Long-Term Clinical Efficacy of the Disc-FX Procedure in Contained Disc Herniation: A 7-Year Follow-Up from a Single-Center Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Sample
2.2. Methods
2.3. Statistical Analysis
2.4. Characteristics of the Statistical Tool
2.5. Surgical Procedure
3. Results
3.1. Characteristics of Clinical Pre- and Postoperative Parameters
3.2. Characteristic of the Clinical Outcomes
3.2.1. MacNab Score
3.2.2. Visual Analog Scale (VAS)
3.2.3. ODI Score
3.3. Estimation of the Effect of the Baseline Parameters on the McNab Score Among Patients Undergoing the Minimally Invasive Disc FX Procedure
3.4. Estimation of the Effect of the Clinical Parameters on the VAS Score Among Patients Undergoing the Minimally Invasive Disc FX Procedure
3.5. Estimation of the Effect of the Clinical Parameters on the ODI Score Among Patients Undergoing the Minimally Invasive Disc FX Procedure
4. Discussion
4.1. Clinical Effectiveness and Patient Satisfaction over Time
4.2. Factors Associated with Poorer Pain and Functional Outcomes
4.3. Factors Not Significantly Associated with Outcomes
4.4. Segmental Vulnerability, Reoperation Patterns and Complications
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DDD | degenerative disc disease |
MR | magnetic resonance imaging |
HIZs | high-intensity zones |
BMI | median body mass index |
VAS | Visual Analog Scale |
ODI | Oswestry Disability Index |
CLM | cumulative link model |
ORs | odds ratios |
CI | confidence intervals |
GOF | goodness-of-fit |
VIF | Variance Inflation Factor |
LMM | linear mixed-effects model |
MCID | minimal clinically important difference |
Appendix A. Longitudinal Model Specification
References
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.; et al. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef]
- Aprill, C.N.; Bogduk, N. High-intensity zone: A diagnostic sign of painful lumbar disc on MRI. Br. J. Radiol. 1992, 65, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Russo, F.; Ambrosio, L.; Giannarelli, E.; Vorini, F.; Mallio, C.A.; Quattrocchi, C.C.; Vadalà, G.; Papalia, R.; Denaro, V. Innovative quantitative magnetic resonance tools to detect early intervertebral disc degeneration changes: A systematic review. Spine J. 2023, 23, 1435–1450. [Google Scholar] [CrossRef] [PubMed]
- Manchikanti, L.; Derby, R.; Benyamin, R.M.; Helm, S.; Hirsch, J.A. A systematic review of mechanical lumbar disc decompression with nucleoplasty. Pain Physician. 2009, 12, 561–572. [Google Scholar] [CrossRef]
- Jin, C.; Lin, Y.; Hsieh, W.; Su, Y.; Lin, M. An Effectiveness Evaluation of Nucleo-Annuloplasty for Lumbar Discogenic Lesions Using Disc-FX: A Scoping Review. Medicina 2023, 59, 1291. [Google Scholar] [CrossRef]
- Lee, S.; Wong, A.Y.; Luk, K.D.; Samartzis, D.; Cheung, K.M. Efficacy and safety of nucleo-annuloplasty using radiofrequency ablation for discogenic back pain in a local Hong Kong population. J. Orthop. 2021, 23, 85–90. [Google Scholar] [CrossRef]
- Kapoor, A.; McGirt, M.J.; Klineberg, E.; Singh, K. Annulo-Nucleoplasty Using Disc-FX in the Management of Degenerative Lumbar Disc Pathology: How Long Can the Effect Last? Glob. Spine J. 2018, 8, 370–376. [Google Scholar] [CrossRef]
- Appel, B. Nomenclature and classification of lumbar disc pathology. Neuroradiology 2001, 43, 1124–1125. [Google Scholar] [CrossRef]
- Macnab, I. Negative disc exploration: An analysis of the causes of nerve-root involvement in sixty-eight patients. J. Bone Joint Surg. Am. 1971, 53, 891–903. [Google Scholar] [CrossRef]
- Fagerland, M.W.; Hosmer, D.W. A goodness-of-fit test for the proportional odds regression model. Stat. Med. 2013, 32, 2235–2249. [Google Scholar] [CrossRef]
- Fagerland, M.W.; Hosmer, D.W. Tests for goodness of fit in ordinal logistic regression models. J. Stat. Comput. Simul. 2016, 86, 3398–3418. [Google Scholar] [CrossRef]
- Fagerland, M.W.; Hosmer, D.W. How to test for goodness of fit in ordinal logistic regression models. Stata J. 2017, 17, 668–686. [Google Scholar] [CrossRef]
- Lipsitz, S.R.; Fitzmaurice, G.M.; Molenberghs, G. Goodness-of-fit tests for ordinal response regression models. J. R. Stat. Soc. Ser. C Appl. Stat. 1996, 45, 175–190. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 20 December 2024).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Jagan, M. R Package, Version 1.6-5; Matrix: Sparse and Dense Matrix Classes and Methods. 2024. Available online: https://CRAN.R-project.org/package=Matrix (accessed on 20 December 2024).
- Christensen, R. R Package, Version 2023.12-4.1; Ordinal-Regression Models for Ordinal Data. 2023. Available online: https://CRAN.R-project.org/package=ordinal (accessed on 20 December 2024).
- Lüdecke, D. R Package, Version 2.8.15; sjPlot: Data Visualization for Statistics in Social Science. 2023. Available online: https://CRAN.R-project.org/package=sjPlot (accessed on 20 December 2024).
- Lüdecke, D.; Ben-Shachar, M.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Makowski, D.; Lüdecke, D.; Patil, I.; Thériault, R.; Ben-Shachar, M.; Wiernik, B. Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption. CRAN. 2023. Available online: https://easystats.github.io/report/ (accessed on 20 December 2024).
- Sjoberg, D.; Whiting, K.; Curry, M.; Lavery, J.; Larmarange, J. Reproducible Summary Tables with the gtsummary Package. R J. 2021, 13, 570–580. [Google Scholar] [CrossRef]
- Ugba, E. R Package, Version 0.1.2; gofcat: Goodness-of-Fit Measures for Categorical Response Models. 2022. Available online: https://CRAN.R-project.org/package=gofcat (accessed on 20 December 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 20 December 2024).
- Panagopoulos, G.N.; Tatani, I.; Megas, P. Minimally invasive intradiscal decompression for lumbar discogenic pain: A scoping review of Disc-FX outcomes. World Neurosurg. 2023, 175, 153–161. [Google Scholar] [CrossRef]
- Ostelo, R.W.; de Vet, H.C. Clinically important outcomes in low back pain. Best Pract. Res. Clin. Rheumatol. 2005, 19, 593–607. [Google Scholar] [CrossRef]
- Hägg, O.; Fritzell, P.; Nordwall, A. The clinical importance of changes in outcome scores after treatment for chronic low back pain. Eur. Spine J. 2003, 12, 12–20. [Google Scholar] [CrossRef]
- Weinstein, J.N.; Lurie, J.D.; Tosteson, T.D.; Skinner, J.S.; Hanscom, B.; Tosteson, A.N.; Herkowitz, H.; Fischgrund, J.; Cammisa, F.P.; Albert, T.; et al. Surgical vs. nonoperative treatment for lumbar disk herniation: The Spine Patient Outcomes Research Trial (SPORT): A Randomized Trial. JAMA 2006, 296, 2441–2450. [Google Scholar] [CrossRef]
- Barth, M.; Diepers, M.; Weiss, C.; Thomé, C. Two-year outcome after lumbar microdiscectomy versus microscopic sequestrectomy: Part 1: Clinical results. Eur. Spine J. 2008, 17, 735–742. [Google Scholar]
- Copay, A.G.; Glassman, S.D.; Subach, B.R.; Berven, S.; Schuler, T.C.; Carreon, L.Y. Minimum clinically important difference in lumbar spine surgery patients: A choice of methods using the Oswestry Disability Index, 36-Item Short Form Health Survey, and pain scales. Spine J. 2008, 8, 968–974. [Google Scholar] [CrossRef]
- Parker, S.L.; Mendenhall, S.K.; Shau, D.N.; Adogwa, O.; Cheng, J.; McGirt, M.J. Minimum clinically important difference in pain, disability, and quality of life after neural decompression and fusion for same-level recurrent lumbar stenosis: Understanding clinical versus statistical significance. Spine J. 2012, 12, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.N.; Lurie, J.D.; Tosteson, T.D.; Skinner, J.S.; Hanscom, B.; Tosteson, A.N.; Herkowitz, H.; Fischgrund, J.; Cammisa, F.P.; Albert, T.; et al. Surgical vs nonoperative treatment for lumbar disk herniation: The Spine Patient Outcomes Research Trial (SPORT) observational cohort. JAMA 2006, 296, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Yoshizawa, H.; Yamada, S. Pathology of lumbar nerve root compression. Part 2: Morphological and immuno-histochemical changes of dorsal root ganglion. J. Orthop. Res. 2004, 22, 180–188, Erratum in: J. Orthop. Res. 2006, 24, 1136. [Google Scholar] [CrossRef]
- Ropper, A.H.; Zafonte, R.D. Sciatica. N. Engl. J. Med. 2015, 372, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Rihn, J.A.; Kurd, M.; Hilibrand, A.S.; Lurie, J.; Zhao, W.; Albert, T.; Weinstein, J. The influence of obesity on the outcome of treatment of lumbar disc herniation: Analysis of the Spine Patient Outcomes Research Trial (SPORT). J. Bone Joint Surg. Am. 2013, 95, 1–8. [Google Scholar] [CrossRef]
- Patel, R.A.; Wilson, R.F.; Patel, P.A.; Palmer, R.M. The effect of smoking on bone healing: A systematic review. Bone Jt. Res. 2013, 2, 102–111. [Google Scholar] [CrossRef]
- Luoma, K.; Riihimäki, H.; Raininko, R.; Luukkonen, R.; Lamminen, A. Lumbar disc degeneration in relation to occupation. Scand. J. Work. Environ. Health 2000, 26, 358–366. [Google Scholar] [CrossRef]
- Carragee, E.J.; Han, M.Y.; Suen, P.W.; Kim, D. Clinical outcomes after lumbar discectomy for sciatica: The effects of fragment type and anular competence. J. Bone Jt. Surg. Am. 2003, 85, 102–108. [Google Scholar] [CrossRef]
- Machino, M.; Nakashima, H.; Ito, K.; Katayama, Y.; Matsumoto, T.; Tsushima, M.; Ando, K.; Kobayashi, K.; Imagama, S. Age-related degen-erative changes and sex-specific differences in osseous anatomy and intervertebral disc height of the thoracolumbar spine. J. Clin. Neurosci. 2021, 90, 317–324. [Google Scholar] [CrossRef]
- Cheung, K.M.; Karppinen, J.; Chan, D.; Ho, D.; Song, Y.-Q.; Sham, P.; Cheah, K.; Leong, J.; Luk, K. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 2009, 34, 934–940. [Google Scholar] [CrossRef]
- Adams, M.A.; Dolan, P. Spine biomechanics. J. Biomech. 2005, 38, 1972–1983. [Google Scholar] [CrossRef]
- Lotz, J.C.; Ulrich, J.A. Innervation, inflammation, and hypermobility may characterize pathologic disc degeneration: Review of animal model data. J. Bone Jt. Surg. Am. 2006, 88 (Suppl. 2), 76–82. [Google Scholar] [CrossRef]
- McGirt, M.J.; Ambrossi, G.L.; Datoo, G.; Sciubba, D.M.; Witham, T.F.; Wolinsky, J.P.; Gokaslan, Z.L.; Bydon, A. Recurrent disc herniation and long-term back pain after primary lumbar discectomy: Review of outcomes reported for limited versus aggressive disc removal. Neurosurgery 2009, 64, 338–344. [Google Scholar] [CrossRef]
Characteristic | N | n (%) |
---|---|---|
Demographics and lifestyle factors | ||
Smoking | 197 | 72.00 (36.55%) |
Type of work performed | 197 | |
not applicable (retiree) | 35 (17.77%) | |
physical | 58 (29.44%) | |
sedentary | 104 (52.79%) | |
Clinical and symptom characteristics | ||
Duration of the ailment (years) | 197 | 3.00 (2.00, 4.00) |
Symptoms of lumbalgia | 197 | 162 (82.23%) |
Root symptoms (sensation/force) | 197 | 147 (74.62%) |
Intervention details | ||
Side of intervention: | 197 | |
left | 99 (50.25%) | |
right | 98 (49.75%) | |
Current operation level: | ||
Th12/L1 | 197 | 1 (0.51%) |
L1/L2 | 197 | 3 (1.52%) |
L2/L3 | 197 | 6 (3.05%) |
L3/L4 | 197 | 18 (9.14%) |
L4/L5 | 197 | 161 (81.73%) |
L5/S1 | 197 | 14 (7.11%) |
Preoperative and postoperative treatments | ||
Past treatments before FX | 197 | 24 (12.18%) |
Steroid blocks before the intervention | 197 | 8 (4.06%) |
Steroid blocks after intervention | 197 | 50 (25.38%) |
Predictors | McNab Score | ||
---|---|---|---|
OR | 95% CI | p | |
Threshold coefficients | |||
1|2 | 0.01 | 0.00–0.02 | <0.001 |
2|3 | 0.03 | 0.01–0.10 | <0.001 |
3|4 | 0.07 | 0.02–0.28 | <0.001 |
4|5 | 0.20 | 0.05–0.74 | 0.016 |
Regression coefficients | |||
sex [female] | Reference category | ||
sex [male] | 0.41 | 0.22–0.76 | 0.005 |
Age (centered by median 48.0 years) | 1.02 | 0.99–1.05 | 0.198 |
BMI (centered by median 27.38 kg/m2) | 1.02 | 0.95–1.09 | 0.613 |
smoking [no] | Reference category | ||
smoking [yes] | 0.95 | 0.53–1.71 | 0.861 |
physical work [no] | Reference category | ||
physical work [yes] | 1.10 | 0.38–3.21 | 0.857 |
sendentary work [no] | Reference category | ||
sendentary work [yes] | 0.54 | 0.21–1.40 | 0.208 |
ailment duration (centered by median 3.0 years) | 0.85 | 0.73–1.00 | 0.045 |
lumbalgia symptom [no] | Reference category | ||
lumbalgia symptom [yes] | 0.55 | 0.27–1.15 | 0.111 |
root symptom [no] | Reference category | ||
root symptom [yes] | 0.39 | 0.20–0.76 | 0.006 |
Predictors | VAS Score | ||
---|---|---|---|
β | 95% CI | p | |
(Intercept) | 5.10 | 4.89–5.30 | <0.001 |
time [1st degree] | −0.42 | −1.00–0.16 | 0.155 |
time [2nd degree] | −1.36 | −1.98–0.75 | <0.001 |
time [3rd degree] | −2.80 | −3.49–2.11 | <0.001 |
time [4th degree] | 0.72 | −0.11–1.55 | 0.089 |
Sex [female] | Reference level | ||
Sex [male] | 0.12 | −0.08–0.32 | 0.248 |
Age (centered by median 48.0 years) | −0.00 | −0.01–0.01 | 0.667 |
BMI (centered by median 27.38 kg/m2) | −0.01 | −0.03–0.02 | 0.627 |
Past treatments before FX [no] | Reference level | ||
Past treatments before FX [yes] | −0.04 | −0.36–0.27 | 0.793 |
Surgery after FX [no] | Reference level | ||
Surgery after FX [yes] | 1.10 | 0.86–1.33 | <0.001 |
Steroid blocks after intervention [no] | Reference level | ||
Steroid blocks after intervention [yes] | −0.00 | −0.24–0.24 | 0.972 |
Steroid blocks before the intervention [no] | Reference level | ||
Steroid blocks before the intervention [yes] | 0.62 | 0.08–1.17 | 0.024 |
Rehabilitation after surgery [no] | Reference level | ||
Rehabilitation after surgery [yes] | 0.36 | 0.15–0.57 | 0.001 |
Rehabilitation before surgery [no] | Reference level | ||
Rehabilitation before surgery [yes] | −0.07 | −0.30–0.16 | 0.565 |
Complications [no] | Reference level | ||
Complications [yes] | 0.64 | 0.07–1.21 | 0.027 |
Predictors | ODI Score | ||
---|---|---|---|
β | 95% CI | p | |
(Intercept) | 13.14 | 12.00–14.29 | <0.001 |
time [1st degree] | −5.05 | −5.83–−4.27 | <0.001 |
time [2nd degree] | −6.28 | −7.26–−5.30 | <0.001 |
time [3rd degree] | −13.21 | −14.56–−11.85 | <0.001 |
time [4th degree] | −1.05 | −2.42–0.33 | 0.135 |
Sex [female] | Reference level | ||
Sex [male] | 0.23 | −1.08–1.54 | 0.727 |
Age (centered by median 48.0 years) | −0.00 | −0.01–0.01 | 0.390 |
BMI (centered by median 27.38 kg/m2) | 0.05 | −0.11–0.22 | 0.521 |
Past treatments before FX [no] | Reference level | ||
Past treatments before FX [yes] | 0.33 | −1.66–2.33 | 0.742 |
Surgery after FX [no] | Reference level | ||
Surgery after FX [yes] | 4.41 | 2.89–5.92 | <0.001 |
Steroid blocks after intervention [no] | Reference level | ||
Steroid blocks after intervention [yes] | −0.39 | −1.92–1.13 | 0.614 |
Steroid blocks before the intervention [no] | Reference level | ||
Steroid blocks before the intervention [yes] | 3.04 | −0.41–6.49 | 0.084 |
Rehabilitation after surgery [no] | Reference level | ||
Rehabilitation after surgery [yes] | 1.64 | 0.27–3.01 | 0.019 |
Rehabilitation before surgery [no] | Reference level | ||
Rehabilitation before surgery [yes] | −1.21 | −2.66–0.25 | 0.104 |
Complications [no] | Reference level | ||
Complications [yes] | 6.73 | 2.98–10.48 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybaczek, M.; Prokop, K.; Sawicki, K.; Rutkowski, R.; Lebejko, A.; Perestret, G.; Mariak, Z.; Grabala, P.; Łysoń, T. Long-Term Clinical Efficacy of the Disc-FX Procedure in Contained Disc Herniation: A 7-Year Follow-Up from a Single-Center Cohort Study. J. Clin. Med. 2025, 14, 6378. https://doi.org/10.3390/jcm14186378
Rybaczek M, Prokop K, Sawicki K, Rutkowski R, Lebejko A, Perestret G, Mariak Z, Grabala P, Łysoń T. Long-Term Clinical Efficacy of the Disc-FX Procedure in Contained Disc Herniation: A 7-Year Follow-Up from a Single-Center Cohort Study. Journal of Clinical Medicine. 2025; 14(18):6378. https://doi.org/10.3390/jcm14186378
Chicago/Turabian StyleRybaczek, Magdalena, Kacper Prokop, Karol Sawicki, Robert Rutkowski, Aleksander Lebejko, Grzegorz Perestret, Zenon Mariak, Paweł Grabala, and Tomasz Łysoń. 2025. "Long-Term Clinical Efficacy of the Disc-FX Procedure in Contained Disc Herniation: A 7-Year Follow-Up from a Single-Center Cohort Study" Journal of Clinical Medicine 14, no. 18: 6378. https://doi.org/10.3390/jcm14186378
APA StyleRybaczek, M., Prokop, K., Sawicki, K., Rutkowski, R., Lebejko, A., Perestret, G., Mariak, Z., Grabala, P., & Łysoń, T. (2025). Long-Term Clinical Efficacy of the Disc-FX Procedure in Contained Disc Herniation: A 7-Year Follow-Up from a Single-Center Cohort Study. Journal of Clinical Medicine, 14(18), 6378. https://doi.org/10.3390/jcm14186378