Pathogenic Role of Cytokines in Rheumatoid Arthritis
Abstract
1. Introduction
2. Pre-Arthritis (Preclinical) Phase of RA
3. Arthritis (Clinical) Phase of RA
3.1. Autoimmunity
3.2. Development and Maintenance of Synovitis
3.3. Progression of Joint Destruction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nielen, M.M.J.; van Schaardenburg, D.; Reesink, H.W.; van de Stadt, R.J.; van der Horst-Bruinsma, I.E.; de Koning, M.H.M.T.; Habibuw, M.R.; Vandenbroucke, J.P.; Dijkmans, B.A.C. Specific Autoantibodies Precede the Symptoms of Rheumatoid Arthritis: A Study of Serial Measurements in Blood Donors. Arthritis Rheum. 2004, 50, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, S.; Sandor, C.; Stahl, E.A.; Freudenberg, J.; Lee, H.-S.; Jia, X.; Alfredsson, L.; Padyukov, L.; Klareskog, L.; Worthington, J.; et al. Five Amino Acids in Three HLA Proteins Explain Most of the Association between MHC and Seropositive Rheumatoid Arthritis. Nat. Genet. 2012, 44, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Snir, O.; Gomez-Cabrero, D.; Montes, A.; Perez-Pampin, E.; Gómez-Reino, J.J.; Seddighzadeh, M.; Klich, K.U.; Israelsson, L.; Ding, B.; Catrina, A.I.; et al. Non-HLA Genes PTPN22, CDK6 and PADI4 Are Associated with Specific Autoantibodies in HLA-Defined Subgroups of Rheumatoid Arthritis. Arthritis Res. Ther. 2014, 16, 414. [Google Scholar] [CrossRef] [PubMed]
- Gravallese, E.M.; Firestein, G.S. Rheumatoid Arthritis—Common Origins, Divergent Mechanisms. N. Engl. J. Med. 2023, 388, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Möller, B.; Kollert, F.; Sculean, A.; Villiger, P.M. Infectious Triggers in Periodontitis and the Gut in Rheumatoid Arthritis (RA): A Complex Story About Association and Causality. Front. Immunol. 2020, 11, 1108. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Y.; Wu, J.; Duan, Y.; Zhang, H.; Du, H. Linking Microbial Communities to Rheumatoid Arthritis: Focus on Gut, Oral Microbiome and Their Extracellular Vesicles. Front. Immunol. 2025, 16, 1503474. [Google Scholar] [CrossRef]
- James, E.A.; Rieck, M.; Pieper, J.; Gebe, J.A.; Yue, B.B.; Tatum, M.; Peda, M.; Sandin, C.; Klareskog, L.; Malmström, V.; et al. Citrulline-Specific Th1 Cells Are Increased in Rheumatoid Arthritis and Their Frequency Is Influenced by Disease Duration and Therapy. Arthritis Rheumatol. 2014, 66, 1712–1722. [Google Scholar] [CrossRef] [PubMed]
- Scherer, H.U.; Huizinga, T.W.J.; Krönke, G.; Schett, G.; Toes, R.E.M. The B Cell Response to Citrullinated Antigens in the Development of Rheumatoid Arthritis. Nat. Rev. Rheumatol. 2018, 14, 157–169. [Google Scholar] [CrossRef]
- Samuels, J.; Ng, Y.-S.; Coupillaud, C.; Paget, D.; Meffre, E. Impaired Early B Cell Tolerance in Patients with Rheumatoid Arthritis. J. Exp. Med. 2005, 201, 1659–1667. [Google Scholar] [CrossRef]
- Schmitt, N.; Ueno, H. Regulation of Human Helper T Cell Subset Differentiation by Cytokines. Curr. Opin. Immunol. 2015, 34, 130–136. [Google Scholar] [CrossRef]
- Ma, C.S.; Wong, N.; Rao, G.; Avery, D.T.; Torpy, J.; Hambridge, T.; Bustamante, J.; Okada, S.; Stoddard, J.L.; Deenick, E.K.; et al. Monogenic Mutations Differentially Affect the Quantity and Quality of T Follicular Helper Cells in Patients with Human Primary Immunodeficiencies. J. Allergy Clin. Immunol. 2015, 136, 993–1006.e1. [Google Scholar] [CrossRef]
- Avery, D.T.; Deenick, E.K.; Ma, C.S.; Suryani, S.; Simpson, N.; Chew, G.Y.; Chan, T.D.; Palendira, U.; Bustamante, J.; Boisson-Dupuis, S.; et al. B Cell-Intrinsic Signaling through IL-21 Receptor and STAT3 Is Required for Establishing Long-Lived Antibody Responses in Humans. J. Exp. Med. 2010, 207, 155–171. [Google Scholar] [CrossRef]
- Eslami, M.; Schneider, P. Function, Occurrence and Inhibition of Different Forms of BAFF. Curr. Opin. Immunol. 2021, 71, 75–80. [Google Scholar] [CrossRef]
- Shabgah, A.G.; Shariati-Sarabi, Z.; Tavakkol-Afshari, J.; Mohammadi, M. The Role of BAFF and APRIL in Rheumatoid Arthritis. J. Cell. Physiol. 2019, 234, 17050–17063. [Google Scholar] [CrossRef]
- Lee, L.; Draper, B.; Chaplin, N.; Philip, B.; Chin, M.; Galas-Filipowicz, D.; Onuoha, S.; Thomas, S.; Baldan, V.; Bughda, R.; et al. An APRIL-Based Chimeric Antigen Receptor for Dual Targeting of BCMA and TACI in Multiple Myeloma. Blood 2018, 131, 746–758. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, S.; Care, M.A.; Doody, G.M.; Tooze, R.M. APRIL Drives a Coordinated but Diverse Response as a Foundation for Plasma Cell Longevity. J. Immunol. Baltim. 2022, 209, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bayona, B.; Ramos-Amaya, A.; López-Blanco, R.; Campos-Caro, A.; Brieva, J.A. STAT-3 Activation by Differential Cytokines Is Critical for Human in Vivo-Generated Plasma Cell Survival and Ig Secretion. J. Immunol. Baltim. 2013, 191, 4996–5004. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Audo, R.; Yeremenko, N.; Baeten, D.; Hahne, M.; Combe, B.; Morel, J.; Daïen, C. A Proliferation Inducing Ligand (APRIL) Promotes IL-10 Production and Regulatory Functions of Human B Cells. J. Autoimmun. 2016, 73, 64–72. [Google Scholar] [CrossRef]
- Fehres, C.M.; van Uden, N.O.; Yeremenko, N.G.; Fernandez, L.; Franco Salinas, G.; van Duivenvoorde, L.M.; Huard, B.; Morel, J.; Spits, H.; Hahne, M.; et al. APRIL Induces a Novel Subset of IgA+ Regulatory B Cells That Suppress Inflammation via Expression of IL-10 and PD-L1. Front. Immunol. 2019, 10, 1368. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Gerasimova, E.V.; Orekhov, N.A.; Karimova, A.E.; Vergun, M.A.; Lapshina, K.O.; Sukhorukov, V.N.; Orekhov, A.N. Exploring the Role of APRIL in Autoimmunity: Implications for Therapeutic Targeting in Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Sjögren’s Syndrome. Front. Immunol. 2025, 16, 1523392. [Google Scholar] [CrossRef]
- Rao, D.A.; Gurish, M.F.; Marshall, J.L.; Slowikowski, K.; Fonseka, C.Y.; Liu, Y.; Donlin, L.T.; Henderson, L.A.; Wei, K.; Mizoguchi, F.; et al. Pathologically Expanded Peripheral T Helper Cell Subset Drives B Cells in Rheumatoid Arthritis. Nature 2017, 542, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Yoshitomi, H.; Ueno, H. Shared and Distinct Roles of T Peripheral Helper and T Follicular Helper Cells in Human Diseases. Cell. Mol. Immunol. 2021, 18, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Tanemura, S.; Tsujimoto, H.; Seki, N.; Kojima, S.; Miyoshi, F.; Sugahara, K.; Yoshimoto, K.; Suzuki, K.; Kaneko, Y.; Chiba, K.; et al. Role of Interferons (IFNs) in the Differentiation of T Peripheral Helper (Tph) Cells. Int. Immunol. 2022, 34, 519–532. [Google Scholar] [CrossRef]
- Gonzalez, D.G.; Cote, C.M.; Patel, J.R.; Smith, C.B.; Zhang, Y.; Nickerson, K.M.; Zhang, T.; Kerfoot, S.M.; Haberman, A.M. Nonredundant Roles of IL-21 and IL-4 in the Phased Initiation of Germinal Center B Cells and Subsequent Self-Renewal Transitions. J. Immunol. Baltim. 2018, 201, 3569–3579. [Google Scholar] [CrossRef]
- Huang, Y.; Ba, X.; Han, L.; Wang, H.; Lin, W.; Chen, Z.; Tu, S. T Peripheral Helper Cells in Autoimmune Diseases: What Do We Know? Front. Immunol. 2023, 14, 1145573. [Google Scholar] [CrossRef]
- Maul, R.W.; Catalina, M.D.; Kumar, V.; Bachali, P.; Grammer, A.C.; Wang, S.; Yang, W.; Hasni, S.; Ettinger, R.; Lipsky, P.E.; et al. Transcriptome and IgH Repertoire Analyses Show That CD11chi B Cells Are a Distinct Population with Similarity to B Cells Arising in Autoimmunity and Infection. Front. Immunol. 2021, 12, 649458. [Google Scholar] [CrossRef]
- Chodisetti, S.B.; Fike, A.J.; Domeier, P.P.; Singh, H.; Choi, N.M.; Corradetti, C.; Kawasawa, Y.I.; Cooper, T.K.; Caricchio, R.; Rahman, Z.S.M. Type II but Not Type I IFN Signaling Is Indispensable for TLR7-Promoted Development of Autoreactive B Cells and Systemic Autoimmunity. J. Immunol. Baltim. 2020, 204, 796–809. [Google Scholar] [CrossRef]
- Nakayama, T.; Yoshimura, M.; Higashioka, K.; Miyawaki, K.; Ota, Y.; Ayano, M.; Kimoto, Y.; Mitoma, H.; Ono, N.; Arinobu, Y.; et al. Type 1 Helper T Cells Generate CXCL9/10-Producing T-Bet+ Effector B Cells Potentially Involved in the Pathogenesis of Rheumatoid Arthritis. Cell. Immunol. 2021, 360, 104263. [Google Scholar] [CrossRef]
- Naradikian, M.S.; Myles, A.; Beiting, D.P.; Roberts, K.J.; Dawson, L.; Herati, R.S.; Bengsch, B.; Linderman, S.L.; Stelekati, E.; Spolski, R.; et al. Cutting Edge: IL-4, IL-21, and IFN-γ Interact To Govern T-Bet and CD11c Expression in TLR-Activated B Cells. J. Immunol. Baltim. 2016, 197, 1023–1028. [Google Scholar] [CrossRef]
- Rangel-Moreno, J.; Hartson, L.; Navarro, C.; Gaxiola, M.; Selman, M.; Randall, T.D. Inducible Bronchus-Associated Lymphoid Tissue (iBALT) in Patients with Pulmonary Complications of Rheumatoid Arthritis. J. Clin. Investig. 2006, 116, 3183–3194. [Google Scholar] [CrossRef] [PubMed]
- Scherer, H.U.; van der Woude, D.; Toes, R.E.M. From Risk to Chronicity: Evolution of Autoreactive B Cell and Antibody Responses in Rheumatoid Arthritis. Nat. Rev. Rheumatol. 2022, 18, 371–383. [Google Scholar] [CrossRef]
- Takada, H.; Demoruelle, M.K.; Deane, K.D.; Nakamura, S.; Katsumata, Y.; Ikari, K.; Buckner, J.H.; Robinson, W.H.; Seifert, J.A.; Feser, M.L.; et al. Expansion of HLA-DR Positive Peripheral Helper T and Naive B Cells in Anticitrullinated Protein Antibody-Positive Individuals At Risk for Rheumatoid Arthritis. Arthritis Rheumatol. 2024, 76, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Inamo, J.; Keegan, J.; Griffith, A.; Ghosh, T.; Horisberger, A.; Howard, K.; Pulford, J.F.; Murzin, E.; Hancock, B.; Dominguez, S.T.; et al. Deep Immunophenotyping Reveals Circulating Activated Lymphocytes in Individuals at Risk for Rheumatoid Arthritis. J. Clin. Investig. 2025, 135, e185217. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, E.; Wakahara, K.; Nakamura, S.; Fukutani, E.; Asai, S.; Takahashi, N.; Kojima, T.; Iwano, S.; Shimada, S.; Chen-Yoshikawa, T.F.; et al. Increased Sputum Peripheral Helper T Cells Are Associated with the Severity of Rheumatoid Arthritis but Not with the Severity of Airway Disease. Front. Immunol. 2025, 16, 1526881. [Google Scholar] [CrossRef] [PubMed]
- Ridgley, L.A.; Anderson, A.E.; Pratt, A.G. What Are the Dominant Cytokines in Early Rheumatoid Arthritis? Curr. Opin. Rheumatol. 2018, 30, 207–214. [Google Scholar] [CrossRef]
- Joshua, V.; Loberg Haarhaus, M.; Hensvold, A.; Wähämaa, H.; Gerstner, C.; Hansson, M.; Israelsson, L.; Stålesen, R.; Sköld, M.; Grunewald, J.; et al. Rheumatoid Arthritis-Specific Autoimmunity in the Lung Before and at the Onset of Disease. Arthritis Rheumatol. 2023, 75, 1910–1922. [Google Scholar] [CrossRef]
- Castañeda-Delgado, J.E.; Bastián-Hernandez, Y.; Macias-Segura, N.; Santiago-Algarra, D.; Castillo-Ortiz, J.D.; Alemán-Navarro, A.L.; Martínez-Tejada, P.; Enciso-Moreno, L.; Garcia-De Lira, Y.; Olguín-Calderón, D.; et al. Type I Interferon Gene Response Is Increased in Early and Established Rheumatoid Arthritis and Correlates with Autoantibody Production. Front. Immunol. 2017, 8, 285. [Google Scholar] [CrossRef]
- Lübbers, J.; Brink, M.; van de Stadt, L.A.; Vosslamber, S.; Wesseling, J.G.; van Schaardenburg, D.; Rantapää-Dahlqvist, S.; Verweij, C.L. The Type I IFN Signature as a Biomarker of Preclinical Rheumatoid Arthritis. Ann. Rheum. Dis. 2013, 72, 776–780. [Google Scholar] [CrossRef]
- Brink, M.; Lundquist, A.; Alexeyenko, A.; Lejon, K.; Rantapää-Dahlqvist, S. Protein Profiling and Network Enrichment Analysis in Individuals before and after the Onset of Rheumatoid Arthritis. Arthritis Res. Ther. 2019, 21, 288. [Google Scholar] [CrossRef]
- O’Neil, L.J.; Meng, X.; Mcfadyen, C.; Fritzler, M.J.; El-Gabalawy, H.S. Serum Proteomic Networks Associate with Pre-Clinical Rheumatoid Arthritis Autoantibodies and Longitudinal Outcomes. Front. Immunol. 2022, 13, 958145. [Google Scholar] [CrossRef]
- Isaacs, J.D.; Iqbal, K. Potential Pharmacologic Targets for the Prevention of Rheumatoid Arthritis. Clin. Ther. 2019, 41, 1312–1322. [Google Scholar] [CrossRef]
- Deane, K.D.; Holers, V.M.; Emery, P.; Mankia, K.; El-Gabalawy, H.; Sparks, J.A.; Costenbader, K.H.; Schett, G.; van der Helm-van Mil, A.; van Schaardenburg, D.; et al. Therapeutic Interception in Individuals at Risk of Rheumatoid Arthritis to Prevent Clinically Impactful Disease. Ann. Rheum. Dis. 2025, 84, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Rivellese, F.; Pontarini, E.; Fossati-Jimack, L.; Moura, R.A.; Romão, V.C.; Fonseca, J.E.; Nerviani, A.; Çubuk, C.; Goldmann, K.; Giorli, G.; et al. Comparative Analysis of Circulating and Synovial Immune Cells in Early Untreated Rheumatoid Arthritis and Their Relationship with Molecular Pathology and Disease Outcomes. Arthritis Rheumatol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Yang, S.; Ren, J.; Zhang, C.; Chen, X.; Huang, H.; Wang, G.; Tang, Y.; Qi, J.; Li, X. Exploring the Differential Functions of Circulating Follicular Helper T and Peripheral Helper T Cells in Rheumatoid Arthritis Based on Metabolism Patterns. Front. Immunol. 2025, 16, 1608675. [Google Scholar] [CrossRef]
- Sowerby, J.M.; Rao, D.A. T Cell-B Cell Interactions in Human Autoimmune Diseases. Curr. Opin. Immunol. 2025, 93, 102539. [Google Scholar] [CrossRef]
- Masuo, Y.; Murakami, A.; Akamine, R.; Iri, O.; Uno, S.; Murata, K.; Nishitani, K.; Ito, H.; Watanabe, R.; Fujii, T.; et al. Stem-like and Effector Peripheral Helper T Cells Comprise Distinct Subsets in Rheumatoid Arthritis. Sci. Immunol. 2025, 10, eadt3955. [Google Scholar] [CrossRef]
- Murakami, A.; Akamine, R.; Tanaka, S.; Murata, K.; Nishitani, K.; Ito, H.; Watanabe, R.; Fujii, T.; Iwasaki, T.; Masuo, Y.; et al. Human CD4+ T Cells Regulate Peripheral Immune Responses in Rheumatoid Arthritis via Insulin-like Growth Factor-like Family Member 2. Sci. Immunol. 2025, 10, eadr3838. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Pedrola, G.; Naamane, N.; Cameron, J.A.; Pratt, A.G.; Mellor, A.L.; Isaacs, J.D.; Scheel-Toellner, D.; Anderson, A.E. Characterization of Age-Associated B Cells in Early Drug-Naïve Rheumatoid Arthritis Patients. Immunology 2023, 168, 640–653. [Google Scholar] [CrossRef]
- Kim, J.G.; Kim, M.; Hong, B.-K.; Choe, Y.-H.; Kim, J.-R.; Lee, N.; You, S.; Lee, S.-I.; Kim, W.-U. Circulatory Age-Associated B Cells: Their Distinct Transcriptomic Characteristics and Clinical Significance in Drug-Naïve Patients with Rheumatoid Arthritis. Clin. Immunol. 2025, 271, 110425. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Cai, M.-L.; Qin, Y.; Chen, Z. Age/Autoimmunity-Associated B Cells in Inflammatory Arthritis: An Emerging Therapeutic Target. Front. Immunol. 2023, 14, 1103307. [Google Scholar] [CrossRef]
- Pelzek, A.J.; Grönwall, C.; Rosenthal, P.; Greenberg, J.D.; McGeachy, M.; Moreland, L.; Rigby, W.F.C.; Silverman, G.J. Persistence of Disease-Associated Anti-Citrullinated Protein Antibody-Expressing Memory B Cells in Rheumatoid Arthritis in Clinical Remission. Arthritis Rheumatol. 2017, 69, 1176–1186. [Google Scholar] [CrossRef]
- Reijm, S.; Kwekkeboom, J.C.; Blomberg, N.J.; Suurmond, J.; van der Woude, D.; Toes, R.E.; Scherer, H.U. Autoreactive B Cells in Rheumatoid Arthritis Include Mainly Activated CXCR3+ Memory B Cells and Plasmablasts. JCI Insight 2023, 8, e172006. [Google Scholar] [CrossRef] [PubMed]
- Hensvold, A.; Horuluoglu, B.; Sahlström, P.; Thyagarajan, R.; Diaz Boada, J.S.; Hansson, M.; Mathsson-Alm, L.; Gerstner, C.; Sippl, N.; Israelsson, L.; et al. The Human Bone Marrow Plasma Cell Compartment in Rheumatoid Arthritis—Clonal Relationships and Anti-Citrulline Autoantibody Producing Cells. J. Autoimmun. 2023, 136, 103022. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.R.; McDavid, A.N.; Kongpachith, S.; Lingampalli, N.; Glanville, J.; Ju, C.-H.; Gottardo, R.; Robinson, W.H. T Cell-Dependent Affinity Maturation and Innate Immune Pathways Differentially Drive Autoreactive B Cell Responses in Rheumatoid Arthritis. Arthritis Rheumatol. 2018, 70, 1732–1744. [Google Scholar] [CrossRef]
- Kurowska-Stolarska, M.; Alivernini, S. Synovial Tissue Macrophages in Joint Homeostasis, Rheumatoid Arthritis and Disease Remission. Nat. Rev. Rheumatol. 2022, 18, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Campitiello, R.; Gotelli, E.; Soldano, S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front. Immunol. 2022, 13, 867260. [Google Scholar] [CrossRef]
- Kennedy, A.; Fearon, U.; Veale, D.J.; Godson, C. Macrophages in Synovial Inflammation. Front. Immunol. 2011, 2, 52. [Google Scholar] [CrossRef]
- Chen, J.; Zhan, M.; Zhao, Y.; Xu, H.; Feng, F.; Bai, Z.; Zhang, K.; Fu, L.; Wang, F.; Cheng, Y.; et al. GM-CSF Potentiates Macrophages to Retain an Inflammatory Feature from Their Circulating Monocyte Precursors in Rheumatoid Arthritis. J. Transl. Med. 2025, 23, 883. [Google Scholar] [CrossRef]
- Kugler, M.; Dellinger, M.; Kartnig, F.; Müller, L.; Preglej, T.; Heinz, L.X.; Simader, E.; Göschl, L.; Puchner, S.E.; Weiss, S.; et al. Cytokine-Directed Cellular Cross-Talk Imprints Synovial Pathotypes in Rheumatoid Arthritis. Ann. Rheum. Dis. 2023, 82, 1142–1152. [Google Scholar] [CrossRef]
- Zheng, L.; Gu, M.; Li, X.; Hu, X.; Chen, C.; Kang, Y.; Pan, B.; Chen, W.; Xian, G.; Wu, X.; et al. ITGA5+ Synovial Fibroblasts Orchestrate Proinflammatory Niche Formation by Remodelling the Local Immune Microenvironment in Rheumatoid Arthritis. Ann. Rheum. Dis. 2025, 84, 232–252. [Google Scholar] [CrossRef]
- Nygaard, G.; Firestein, G.S. Restoring Synovial Homeostasis in Rheumatoid Arthritis by Targeting Fibroblast-like Synoviocytes. Nat. Rev. Rheumatol. 2020, 16, 316–333. [Google Scholar] [CrossRef]
- van Hamburg, J.P.; Tas, S.W. Molecular Mechanisms Underpinning T Helper 17 Cell Heterogeneity and Functions in Rheumatoid Arthritis. J. Autoimmun. 2018, 87, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, J.; Ekwall, A.-K.H.; Mark, L.; Bergström, B.; Andersson, K.; Gjertsson, I.; Lundell, A.-C.; Rudin, A. T Helper Cells in Synovial Fluid of Patients with Rheumatoid Arthritis Primarily Have a Th1 and a CXCR3+Th2 Phenotype. Arthritis Res. Ther. 2020, 22, 245. [Google Scholar] [CrossRef]
- Panda, S.K.; Wigerblad, G.; Jiang, L.; Jiménez-Andrade, Y.; Iyer, V.S.; Shen, Y.; Boddul, S.V.; Guerreiro-Cacais, A.O.; Raposo, B.; Kasza, Z.; et al. IL-4 Controls Activated Neutrophil FcγR2b Expression and Migration into Inflamed Joints. Proc. Natl. Acad. Sci. USA 2020, 117, 3103–3113. [Google Scholar] [CrossRef] [PubMed]
- Isomäki, P.; Luukkainen, R.; Lassila, O.; Toivanen, P.; Punnonen, J. Synovial Fluid T Cells from Patients with Rheumatoid Arthritis Are Refractory to the T Helper Type 2 Differentiation-Inducing Effects of Interleukin-4. Immunology 1999, 96, 358–364. [Google Scholar] [CrossRef]
- Arroyo-Villa, I.; Bautista-Caro, M.-B.; Balsa, A.; Aguado-Acín, P.; Bonilla-Hernán, M.-G.; Plasencia, C.; Villalba, A.; Nuño, L.; Puig-Kröger, A.; Martín-Mola, E.; et al. Constitutively Altered Frequencies of Circulating Follicullar Helper T Cell Counterparts and Their Subsets in Rheumatoid Arthritis. Arthritis Res. Ther. 2014, 16, 500. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.H.; Pfeffer, K.; Weiss, G.J.; Ruiz, Y.; Lake, D.F. Identification of a CD4+ T Cell Line with Treg-like Activity. Hum. Immunol. 2022, 83, 281–294. [Google Scholar] [CrossRef]
- Lei, H.; Kuchenbecker, L.; Streitz, M.; Sawitzki, B.; Vogt, K.; Landwehr-Kenzel, S.; Millward, J.; Juelke, K.; Babel, N.; Neumann, A.; et al. Human CD45RA(-) FoxP3(Hi) Memory-Type Regulatory T Cells Show Distinct TCR Repertoires with Conventional T Cells and Play an Important Role in Controlling Early Immune Activation. Am. J. Transplant. 2015, 15, 2625–2635. [Google Scholar] [CrossRef]
- Castaño, D.; Wang, S.; Atencio-Garcia, S.; Shields, E.J.; Rico, M.C.; Sharpe, H.; Bustamante, J.; Feng, A.; Le Coz, C.; Romberg, N.; et al. IL-12 Drives the Differentiation of Human T Follicular Regulatory Cells. Sci. Immunol. 2024, 9, eadf2047. [Google Scholar] [CrossRef]
- Avdeeva, A.; Rubtsov, Y.; Dyikanov, D.; Popkova, T.; Nasonov, E. Regulatory T Cells in Patients with Early Untreated Rheumatoid Arthritis: Phenotypic Changes in the Course of Methotrexate Treatment. Biochimie 2020, 174, 9–17. [Google Scholar] [CrossRef]
- Liu, C.; Wang, D.; Lu, S.; Xu, Q.; Zhao, L.; Zhao, J.; Song, Y.; Wang, H. Increased Circulating Follicular Treg Cells Are Associated with Lower Levels of Autoantibodies in Patients with Rheumatoid Arthritis in Stable Remission. Arthritis Rheumatol. 2018, 70, 711–721. [Google Scholar] [CrossRef]
- Meffre, E.; O’Connor, K.C. Impaired B-Cell Tolerance Checkpoints Promote the Development of Autoimmune Diseases and Pathogenic Autoantibodies. Immunol. Rev. 2019, 292, 90–101. [Google Scholar] [CrossRef]
- Ehrenstein, M.R.; Evans, J.G.; Singh, A.; Moore, S.; Warnes, G.; Isenberg, D.A.; Mauri, C. Compromised Function of Regulatory T Cells in Rheumatoid Arthritis and Reversal by Anti-TNFα Therapy. J. Exp. Med. 2004, 200, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Thiolat, A.; Semerano, L.; Pers, Y.M.; Biton, J.; Lemeiter, D.; Portales, P.; Quentin, J.; Jorgensen, C.; Decker, P.; Boissier, M.-C.; et al. Interleukin-6 Receptor Blockade Enhances CD39+ Regulatory T Cell Development in Rheumatoid Arthritis and in Experimental Arthritis. Arthritis Rheumatol. 2014, 66, 273–283. [Google Scholar] [CrossRef]
- Niu, Q.; Huang, Z.-C.; Wu, X.-J.; Jin, Y.-X.; An, Y.-F.; Li, Y.-M.; Xu, H.; Yang, B.; Wang, L.-L. Enhanced IL-6/Phosphorylated STAT3 Signaling Is Related to the Imbalance of Circulating T Follicular Helper/T Follicular Regulatory Cells in Patients with Rheumatoid Arthritis. Arthritis Res. Ther. 2018, 20, 200. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Cai, M.-L.; Jin, H.-Z.; Huang, W.; Zhu, C.; Bozec, A.; Huang, J.; Chen, Z. Age-Associated B Cells Contribute to the Pathogenesis of Rheumatoid Arthritis by Inducing Activation of Fibroblast-like Synoviocytes via TNF-α-Mediated ERK1/2 and JAK-STAT1 Pathways. Ann. Rheum. Dis. 2022, 81, 1504–1514. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.E.; Kunkel, S.L.; Burrows, J.C.; Evanoff, H.L.; Haines, G.K.; Pope, R.M.; Strieter, R.M. Synovial Tissue Macrophage as a Source of the Chemotactic Cytokine IL-8. J. Immunol. Baltim. 1991, 147, 2187–2195. [Google Scholar] [CrossRef]
- Zhang, F.; Wei, K.; Slowikowski, K.; Fonseka, C.Y.; Rao, D.A.; Kelly, S.; Goodman, S.M.; Tabechian, D.; Hughes, L.B.; Salomon-Escoto, K.; et al. Defining Inflammatory Cell States in Rheumatoid Arthritis Joint Synovial Tissues by Integrating Single-Cell Transcriptomics and Mass Cytometry. Nat. Immunol. 2019, 20, 928–942. [Google Scholar] [CrossRef]
- Suto, T.; Tosevska, A.; Dalwigk, K.; Kugler, M.; Dellinger, M.; Stanic, I.; Platzer, A.; Niederreiter, B.; Sevelda, F.; Bonelli, M.; et al. TNFR2 Is Critical for TNF-Induced Rheumatoid Arthritis Fibroblast-like Synoviocyte Inflammation. Rheumatology 2022, 61, 4535–4546. [Google Scholar] [CrossRef]
- Rose-John, S.; Jenkins, B.J.; Garbers, C.; Moll, J.M.; Scheller, J. Targeting IL-6 Trans-Signalling: Past, Present and Future Prospects. Nat. Rev. Immunol. 2023, 23, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, K.; Jayasinghe, C.; Wanigasekara, P.; Sominanda, A. Potential Applicability of Cytokines as Biomarkers of Disease Activity in Rheumatoid Arthritis: Enzyme-Linked Immunosorbent Spot Assay-Based Evaluation of TNF-α, IL-1β, IL-10 and IL-17A. PLoS ONE 2021, 16, e0246111. [Google Scholar] [CrossRef]
- Masood, A.; Benabdelkamel, H.; Alfadda, A.A.; Alarfaj, A.S.; Fallata, A.; Joy, S.S.; Al Mogren, M.; Rahman, A.M.A.; Siaj, M. Proteomic Profiling Reveals Novel Molecular Insights into Dysregulated Proteins in Established Cases of Rheumatoid Arthritis. Proteomes 2025, 13, 32. [Google Scholar] [CrossRef]
- Chen, X.; Du, R.; Wang, P.; Qiu, W.; Chen, L.; Wan, J.; Qiu, H.; Xiong, L.; Nandakumar, K.S.; Holmdahl, R.; et al. Proteomic Analysis of Infiltrating Neutrophils from Rheumatoid Arthritis Synovial Fluid and Their Contribution to Protein Carbamylation. Front. Immunol. 2025, 16, 1563426. [Google Scholar] [CrossRef]
- Moon, J.-S.; Younis, S.; Ramadoss, N.S.; Iyer, R.; Sheth, K.; Sharpe, O.; Rao, N.L.; Becart, S.; Carman, J.A.; James, E.A.; et al. Cytotoxic CD8+ T Cells Target Citrullinated Antigens in Rheumatoid Arthritis. Nat. Commun. 2023, 14, 319. [Google Scholar] [CrossRef]
- Aubert, A.; Liu, A.; Kao, M.; Goeres, J.; Richardson, K.C.; Nierves, L.; Jung, K.; Nabai, L.; Zhao, H.; Orend, G.; et al. Granzyme B Cleaves Tenascin-C to Release Its C-Terminal Domain in Rheumatoid Arthritis. JCI Insight 2024, 9, e181935. [Google Scholar] [CrossRef]
- Guo, C.-L.; Wang, C.-S.; Wang, X.-H.; Yu, D.; Liu, Z. GZMK+CD8+ T Cells: Multifaceted Roles beyond Cytotoxicity. Trends Immunol. 2025, 46, 562–572. [Google Scholar] [CrossRef]
- Duquette, D.; Harmon, C.; Zaborowski, A.; Michelet, X.; O’Farrelly, C.; Winter, D.; Koay, H.-F.; Lynch, L. Human Granzyme K Is a Feature of Innate T Cells in Blood, Tissues, and Tumors, Responding to Cytokines Rather than TCR Stimulation. J. Immunol. Baltim. 2023, 211, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.-L.; Badovinac, V.; Harty, J. Differential Role of “Signal 3” Inflammatory Cytokines in Regulating CD8 T Cell Expansion and Differentiation in Vivo. Front. Immunol. 2011, 2, 4. [Google Scholar] [CrossRef]
- Higashioka, K.; Yoshimura, M.; Sakuragi, T.; Ayano, M.; Kimoto, Y.; Mitoma, H.; Ono, N.; Arinobu, Y.; Kikukawa, M.; Yamada, H.; et al. Human PD-1hiCD8+ T Cells Are a Cellular Source of IL-21 in Rheumatoid Arthritis. Front. Immunol. 2021, 12, 654623. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Takahashi, H.; Yoshida, R.; Itamiya, T.; Nakano, M.; Nagafuchi, Y.; Harada, H.; Shimizu, T.; Maeda, M.; Kubota, A.; et al. Age-Associated CD4+ T Cells with B Cell-Promoting Functions Are Regulated by ZEB2 in Autoimmunity. Sci. Immunol. 2024, 9, eadk1643. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Grieshaber-Bouyer, R.; Rao, D.A.; Kolb, P.; Chen, H.; Andreeva, I.; Tretter, T.; Lorenz, H.-M.; Watzl, C.; Wabnitz, G.; et al. Effect of JAK Inhibition on the Induction of Proinflammatory HLA-DR+CD90+ Rheumatoid Arthritis Synovial Fibroblasts by Interferon-γ. Arthritis Rheumatol. 2022, 74, 441–452. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kong, J.-S.; Lee, S.; Yoo, S.-A.; Koh, J.H.; Jin, J.; Kim, W.-U. Angiogenic Cytokines Can Reflect the Synovitis Severity and Treatment Response to Biologics in Rheumatoid Arthritis. Exp. Mol. Med. 2020, 52, 843–853. [Google Scholar] [CrossRef]
- Jackson, J.R.; Minton, J.A.; Ho, M.L.; Wei, N.; Winkler, J.D. Expression of Vascular Endothelial Growth Factor in Synovial Fibroblasts Is Induced by Hypoxia and Interleukin 1beta. J. Rheumatol. 1997, 24, 1253–1259. [Google Scholar]
- Goldring, S.R. Pathogenesis of Bone and Cartilage Destruction in Rheumatoid Arthritis. Rheumatology 2003, 42, ii11–ii16. [Google Scholar] [CrossRef] [PubMed]
- Karonitsch, T.; Beckmann, D.; Dalwigk, K.; Niederreiter, B.; Studenic, P.; Byrne, R.A.; Holinka, J.; Sevelda, F.; Korb-Pap, A.; Steiner, G.; et al. Targeted Inhibition of Janus Kinases Abates Interfon Gamma-Induced Invasive Behaviour of Fibroblast-like Synoviocytes. Rheumatology 2018, 57, 572–577. [Google Scholar] [CrossRef]
- O’ Gradaigh, D.; Ireland, D.; Bord, S.; Compston, J.E. Joint Erosion in Rheumatoid Arthritis: Interactions between Tumour Necrosis Factor Alpha, Interleukin 1, and Receptor Activator of Nuclear Factor kappaB Ligand (RANKL) Regulate Osteoclasts. Ann. Rheum. Dis. 2004, 63, 354–359. [Google Scholar] [CrossRef]
- Kobayashi, K.; Takahashi, N.; Jimi, E.; Udagawa, N.; Takami, M.; Kotake, S.; Nakagawa, N.; Kinosaki, M.; Yamaguchi, K.; Shima, N.; et al. Tumor Necrosis Factor Alpha Stimulates Osteoclast Differentiation by a Mechanism Independent of the ODF/RANKL-RANK Interaction. J. Exp. Med. 2000, 191, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Inoue, K.; Du, Y.; Baker, S.J.; Reddy, E.P.; Greenblatt, M.B.; Zhao, B. TGFβ Reprograms TNF Stimulation of Macrophages towards a Non-Canonical Pathway Driving Inflammatory Osteoclastogenesis. Nat. Commun. 2022, 13, 3920. [Google Scholar] [CrossRef]
- Yokota, K.; Sato, K.; Miyazaki, T.; Aizaki, Y.; Tanaka, S.; Sekikawa, M.; Kozu, N.; Kadono, Y.; Oda, H.; Mimura, T. Characterization and Function of Tumor Necrosis Factor and Interleukin-6-Induced Osteoclasts in Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, M.; Hayakawa, N.; Mihara, M. IL-6 Trans-Signalling Directly Induces RANKL on Fibroblast-like Synovial Cells and Is Involved in RANKL Induction by TNF-Alpha and IL-17. Rheumatology 2008, 47, 1635–1640. [Google Scholar] [CrossRef]
- Singh, A.K.; Haque, M.; Madarampalli, B.; Shi, Y.; Wildman, B.J.; Basit, A.; Khuder, S.A.; Prasad, B.; Hassan, Q.; Ouseph, M.M.; et al. Ets-2 Propagates IL-6 Trans-Signaling Mediated Osteoclast-Like Changes in Human Rheumatoid Arthritis Synovial Fibroblast. Front. Immunol. 2021, 12, 746503. [Google Scholar] [CrossRef]
- Ota, Y.; Niiro, H.; Ota, S.-I.; Ueki, N.; Tsuzuki, H.; Nakayama, T.; Mishima, K.; Higashioka, K.; Jabbarzadeh-Tabrizi, S.; Mitoma, H.; et al. Generation Mechanism of RANKL(+) Effector Memory B Cells: Relevance to the Pathogenesis of Rheumatoid Arthritis. Arthritis Res. Ther. 2016, 18, 67. [Google Scholar] [CrossRef]
- McGrath, S.; Grimstad, K.; Thorarinsdottir, K.; Forslind, K.; Glinatsi, D.; Leu Agelii, M.; Aranburu, A.; Sundell, T.; Jonsson, C.A.; Camponeschi, A.; et al. Correlation of Professional Antigen-Presenting Tbet+CD11c+ B Cells with Bone Destruction in Untreated Rheumatoid Arthritis. Arthritis Rheumatol. 2024, 76, 1263–1277. [Google Scholar] [CrossRef]
- Bhattacharya, G.; Sengupta, S.; Jha, R.; Shaw, S.K.; Jogdand, G.M.; Barik, P.K.; Padhan, P.; Parida, J.R.; Devadas, S. IL-21/23 Axis Modulates Inflammatory Cytokines and RANKL Expression in RA CD4+ T Cells via p-Akt1 Signaling. Front. Immunol. 2023, 14, 1235514. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Shiba, N.; Hiraoka, K. New Insights into the Role of Synovial Fibroblasts Leading to Joint Destruction in Rheumatoid Arthritis. Int. J. Mol. Sci. 2023, 24, 5173. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tanaka, Y.; Soen, S.; Yamanaka, H.; Yoneda, T.; Tanaka, S.; Nitta, T.; Okubo, N.; Genant, H.K.; van der Heijde, D. Effects of the Anti-RANKL Antibody Denosumab on Joint Structural Damage in Patients with Rheumatoid Arthritis Treated with Conventional Synthetic Disease-Modifying Antirheumatic Drugs (DESIRABLE Study): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial. Ann. Rheum. Dis. 2019, 78, 899–907. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujimoto, S.; Niiro, H. Pathogenic Role of Cytokines in Rheumatoid Arthritis. J. Clin. Med. 2025, 14, 6409. https://doi.org/10.3390/jcm14186409
Fujimoto S, Niiro H. Pathogenic Role of Cytokines in Rheumatoid Arthritis. Journal of Clinical Medicine. 2025; 14(18):6409. https://doi.org/10.3390/jcm14186409
Chicago/Turabian StyleFujimoto, Sho, and Hiroaki Niiro. 2025. "Pathogenic Role of Cytokines in Rheumatoid Arthritis" Journal of Clinical Medicine 14, no. 18: 6409. https://doi.org/10.3390/jcm14186409
APA StyleFujimoto, S., & Niiro, H. (2025). Pathogenic Role of Cytokines in Rheumatoid Arthritis. Journal of Clinical Medicine, 14(18), 6409. https://doi.org/10.3390/jcm14186409