Artificial Intelligence in Ophthalmology: Acceptance, Clinical Integration, and Educational Needs in Switzerland
Abstract
1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Participant Recruitment
2.3. Sample Size Determination
2.4. Questionnaire Development
2.5. Data Collection and Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Digital Interest and Experience (IE)
3.3. Private Use (PU) of AI-Based Technologies
3.4. Use of AI at the Workplace (WP)
3.5. Most Common AI Tools in Clinical Practice (CP)
3.6. Diagnostic (D) Applications
3.7. Potential Applications of AI in Ophthalmology
3.8. Main Barriers to AI Adoption
3.9. Perceptions of AI Utility, Accuracy, and Trust (UAT)
3.10. Ethical and Legal Dimensions (EL)
3.11. Educational Gaps and Learning Needs (LN)
3.12. Analysis of Free-Text Responses
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316, 2402. [Google Scholar] [CrossRef]
- De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’Donoghue, B.; Visentin, D.; et al. Clinically Applicable Deep Learning for Diagnosis and Referral in Retinal Disease. Nat. Med. 2018, 24, 1342–1350. [Google Scholar] [CrossRef]
- Betzler, B.K.; Chen, H.; Cheng, C.Y.; Lee, C.S.; Ning, G.; Song, S.J.; Lee, A.Y.; Kawasaki, R.; van Wijngaarden, P.; Grzybowski, A.; et al. Large Language Models and Their Impact in Ophthalmology. Lancet Digit. Health 2023, 5, e917–e924. [Google Scholar] [CrossRef]
- Hashemian, H.; Peto, T.; Ambrósio, R.; Lengyel, I.; Kafieh, R.; Muhammed Noori, A.; Khorrami-Nejad, M. Application of Artificial Intelligence in Ophthalmology: An Updated Comprehensive Review. J. Ophthalmic Vis. Res. 2024, 19, 354–367. [Google Scholar] [CrossRef]
- Sheng, B.; Chen, X.; Li, T.; Ma, T.; Yang, Y.; Bi, L.; Zhang, X. An Overview of Artificial Intelligence in Diabetic Retinopathy and Other Ocular Diseases. Front. Public Health 2022, 10, 78. [Google Scholar] [CrossRef]
- Ahn, J.; Choi, M. Advancements and Turning Point of Artificial Intelligence in Ophthalmology: A Comprehensive Analysis of Research Trends and Collaborative Networks. Ophthalmic Physiol. Opt. 2024, 44, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Mu, J.; Xu, F.; Guo, W.; Sun, C.; Fan, W. Artificial Intelligence in Ophthalmology: A Bibliometric Analysis of the 5-Year Trends in Literature. Front. Med. 2025, 12, 1580583. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, A.E.; Davidson, O.Q.; Lee, C.S.; Lee, A.Y. Artificial Intelligence and Diabetic Retinopathy: AI Framework, Prospective Studies, Head-to-Head Validation, and Cost-Effectiveness. Diabetes Care 2023, 46, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Bai, W. Artificial Intelligence Technology in Ophthalmology Public Health: Current Applications and Future Directions. Front. Cell Dev. Biol. 2025, 13, 1576465. [Google Scholar] [CrossRef]
- Daich Varela, M.; Sen, S.; De Guimaraes, T.A.C.; Kabiri, N.; Pontikos, N.; Balaskas, K.; Michaelides, M. Artificial Intelligence in Retinal Disease: Clinical Application, Challenges, and Future Directions. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 3283–3297. [Google Scholar] [CrossRef]
- Benet, D.; Pellicer-Valero, O.J. Artificial Intelligence: The Unstoppable Revolution in Ophthalmology. Surv. Ophthalmol. 2022, 67, 252–270. [Google Scholar] [CrossRef] [PubMed]
- Oganov, A.C.; Seddon, I.; Jabbehdari, S.; Uner, O.E.; Fonoudi, H.; Yazdanpanah, G.; Outani, O.; Arevalo, J.F. Artificial Intelligence in Retinal Image Analysis: Development, Advances, and Challenges. Surv. Ophthalmol. 2023, 68, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, D.C.; Cox, P.; Redd, T.K. Assistive Applications of Artificial Intelligence in Ophthalmology. Curr. Opin. Ophthalmol. 2023, 34, 261–266. [Google Scholar] [CrossRef]
- Jin, K.; Yu, T.; Grzybowski, A. Multimodal Artificial Intelligence in Ophthalmology: Applications, Challenges, and Future Directions. Surv. Ophthalmol. 2025. [Google Scholar] [CrossRef]
- Lan, C.-H.; Chiu, T.-H.; Yen, W.-T.; Lu, D.-W. Artificial Intelligence in Glaucoma: Advances in Diagnosis, Progression Forecasting, and Surgical Outcome Prediction. Int. J. Mol. Sci. 2025, 26, 4473. [Google Scholar] [CrossRef]
- AlShawabkeh, M.; AlRyalat, S.A.; Al Bdour, M.; Alni’mat, A.; Al-Akhras, M. The Utilization of Artificial Intelligence in Glaucoma: Diagnosis versus Screening. Front. Ophthalmol. 2024, 4, 1368081. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.J.; Foo, V.H.X.; Yang, L.W.Y.; Sia, J.T.; Ang, M.; Lin, H.; Chodosh, J.; Mehta, J.S.; Ting, D.S.W. Artificial Intelligence for Anterior Segment Diseases: Emerging Applications in Ophthalmology. Br. J. Ophthalmol. 2021, 105, 158–168. [Google Scholar] [CrossRef]
- Jin, K.; Grzybowski, A. Advancements in Artificial Intelligence for the Diagnosis and Management of Anterior Segment Diseases. Curr. Opin. Ophthalmol. 2025, 36, 335–342. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, S.; Hong, X.; Lu, Y.; Wu, X.; Li, K.; Li, K.; Liu, Y. Advances in Artificial Intelligence Applications for Ocular Surface Diseases Diagnosis. Front. Cell Dev. Biol. 2022, 10, 1107689. [Google Scholar] [CrossRef]
- Hogarty, D.T.; Mackey, D.A.; Hewitt, A.W. Current State and Future Prospects of Artificial Intelligence in Ophthalmology: A Review. Clin. Exp. Ophthalmol. 2019, 47, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, F.S.; Jurman, G.; De Nadai, K.; Campa, C.; Furlanello, C.; Parmeggiani, F. Application of Artificial Intelligence in Targeting Retinal Diseases. Curr. Drug Targets 2020, 21, 1208–1215. [Google Scholar] [CrossRef]
- Savastano, M.C.; Rizzo, C.; Fossataro, C.; Bacherini, D.; Giansanti, F.; Savastano, A.; Arcuri, G.; Rizzo, S.; Faraldi, F. Artificial Intelligence in Ophthalmology: Progress, Challenges, and Ethical Implications. Prog. Retin. Eye Res. 2025, 107, 101374. [Google Scholar] [CrossRef]
- Ahuja, A.S.; Paredes Iii, A.A.; Eisel, M.L.S.; Kodwani, S.; Wagner, I.V.; Miller, D.D.; Dorairaj, S. Applications of Artificial Intelligence in Cataract Surgery: A Review. Clin. Ophthalmol. 2024, 18, 2969–2975. [Google Scholar] [CrossRef]
- Miranda, M.; Santos-Oliveira, J.; Mendonça, A.M.; Sousa, V.; Melo, T.; Carneiro, Â. Human versus Artificial Intelligence: Validation of a Deep Learning Model for Retinal Layer and Fluid Segmentation in Optical Coherence Tomography Images from Patients with Age-Related Macular Degeneration. Diagnostics 2024, 14, 975. [Google Scholar] [CrossRef]
- Crincoli, E.; Parolini, B.; Catania, F.; Savastano, A.; Savastano, M.C.; Rizzo, C.; Kilian, R.; Matello, V.; Allegrini, D.; Romano, M.R.; et al. Prediction of Functional and Anatomic Progression in Lamellar Macular Holes. Ophthalmol. Sci. 2024, 4, 100529. [Google Scholar] [CrossRef]
- Ferro Desideri, L.; Zinkernagel, M.; Anguita, R. Artificial Intelligence in Neovascular Age-Related Macular Degeneration. Klin Monbl Augenheilkd 2025. [Google Scholar] [CrossRef] [PubMed]
- Antaki, F.; Hammana, I.; Tessier, M.-C.; Boucher, A.; David Jetté, M.L.; Beauchemin, C.; Hammamji, K.; Ong, A.Y.; Rhéaume, M.-A.; Gauthier, D.; et al. Implementation of Artificial Intelligence-Based Diabetic Retinopathy Screening in a Tertiary Care Hospital in Quebec: Prospective Validation Study. JMIR Diabetes 2024, 9, e59867. [Google Scholar] [CrossRef] [PubMed]
- Baget-Bernaldiz, M.; Fontoba-Poveda, B.; Romero-Aroca, P.; Navarro-Gil, R.; Hernando-Comerma, A.; Bautista-Perez, A.; Llagostera-Serra, M.; Morente-Lorenzo, C.; Vizcarro, M.; Mira-Puerto, A. Artificial Intelligence-Based Screening System for Diabetic Retinopathy in Primary Care. Diagnostics 2024, 14, 1992. [Google Scholar] [CrossRef]
- Brady, C.J.; Garg, S. Telemedicine for Age-Related Macular Degeneration. Telemed. J. E Health 2020, 26, 565–568. [Google Scholar] [CrossRef]
- Deng, J.; Qin, Y. Current Status, Hotspots, and Prospects of Artificial Intelligence in Ophthalmology: A Bibliometric Analysis (2003–2023). Ophthalmic Epidemiol. 2025, 32, 245–258. [Google Scholar] [CrossRef]
- Azzopardi, M.; Ng, B.; Logeswaran, A.; Loizou, C.; Cheong, R.C.T.; Gireesh, P.; Ting, D.S.J.; Chong, Y.J. Artificial Intelligence Chatbots as Sources of Patient Education Material for Cataract Surgery: ChatGPT-4 versus Google Bard. BMJ Open Ophthalmol. 2024, 9, e001824. [Google Scholar] [CrossRef]
- Hassan, M.; Kushniruk, A.; Borycki, E. Barriers to and Facilitators of Artificial Intelligence Adoption in Health Care: Scoping Review. JMIR Hum. Factors 2024, 11, e48633. [Google Scholar] [CrossRef]
- Gerke, S.; Minssen, T.; Cohen, G. Ethical and Legal Challenges of Artificial Intelligence-Driven Healthcare. In Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–336. ISBN 9780128184387. [Google Scholar]
- Habib, M.M.; Hoodbhoy, Z.; Siddiqui, M.A.R. Knowledge, Attitudes, and Perceptions of Healthcare Students and Professionals on the Use of Artificial Intelligence in Healthcare in Pakistan. PLoS Digit. Health 2024, 3, e0000443. [Google Scholar] [CrossRef]
- FMH. Künstliche Intelligenz im Ärztlichen Alltag: Einsatzgebiete in der Medizin: Nutzen, Herausforderungen und Forderungen der FMH. Available online: https://www.fmh.ch/files/pdf27/20220914_fmh_brosch-ki_d.pdf (accessed on 1 August 2025).
- FMH Zentralvorstand. Wandel des ärztlichen Berufsbildes durch digitale Technologien. Schweiz. Ärztezeitung 2024, 105, 26–28. Available online: https://www.siwf.ch/files/pdf30/positionspapier_digitaler_wandel_saez-2024-1439938914.pdf (accessed on 1 August 2025).
- SIWF-FMH. Fachärztin oder Facharzt für Ophthalmologie: Weiterbildungsprogramm vom 1. Januar 2023. Available online: https://www.siwf.ch/files/pdf21/ophthalmologie_version_internet_d.pdf (accessed on 1 August 2025).
- Gehrmann, E. How Generative AI Is Transforming Medical Education. Available online: https://magazine.hms.harvard.edu/articles/how-generative-ai-transforming-medical-education (accessed on 1 August 2025).
- Oftring, Z.S.; Deutsch, K.; Tolks, D.; Jungmann, F.; Kuhn, S. Novel Blended Learning on Artificial Intelligence for Medical Students: Qualitative Interview Study. JMIR Med. Educ. 2025, 11, e65220. [Google Scholar] [CrossRef]
- FMH FMH-Ärztestatistik 2024. Available online: https://aerztestatistik.fmh.ch (accessed on 1 August 2025).
- Venkatesh, V.; Davis, F.D. A Model of the Antecedents of Perceived Ease of Use: Development and Test. Decis. Sci. 1996, 27, 451–481. [Google Scholar] [CrossRef]
- The Jamovi Project Jamovi, Version 2.7.2; Computer Software; Available online: https://www.jamovi.org (accessed on 28 July 2025).
- Jalby, V. VijPlots: Statistical Charts Module for Jamovi. Available online: https://github.com/vjalby/vijPlots/ (accessed on 28 July 2025).
- Burmann, A.; Tischler, M.; Faßbach, M.; Schneitler, S.; Meister, S. The Role of Physicians in Digitalizing Health Care Provision: Web-Based Survey Study. JMIR Med. Inform. 2021, 9, e31527. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.; Li, E.; Laranjo, L.; Collins, C.; Irving, G.; Fernandez, M.J.; Car, J.; Ungan, M.; Petek, D.; Hoffman, R. Digital Maturity and Its Determinants in General Practice: A Cross-Sectional Study in 20 Countries. Front. Public Health 2023, 10, 962924. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Fan, X.; Du, J. Gender and Attitudes toward Technology Use: A Meta-Analysis. Comput. Educ. 2017, 105, 1–13. [Google Scholar] [CrossRef]
- Budd, S.; Robinson, E.C.; Kainz, B. A Survey on Active Learning and Human-in-the-Loop Deep Learning for Medical Image Analysis. Med. Image Anal. 2021, 71, 102062. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ethics and Governance of Artificial Intelligence for Health: Large Multi-Modal Models; WHO Guidance; World Health Organization: Geneva, Switzerland, 2024; ISBN 9789240084759. [Google Scholar]
- Price, W.N.; Gerke, S.; Cohen, I.G. Potential Liability for Physicians Using Artificial Intelligence. JAMA 2019, 322, 1765–1766. [Google Scholar] [CrossRef]
- Zheng, L.; Xiao, Y. Refining AI Perspectives: Assessing the Impact of Ai Curricular on Medical Students’ Attitudes towards Artificial Intelligence. BMC Med. Educ. 2025, 25, 1115. [Google Scholar] [CrossRef]
- Santos, R.; Zoellin, J.; Saad, A.; Maloca, P.; Munk, M.R.; Turgut, F.; Becker, M.D.; Somfai, G.M. The Knowledge and Attitudes of Swiss Ophthalmologists towards Medical Artificial Intelligence and the Impact of a Single Short Educational Intervention. Investig. Ophthalmol. Vis. Sci. 2025, 66, 3869. [Google Scholar]
- Gunasekeran, D.V.; Zheng, F.; Lim, G.Y.S.; Chong, C.C.Y.; Zhang, S.; Ng, W.Y.; Keel, S.; Xiang, Y.; Park, K.H.; Park, S.J.; et al. Acceptance and Perception of Artificial Intelligence Usability in Eye Care (APPRAISE) for Ophthalmologists: A Multinational Perspective. Front. Med. 2022, 9, 875242. [Google Scholar] [CrossRef]
- Daniyal, M.; Qureshi, M.; Marzo, R.R.; Aljuaid, M.; Shahid, D. Exploring Clinical Specialists’ Perspectives on the Future Role of AI: Evaluating Replacement Perceptions, Benefits, and Drawbacks. BMC Health Serv. Res. 2024, 24, 587. [Google Scholar] [CrossRef]
- Weik, L.; Fehring, L.; Mortsiefer, A.; Meister, S. Big 5 Personality Traits and Individual- and Practice-Related Characteristics as Influencing Factors of Digital Maturity in General Practices: Quantitative Web-Based Survey Study. J. Med. Internet Res. 2024, 26, e52085. [Google Scholar] [CrossRef]
- Char, D.S.; Shah, N.H.; Magnus, D. Implementing Machine Learning in Health Care—Addressing Ethical Challenges. N. Engl. J. Med. 2018, 378, 981–983. [Google Scholar] [CrossRef]
- Singla, R.; Pupic, N.; Ghaffarizadeh, S.-A.; Kim, C.; Hu, R.; Forster, B.B.; Hacihaliloglu, I. Developing a Canadian Artificial Intelligence Medical Curriculum Using a Delphi Study. npj Digit. Med. 2024, 7, 323. [Google Scholar] [CrossRef]
- Paranjape, K.; Schinkel, M.; Nannan Panday, R.; Car, J.; Nanayakkara, P. Introducing Artificial Intelligence Training in Medical Education. JMIR Med. Educ. 2019, 5, e16048. [Google Scholar] [CrossRef] [PubMed]
- Van de Mortel, T.F. Faking It: Social Desirability Response Bias in Self-Report Research. Aust. J. Adv. Nurs. 2008, 25, 40–48. [Google Scholar]
- Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science 2019, 366, 447–453. [Google Scholar] [CrossRef]
- Tonekaboni, S.; Joshi, S.; McCradden, M.D.; Goldenberg, A. What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use. In Proceedings of the 4th Machine Learning for Healthcare Conference, PMLR, Ann Arbor, MI, USA, 8 August 2019; Volume 106, pp. 359–380. [Google Scholar]
- Sonmez, S.C.; Sevgi, M.; Antaki, F.; Huemer, J.; Keane, P.A. Generative Artificial Intelligence in Ophthalmology: Current Innovations, Future Applications and Challenges. Br. J. Ophthalmol. 2024, 108, 1335–1340. [Google Scholar] [CrossRef]
- Campbell, C.G.; Ting, D.S.W.; Keane, P.A.; Foster, P.J. The Potential Application of Artificial Intelligence for Diagnosis and Management of Glaucoma in Adults. Br. Med. Bull. 2020, 134, 21–33. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”. Explaining the Predictions of Any Classifier; ACM: New York, NY, USA, 2016; pp. 1135–1144. [Google Scholar]
- Pfeiffer, V.; Sojer, R. Forderungen Der FMH an Die Künstliche Intelligenz in Der Medizin. Schweiz. Ärztezeitung 2022, 103, 30–35. [Google Scholar]
- Morley, J.; Machado, C.C.V.; Burr, C.; Cowls, J.; Joshi, I.; Taddeo, M.; Floridi, L. The Ethics of AI in Health Care: A Mapping Review. Soc. Sci. Med. 2020, 260, 113172. [Google Scholar] [CrossRef] [PubMed]
- Ellaway, R.; Masters, K. AMEE Guide 32: E-Learning in Medical Education Part 1: Learning, Teaching and Assessment. Med. Teach. 2008, 30, 455–473. [Google Scholar] [CrossRef]
Application Category | Examples | References |
---|---|---|
Retinal Disease Diagnosis and Management | Diabetic retinopathy: screening/classification; AMD: detection, grading, progression monitoring; prediction of treatment need and response; Retinal vein occlusion: detection on OCT and fundus images; Retinopathy of prematurity: detection and severity grading | [6,7,8,9,10,11,12,13] |
Glaucoma Care | Automated glaucoma detection from fundus/OCT images, visual field progression analysis | [7,12,14,15,16,17] |
Anterior Segment Diseases | Keratoconus: detection/classification from corneal topography, evaluation of progression; Infectious keratitis: automated diagnosis from slit-lamp images, treatment response evaluation; Cataract: automated grading from slit-lamp images; Dry eye: meibomian gland analysis; Pterygium: detection and progression analysis on anterior segment images; Conjunctival tumors: AI-based detection and risk stratification | [10,14,18,19,20,21] |
Ophthalmic Oncology | Choroidal melanoma: detection/classification from fundus images; Retinoblastoma: automated screening; Ocular surface tumors: detection and AI-based risk stratification | [13,14,20,22] |
Multimodal AI Systems | Integrated imaging–clinical–genomic models: comprehensive diagnosis and prognostic assessment | [14,15,23] |
Surgical Assistance and Planning | Cataract/refractive/retinal surgery: AI-based planning and intraoperative guidance; Postoperative complication prediction: automated risk models | [14,15,23,24] |
Image Enhancement and Segmentation | Fundus/OCT/anterior segment: AI-based image enhancement, automated segmentation of retinal layers/lesions, detection of intraretinal and subretinal fluid, choroidal neovascularization, etc. | [13,14,20,25] |
Predictive Analytics and Risk Stratification | Visual outcome prediction: AI-based models; High-risk patient identification: risk scoring; Personalized management: treatment response prediction; AI models predicting surgical outcomes in complex surgical cases | [12,23,26,27] |
Public Health and Population Screening | Automated diabetic retinopathy/glaucoma/cataract/myopia screening; Risk prediction; Telemedicine screening; AI-driven mobile apps for early detection in underserved regions | [6,8,10,28,29,30] |
Education and Training | Surgical simulation platforms: AI-assisted virtual reality simulators for eye surgeries; Automated skill assessment; Intraoperative feedback and assistance; Adaptive learning modules; Clinical decision support; Use of generative AI for interactive case-based learning modules | [8,14,31] |
Administrative and Workflow Optimization | Scheduling; Triage; Automated documentation; Resource allocation; Chatbot-based patient communication; Virtual assistants; Patient education; AI-assisted clinical coding and billing | [8,10,19,31,32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tappeiner, C. Artificial Intelligence in Ophthalmology: Acceptance, Clinical Integration, and Educational Needs in Switzerland. J. Clin. Med. 2025, 14, 6307. https://doi.org/10.3390/jcm14176307
Tappeiner C. Artificial Intelligence in Ophthalmology: Acceptance, Clinical Integration, and Educational Needs in Switzerland. Journal of Clinical Medicine. 2025; 14(17):6307. https://doi.org/10.3390/jcm14176307
Chicago/Turabian StyleTappeiner, Christoph. 2025. "Artificial Intelligence in Ophthalmology: Acceptance, Clinical Integration, and Educational Needs in Switzerland" Journal of Clinical Medicine 14, no. 17: 6307. https://doi.org/10.3390/jcm14176307
APA StyleTappeiner, C. (2025). Artificial Intelligence in Ophthalmology: Acceptance, Clinical Integration, and Educational Needs in Switzerland. Journal of Clinical Medicine, 14(17), 6307. https://doi.org/10.3390/jcm14176307