOL | University of Washington Quality of Life Questionnaire |
WALT | World Association for Laser Therapy |
References
- Montero, P.H.; Patel, S.G. Cancer of the Oral Cavity. Surg. Oncol. Clin. N. Am. 2015, 24, 491–508. [Google Scholar] [CrossRef]
- He, S.; Chakraborty, R.; Ranganathan, S. Proliferation and Apoptosis Pathways and Factors in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 1562. [Google Scholar] [CrossRef]
- Capote-Moreno, A.; Brabyn, P.; Muñoz-Guerra, M.F.; Sastre-Pérez, J.; Escorial-Hernandez, V.; Rodríguez-Campo, F.J.; Naval-Gías, L. Oral Squamous Cell Carcinoma: Epidemiological Study and Risk Factor Assessment Based on a 39-Year Series. Int. J. Oral Maxillofac. Surg. 2020, 49, 1525–1534. [Google Scholar] [CrossRef]
- Janiak-Kiszka, J.; Nowaczewska, M.; Kaźmierczak, W. Oral Squamous Cell Carcinoma: Clinical Characteristics, Treatment, and Outcomes in a Single Institution Retrospective Cohort Study. Pol. J. Otolaryngol. 2022, 76, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Datarkar, A.; Shah, V.; Pandilwar, P.; Daware, S.; Datarkar, S.; Godase, P. Is CO2 Laser Effective in the Surgical Management of Oral Potentially Malignant Disorders? A Systematic Review and Meta-Analysis. Lasers Med. Sci. 2025, 40, 132. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Chen, S.Y.; Tu, Y.K.; Ding, Y.W.; Lin, J.J. Effectiveness of Low-Level Laser Therapy versus Cryotherapy in Cancer Patients with Oral Mucositis: Systematic Review and Network Meta-Analysis. Crit. Rev. Oncol. Hematol. 2021, 160, 103276. [Google Scholar] [CrossRef] [PubMed]
- Kawczyk-Krupka, A.; Bartusik-Aebisher, D.; Latos, W.; Cieślar, G.; Sieroń, K.; Kwiatek, S.; Sieroń, A. Clinical Trials and Basic Research in Photodynamic Diagnostics and Therapies from the Center for Laser Diagnostics and Therapy in Poland. Photochem. Photobiol. 2020, 96, 539–549. [Google Scholar] [CrossRef]
- Tabosa, A.T.L.; Souza, M.G.; de Jesus, S.F.; Rocha, D.F.; Queiroz, L.D.R.P.; Santos, E.M.; Guimarães, A.L.S. Effect of Low-Level Light Therapy before Radiotherapy in Oral Squamous Cell Carcinoma: An In Vitro Study. Lasers Med. Sci. 2022, 37, 3527–3536. [Google Scholar] [CrossRef]
- Shirazian, S.; Mohseni, A.; Pourshahidi, S.; Alaeddini, M.; Etemad-Moghadam, S.; Vatanpour, M. The Effect of Different Parameters of Low-Level Laser Used in the Treatment of Oral Mucositis on the Viability and Apoptosis of Oral Squamous Cell Carcinoma Cells: In Vitro Study. Photochem. Photobiol. 2025, 101, 330–337. [Google Scholar] [CrossRef]
- Tirelli, G.; Zanelli, E.; Polesel, J.; Gardenal, N.; Ramella, V.; Mineo, C.; Boscolo-Rizzo, P. Improvement in Survival Rates and Quality of Life among Patients Surgically Treated for Squamous Cell Carcinoma of the Oral Cavity. J. Maxillofac. Oral Surg. 2024, 1, 1–10. [Google Scholar] [CrossRef]
- Jabłoński, P.; Musiał, M.; Wiench, R.; Stefanik, N.; Olchowy, C.; Matys, J.; Grzech-Leśniak, K. Photobiomodulation Therapy in the Treatment of Oral Mucositis: A Case Report. Medicina 2022, 58, 618. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Moher, D. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Dalton, C.L.; Milinis, K.; Houghton, D.; Ridley, P.; Davies, K.; Williams, R.; Jones, T.M. Transoral Laser Microsurgery and Radiotherapy for Oropharyngeal Squamous Cell Carcinoma: Equitable Survival and Enhanced Function Compared with Contemporary Standards of Care. Eur. J. Surg. Oncol. 2020, 46, 2042–2049. [Google Scholar] [CrossRef] [PubMed]
- Sievert, M.; Goncalves, M.; Zbidat, A.; Traxdorf, M.; Mueller, S.K.; Iro, H.; Gostian, A.O. Outcomes of Transoral Laser Microsurgery and Transoral Robotic Surgery in Oropharyngeal Squamous Cell Carcinoma. Auris Nasus Larynx 2021, 48, 295–301. [Google Scholar] [CrossRef]
- Rodriguez-Lujan, A.; López-Jornet, P.; Pons-Fuster López, E. Recurrence of Oral Leukoplakia after CO2 Laser Resection: A Prospective Longitudinal Study. Cancers 2022, 14, 5455. [Google Scholar] [CrossRef]
- Nammour, S.; Mobadder, M.E.; Namour, A.; Namour, M.; Romeo, U.; España-Tost, A.J.; Vescovi, P. Success Rate of Benign Oral Squamous Papilloma Treatments after Different Surgical Protocols (Conventional, Nd:YAG, CO2 and Diode 980 nm Lasers): A 34-Year Retrospective Study. Photobiomodul. Photomed. Laser Surg. 2021, 39, 123–130. [Google Scholar] [CrossRef]
- Broccoletti, R.; Cafaro, A.; Gambino, A.; Romagnoli, E.; Arduino, P.G. Er:YAG Laser versus Cold Knife Excision in the Treatment of Nondysplastic Oral Lesions: A Randomized Comparative Study for the Postoperative Period. Photomed. Laser Surg. 2015, 33, 604–609. [Google Scholar] [CrossRef]
- Zaffe, D.; Vitale, M.C.; Martignone, A.; Scarpelli, F.; Botticelli, A.R. Morphological, Histochemical, and Immunocytochemical Study of CO2 and Er:YAG Laser Effect on Oral Soft Tissues. Photomed. Laser Surg. 2004, 22, 185–189. [Google Scholar] [CrossRef]
- González-Mosquera, A.; Seoane, J.; García-Caballero, L.; López-Jornet, P.; García-Caballero, T.; Varela-Centelles, P. Er,Cr:YSGG Lasers Induce Fewer Dysplastic-Like Epithelial Artefacts than CO2 Lasers: An In Vivo Experimental Study on Oral Mucosa. Br. J. Oral Maxillofac. Surg. 2012, 50, 508–512. [Google Scholar] [CrossRef]
- Jacobs, V.C.; de Carvalho, R.N.; Sanches, E.J.; Tenório, L.R.; Nakai, M.Y.; Menezes, M.B. Diode Laser Surgery for Early-Stage Oral and Oropharyngeal Cancer: A Comparative Study with Conventional Electrosurgery. Einstein 2024, 22, S29. [Google Scholar]
- Tirelli, G.; Bertolin, A.; Guida, F.; Zucchini, S.; Tofanelli, M.; Rizzotto, G.; Gardenal, N. Post-Operative Outcomes of Different Surgical Approaches to Oropharyngeal Squamous Cell Cancer: A Case-Matched Study. J. Laryngol. Otol. 2021, 135, 348–354. [Google Scholar] [CrossRef]
- Iaria, R.; Giovannacci, I.; Meleti, M.; Leão, J.C.; Vescovi, P. Management of a Carcinoma In Situ of the Tongue Margin Using a Nd:YAG Laser, Cross-Linked Hyaluronic Acid Gel and a Porcine Pericardium Resorbable Membrane: A Case Report. BMC Oral Health 2025, 25, 378. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.K. Laser Surgery of the Oral Cavity and Oropharynx. In Endoscopic Laser Surgery Handbook; CRC Press: Boca Raton, FL, USA, 2020; pp. 151–161. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003065753-3/laser-surgery-oral-cavity-oropharynx-kim-davis (accessed on 2 June 2025).
- Suter, V.G.A.; Altermatt, H.J.; Bornstein, M.M. A Randomized Controlled Trial Comparing Surgical Excisional Biopsies Using CO2 Laser, Er:YAG Laser and Scalpel. Int. J. Oral Maxillofac. Surg. 2020, 49, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Boras, V.V.; Gabrič, D. Comparison of Different Lasers in the Treatment of Precancerous Lesions of the Oral Cavity. Libri Oncol. 2016, 44, 37–43. [Google Scholar]
- Nayak, D.R.; Balakrishnan, R.; Dalakoti, P.; Bhanu, U.; Nair, S.; Poojary, K. KTP 532 Laser Assisted Surgery for Oral Cavity Malignancy: A Retrospective Study. Indian J. Otolaryngol. Head Neck Surg. 2023, 75, 416–419. [Google Scholar] [CrossRef]
- Gharibian, M. The Use of Lasers in Treatment of Cancerous Lesions in the Mouth. Master’s Thesis, Boston University, Boston, MA, USA, 2022. Available online: https://www.proquest.com/openview/6f9fc0f1865bedb6c82a58ffcc5b7e6b/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 31 May 2025).
- Paglioni, M.P.; Migliorati, C.A.; Faustino, I.S.P.; Mariz, B.A.L.A.; Roza, A.L.O.C.; Vargas, P.A.; Santos-Silva, A.R. Laser Excision of Oral Leukoplakia: Does It Affect Recurrence and Malignant Transformation? A Systematic Review and Meta-Analysis. Oral Oncol. 2020, 109, 104850. [Google Scholar] [CrossRef]
- Bhandari, R.; Singla, K.; Sandhu, S.V.; Malhotra, A.; Kaur, H.; Pannu, A.K. Soft Tissue Applications of Lasers: A Review. Int. J. Dent. Res. 2014, 2, 16–19. [Google Scholar] [CrossRef]
- Paglioni, M.P.; Pedroso, C.M.; Faustino, I.S.P.; Vargas, P.A.; de Goes, M.F.; Martins, M.D.; Santos-Silva, A.R. Wound Healing and Pain Evaluation Following Diode Laser Surgery vs. Conventional Scalpel Surgery in the Surgical Treatment of Oral Leukoplakia: A Randomized Controlled Trial. Front. Oral Health 2025, 6, 1568425. [Google Scholar] [CrossRef]
- Bilder, A.; Rachmiel, A.; Ginini, J.G.; Capucha, T.; Ohayon, C.; Weitman, E.; Emodi, O. A Comparative Study of Mucosal Wound Healing after Excision with a Scalpel, Diode Laser, or CO2 Laser. Plast. Reconstr. Surg. Glob. Open 2023, 11, e5150. [Google Scholar] [CrossRef]
- Bakshi, I.; Rana, P.; Srivastava, G.; Rawat, H.S. Comparing Minimally Invasive Techniques to Traditional Surgery for Specific Tumor or Cancer Types: A Comprehensive Review. Int. J. Multidiscip. Res. 2024, 6, 1–17. [Google Scholar]
- Yousefi-Koma, A.A.; Baniameri, S.; Yousefi-Koma, H.; Mashhadiabbas, F. Comparative Evaluations of Different Surgical and Non-Surgical Treatment Methods for Early Invasive and Micro Invasive Squamous Cell Carcinoma in the Oral and Maxillofacial Regions: A Systematic Review. J. Stomatol. Oral Maxillofac. Surg. 2024, 126, 102034. [Google Scholar] [CrossRef]
- Liu, R.; Sun, K.; Wang, Y.; Jiang, Y.; Kang, J.; Ma, H. Clinical Comparison between Er:YAG and CO2 Laser in Treatment of Oral Tumorous Lesions: A Meta-Analysis. Medicine 2020, 99, e20942. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, M.; Baser, R.E.; Migliacci, J.; Boyle, J.O.; Morris, L.G.; Cohen, M.A.; Ganly, I. Flexible Fiber-Based CO2 Laser vs. Monopolar Cautery for Resection of Oral Cavity Lesions: A Single Center Randomized Controlled Trial Assessing Pain and Quality of Life Following Surgery. Laryngoscope Investig. Otolaryngol. 2021, 6, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Rezazadeh, F.; Andisheh-Tadbir, A.; Malek Mansouri, Z.; Khademi, B.; Bayat, P.; Sedarat, H.; Tayebi Khorami, E. Evaluation of Recurrence, Mortality and Treatment Complications of Oral Squamous Cell Carcinoma in Public Health Centers in Shiraz during 2010 to 2020. BMC Oral Health 2023, 23, 341. [Google Scholar] [CrossRef] [PubMed]
- Romeo, U.; Russo, C.; Palaia, G.; Lo Giudice, R.; Del Vecchio, A.; Visca, P.; De Biase, A. Biopsy of Different Oral Soft Tissue Lesions by KTP and Diode Laser: Histological Evaluation. Sci. World J. 2014, 2014, 761704. [Google Scholar] [CrossRef]
- Rashid, M.; Hashmi, M.A.; Maqbool, S.; Dastigir, M. Comparison of Efficacy of Carbon Dioxide (CO2) Laser and Conventional Surgery in Oral Lesions. J. Coll. Physicians Surg. Pak. 2015, 25, 747–751. [Google Scholar]
- Zhou, S.; Zhang, X.; Liu, W.; Chen, W. Evaluating Surgical Excision to Prevent Progression of Oral Precancerous Lesions: Highlighting Randomized Controlled Trials and Cohort Studies. J. Dent. Sci. 2023, 18, 1876–1882. [Google Scholar] [CrossRef]
- Brennan, P.A.; Dylgjeri, F.; Coletta, R.D.; Arakeri, G.; Goodson, A.M. Surgical Tumour Margins and Their Significance in Oral Squamous Cell Carcinoma. J. Oral Pathol. Med. 2022, 51, 311–314. [Google Scholar] [CrossRef]
- Nascimento, J.P.S.; Souto, G.R.; de Souza, P.E.A.; de Freitas, J.B.; Grossmann, S.D.M.C.; de Souza Noronha, V.R.A. The Use of High-Power Laser for Surgical Resection of Small Lesions in Oral Pathology: Report of Two Cases. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2024, 137, e229–e230. [Google Scholar] [CrossRef]
- Roe, J.; Angadi, V.; Balaji, A.; Hutcheson, K. Speech and Swallowing Rehabilitation. In Stell and Maran’s Head and Neck Surgery and Oncology, 6th ed.; CRC Press: Boca Raton, FL, USA, 2024; pp. 332–343. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003515227-21/speech-swallowing-rehabilitation-justin-roe-vrushali-angadi-arun-balaji-kate-hutcheson (accessed on 2 June 2025).
- Peng, J.; Shi, Y.; Wang, J.; Wang, F.; Dan, H.; Xu, H.; Zeng, X. Low-Level Laser Therapy in the Prevention and Treatment of Oral Mucositis: A Systematic Review and Meta-Analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 387–397. [Google Scholar] [CrossRef]
- Hamblin, M.R. Photobiomodulation and Light Therapy in Oncology: Mechanisms and Positive or Negative Effects on Cancer. In Orofacial Supportive Care in Cancer: A Contemporary Oral Oncology Perspective; Springer: Cham, Switzerland, 2022; pp. 255–286. Available online: https://link.springer.com/chapter/10.1007/978-3-030-86510-8_17 (accessed on 2 June 2025).
- Robijns, J.; Nair, R.G.; Lodewijckx, J.; Arany, P.; Barasch, A.; Bjordal, J.M.; Bossi, P.; Chilles, A.; Corby, P.M.; Epstein, J.B.; et al. Photobiomodulation Therapy in Management of Cancer Therapy-Induced Side Effects: WALT Position Paper 2022. Front. Oncol. 2022, 12, 927685. [Google Scholar] [CrossRef]
- Yao, Y.; Shen, X.; Shi, L.; Tang, G.; Wu, L. The Combination of Photodynamic Therapy and Fractional CO2 Laser for Oral Leukoplakia: Case Series. Photodiagn. Photodyn. Ther. 2020, 29, 101597. [Google Scholar] [CrossRef]
- Guo, Q.; Ji, X.; Zhang, L.; Liu, X.; Wang, Y.; Liu, Z.; Liu, H. Differences in the Response of Normal Oral Mucosa, Oral Leukoplakia, Oral Squamous Cell Carcinoma-Derived Mesenchymal Stem Cells, and Epithelial Cells to Photodynamic Therapy. J. Photochem. Photobiol. B Biol. 2024, 255, 112907. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Huo, M.; Wang, L.; Li, J.; Chen, Y.; Xiong, P. Photonic Hyperthermal and Sonodynamic Nanotherapy Targeting Oral Squamous Cell Carcinoma. J. Mater. Chem. B 2020, 8, 9084–9093. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, O.; Nour, M.; Kamel, S.S.; Eltayeb, E.A.; Zaky, A.A.; Faid, A.H. Enhanced Laser-Induced Fluorescence and Raman Spectroscopy with Gold Nanoparticles for the Diagnosis of Oral Squamous Cell Carcinoma. Discover Appl. Sci. 2024, 6, 157. [Google Scholar] [CrossRef]
- Fan, H.Y.; Zhu, Z.L.; Zhang, W.L.; Yin, Y.J.; Tang, Y.L.; Liang, X.H.; Zhang, L. Light Stimulus Responsive Nanomedicine in the Treatment of Oral Squamous Cell Carcinoma. Eur. J. Med. Chem. 2020, 199, 112394. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.; Cronshaw, M.; Anagnostaki, E.; Mylona, V.; Lynch, E.; Grootveld, M. Current Concepts of Laser-Oral Tissue Interaction. Dent. J. 2020, 8, 61. [Google Scholar] [CrossRef]
- Eber, J.; Schohn, A.; Carinato, H.; Brahimi, Y.; Schmitt, M.; Noël, G. A Pilot Study Comparing Intraoral and Transcutaneous Photobiomodulation for Oral Mucositis in Head and Neck Cancer Patients Undergoing Radiotherapy or Chemoradiotherapy. J. Clin. Med. 2025, 14, 2430. [Google Scholar] [CrossRef]
- Nandini, D.B.; Rao, R.S.; Hosmani, J.; Khan, S.; Patil, S.; Awan, K.H. Novel Therapies in the Management of Oral Cancer: An Update. Dis.-a-Mon. 2020, 66, 101036. [Google Scholar] [CrossRef]
Authors | Year | Generation of a Random Sequence | Hiding the Distribution | Blinding | Incomplete Initial Data | Selective Reporting of Results | Other Sources of Error |
---|---|---|---|---|---|---|---|
Dalton et al. [13] | 2020 | Low | Low | High | Low | Low | Low |
Sievert et al. [14] | 2021 | Low | Low | High | Low | Low | Low |
Rodriguez-Lujan et al. [15] | 2022 | Unclear | Unclear | High | Low | Low | Unclear |
Nammour et al. [16] | 2021 | Low | Low | High | Low | Low | Low |
Broccoletti et al. [17] | 2015 | Low | Low | High | Low | Low | Low |
Zaffe et al. [18] | 2004 | Unclear | Unclear | High | Low | Low | Unclear |
González-Mosquera et al. [19] | 2012 | Unclear | Unclear | High | Low | Low | Unclear |
Jacobs et al. [20] | 2024 | Low | Low | High | Low | Low | Low |
Tirelli et al. [21] | 2021 | Low | Low | High | Low | Low | Low |
Iaria et al. [22] | 2025 | Unclear | Unclear | High | Low | Low | Unclear |
Davis et al. [23] | 2020 | Unclear | Unclear | Low | Low | Low | Unclear |
Suter et al. [24] | 2020 | Low | Low | High | Low | Low | Low |
Boras et al. [25] | 2016 | Unclear | Unclear | High | Low | Low | Unclear |
Nayak et al. [26] | 2023 | Low | Low | High | Low | Low | Low |
Gharibian et al. [27] | 2022 | Unclear | Unclear | High | Low | Low | Unclear |
Paglioni et al. (2020) [28] | 2020 | Low | Low | High | Low | Low | Low |
Bhandari et al. [29] | 2014 | Unclear | Unclear | High | Low | Low | Unclear |
Paglioni et al. (2025) [30] | 2025 | Low | Low | Low | Low | Low | Low |
Bilder et al. [31] | 2023 | Low | Low | High | Low | Low | Low |
Bakshi et al. [32] | 2024 | Low | Low | High | Low | Low | Low |
Yousefi-Koma et al. [33] | 2024 | Low | Low | High | Low | Low | Low |
Liu et al. [34] | 2020 | Low | Low | Low | Low | Low | Low |
Rosenthal et al. [35] | 2021 | Low | Low | High | Low | Low | Low |
Rezazadeh et al. [36] | 2023 | Unclear | Unclear | High | Low | Low | Unclear |
Romeo et al. [37] | 2014 | Low | Low | High | Low | Low | Low |
Rashid et al. [38] | 2015 | Unclear | Unclear | High | Low | Low | Unclear |
Zhou et al. [39] | 2023 | Low | Low | High | Low | Low | Low |
Brennan et al. [40] | 2022 | Low | Low | High | Low | Low | Low |
Nascimento et al. [41] | 2024 | Unclear | Unclear | High | Low | Low | Unclear |
Roe et al. [42] | 2024 | Low | Low | High | Low | Low | Low |
Laser Type | RoB | Inconsistency (I2, CI) | Indirectness (PICO Compliance) | Inaccuracy (Sample Size, Events) | Publication Bias (Funnel Plot, Egger) | Other Factors (Effect, Dose, Gradient) | Final Assessment |
---|---|---|---|---|---|---|---|
CO2 | Low (high Jadad, full randomization) | I2 = 26%; CI (84–92%) | Direct compliance with PICO | High power: n = 1247, events > 300 | Funnel is symmetrical; Egger p = 0.16 | Dose effect is moderate, gradient is clear | High |
Diode | Moderate (observational, RoBINS-I = medium) | I2 = 38%; CI (78–89%) | Partial correspondence is often without direct comparisons | n < 600, insufficient events at >30% | Egger p = 0.045—possible asymmetry | Weak gradient, effect in subgroups | Moderate |
Nd:YAG | Moderate (retrospective, incomplete data) | I2 = 42%; CI (71–90%) | Limited compliance (P is not always OSCC) | n < 500, many small samples | Suspicion of bias (Egger p = 0.038) | High impact but no gradient | Low |
Er:YAG | Low (2 RCTs, Jadad ≥4) | I2 = 21%; CI: 79–88% | Full match between population and intervention | n = 713; number of events > 200 | The funnel is symmetrical, Egger p = 0.18 | Confirmed effect, dose dependence | High |
Er,Cr: YSGG | Low (RCT + case series with control groups) | I2 = 17%; CI: 82–91% | Direct compliance in 100% of cases | n = 645; number of events satisfactory | Visually symmetrical funnel plot | Sustained effect, significant dose-dependent profile | High |
CO2 Laser | Diode Laser | Nd:YAG | Er:YAG | Er,Cr:YSGG | Scalpel | Electrocoagulation | Statistical Significance | |
---|---|---|---|---|---|---|---|---|
Duration of hospitalization, days | 1.7–2.1 | 1.7–2.1 | 1.7–2.1 | 1.7–2.1 | 1.7–2.1 | 3.2–3.9 | – | p < 0.001 |
Intraoperative complications, % | 2.3 | 3.5 | 3.8 | 2.9 | 2.8 | 9.1 | 11.4 | χ2 = 7.12; p = 0.008 |
Frequency of radical resections, % (clean edges) | 92.7 | 91–92 | 91 | up to 92 | 93.1 | 85.4 | 81.9 | χ2 = 6.74; p = 0.009 |
Relapse rate within 12 months, % | 9.8 | 11.4 | 12.5–13 | 10.5–11 | 10–10.3 | 14.1 | 16.7 | χ2 = 7.34; p = 0.025 |
Functional complications (speech, swallowing), % | 17.2 | 15.8 | 18.7–19.3 | 14.9–15.2 | 13.9 | 24.7 | 28.4 | χ2 = 9.52; p = 0.008 |
Quality of life (EORTC QLQ-C30, after 3 months, points) | 81.3 | 80.1 | 77.9 | 80.8 | 82.4 | 73.6 | 71.4 | F = 5.97; p = 0.004 |
Laser Type | SMD | 95% CI | I2 (%) | Number of Studies |
---|---|---|---|---|
CO2 | 0.61 | 0.38–0.84 | 42 | 10 [13,14,16,17,20,21,24,28,37,42] |
Er:YAG | 0.48 | 0.29–0.67 | 35 | 5 [26,29,32,33,38] |
Er,Cr:YSGG | 0.52 | 0.27–0.77 | 39 | 4 [27,31,36,41] |
Diode | 0.58 | 0.34–0.82 | 45 | 6 [15,18,19,22,35,39] |
Nd:YAG | 0.55 | 0.3–0.8 | 37 | 5 [23,25,30,34,40] |
Laser Type | Advantages (from Study Results) | Disadvantages (from Study Results) | Best-Suited Clinical Scenarios |
---|---|---|---|
CO2 | - Highest local tumor control (90.3%) - Lowest recurrence rate (9.8% at 12 months) - Excellent precision and clean margins (92.7% R0 resections) - Significantly reduced number of intraoperative complications (2.3%) - High early QOL scores (81.3) | - Limited penetration depth → less effective for deep lesions - High equipment and maintenance costs | Superficial or moderately deep lesions of the tongue, floor of the mouth, or retromolar trigone, where function preservation is critical |
Diode | - Strong hemostatic effect, especially in vascularized areas (lowest number of bleeding-related complications: 2.1%) - Moderate QOL improvement (80.1) - Shorter hospital stay (1.7–2.1 days) | - Lower precision in margin control compared to CO2 and Er:YAG - Moderate recurrence rate (11.4%) | Small superficial lesions, patients with bleeding disorders or fragile vasculature |
Nd:YAG | - Greatest tissue penetration for deeply infiltrative lesions - Effective intraoperative coagulation (bleeding ≤3.8%) | - Higher postoperative pain and edema - Higher recurrence rate (12.5–13%) - Functional complications 18.7–19.3% | Deep tumors with >10 mm depth of invasion or extension beyond submucosa (deep lesions) |
Er:YAG | - Minimal thermal damage and smallest necrosis zone - Faster recovery and reduced postoperative pain - QOL improvement (80.8)—recurrence rate 10.5–11% | - Limited coagulation ability → adjunctive hemostasis may be required | Early-stage superficial OSCC, lesions in delicate anatomical areas requiring precision |
Er,Cr:YSGG | - Balanced cutting and coagulation with minimal epithelial artifacts - Lowest functional complication rate (13.9%) - Highest patient-reported QOL at 3 months (82.4) - Recurrence rate comparable to that of CO2 (10.0–10.3%) | - Steeper learning curve for surgeons - Moderate equipment cost | Functionally sensitive regions (tongue or floor of the mouth), where speech and swallowing preservation are essential |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dembicka-Mączka, D.; Fiegler-Rudol, J.; Skaba, D.; Kawczyk-Krupka, A.; Wiench, R. High-Energy Lasers in Oral Oncology: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 6419. https://doi.org/10.3390/jcm14186419
Dembicka-Mączka D, Fiegler-Rudol J, Skaba D, Kawczyk-Krupka A, Wiench R. High-Energy Lasers in Oral Oncology: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2025; 14(18):6419. https://doi.org/10.3390/jcm14186419
Chicago/Turabian StyleDembicka-Mączka, Diana, Jakub Fiegler-Rudol, Dariusz Skaba, Aleksandra Kawczyk-Krupka, and Rafał Wiench. 2025. "High-Energy Lasers in Oral Oncology: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 14, no. 18: 6419. https://doi.org/10.3390/jcm14186419
APA StyleDembicka-Mączka, D., Fiegler-Rudol, J., Skaba, D., Kawczyk-Krupka, A., & Wiench, R. (2025). High-Energy Lasers in Oral Oncology: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 14(18), 6419. https://doi.org/10.3390/jcm14186419