Assessment of Postural Control and Gait in Patients with Chronic Stroke After Treadmill Perturbation-Based Training: A Randomized Clinical Trial
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Characteristics
3.2. Primary Study Outcomes
3.3. Secondary Study Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UI | Uncertainty interval |
RR | Relative risk |
CI | Confidence interval |
PBT | Perturbation-based balance training |
TPBT | Treadmill perturbation-based balance training |
RCT | Randomized clinical trial |
EG | Experimental group |
CG | Control group |
ISRCTN | International Standard Randomized Controlled Trial Number |
MMSE | Mini-Mental State Examination |
GDS | Geriatric Depression Scale |
BBS | Berg Balance Scale |
FRT | Functional Reach Test |
TUG | Timed Up and Go |
ICC | Intraclass Correlation Coefficient |
AUC | Area under the curve |
10MWT | 10-Meter Walk Test |
FES-I | Falls Efficacy Scale–International |
ITT | Intention-to-treat |
SD | Standard deviation |
Q1 | Lower quartile |
Q3 | Upper quartile |
CoP | Center of pressure |
CoM | Center of mass |
References
- Johnson, C.O.; Nguyen, M.; Roth, G.A.; Nichols, E.; Alam, T.; Abate, D.; Abate, K.H.; Abbafati, C.; Abd-Allah, F.; Abdela, J.; et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Norrving, B.; Mensah, G.A. Global Burden of Stroke. Circ. Res. 2017, 120, 439–448. [Google Scholar] [CrossRef]
- Stewart, C.; Subbarayan, S.; Paton, P.; Gemmell, E.; Abraha, I.; Myint, P.K.; O’Mahony, D.; Cherubini, A.; Cruz-Jentoft, A.J.; Soiza, R.L. Non-Pharmacological Interventions for the Improvement of Post-Stroke Quality of Life amongst Older Stroke Survivors: A Systematic Review of Systematic Reviews (The Senator Ontop Series). Eur. Geriatr. Med. 2019, 10, 359–386. [Google Scholar] [CrossRef]
- Duncan, P.W.; Min Lai, S.; Keighley, J. Defining post-stroke recovery: Implications for design and interpretation of drug trials. Neuropharmacology 2000, 39, 835–841. [Google Scholar] [CrossRef]
- Demain, S.; Wiles, R.; Roberts, L.; McPherson, K.R. Recovery plateau following stroke: Fact or fiction? Disabil. Rehabil. 2006, 28, 815–821. [Google Scholar] [CrossRef]
- Taub, E.; Miller, N.E.; Novack, T.A.; Nepomuceno, C.S.; Connell, J.S.C.J.; Cook, E.W.; Fleming, W.C.; Crago, J.E. Technique to improve chronic motor deficit after stroke. Arch. Phys. Med. Rehabil. 1993, 74, 347–353. [Google Scholar] [PubMed]
- Whitall, J.; Waller, S.M.C.; Silver, K.H.C.; Macko, R.F. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 2000, 31, 2390–2395. [Google Scholar] [CrossRef]
- Sterr, A.; Elbert, T.; Berthold, I.; Kölbel, S.; Rockstroh, B.; Taub, E. Longer versus shorter daily constraint-induced movement therapy of chronic hemiparesis: An exploratory study. Arch. Phys. Med. Rehabil. 2002, 83, 374–1377. [Google Scholar] [CrossRef]
- Sullivan, K.J.; Knowlton, B.J.; Dobkin, B.H. Step training with body weight support: Effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch. Phys. Med. Rehabil. 2002, 83, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Ada, L.; Dean, C.M.; Hall, J.M.; Bampton, J.; McInnes, E. A treadmill and overground walking program improves walking in persons residing in the community after stroke: A placebo-controlled, randomized trial. Arch. Phys. Med. Rehabil. 2003, 84, 1486–1491. [Google Scholar] [CrossRef]
- Dettmers, C.; Teske, U.; Hamzei, F.; Uswatte, G.; Taub, E.; Weiller, C. Distributed form of constraint-induced movement therapy improves functional outcome and quality of life after stroke. Arch. Phys. Med. Rehabil. 2005, 86, 204–209. [Google Scholar] [CrossRef]
- Cho, K.H.; Lee, W.H. Effect of treadmill training based real-world video recording on balance and gait in chronic stroke patients: A randomized controlled trial. Gait Posture 2014, 39, 523–528. [Google Scholar] [CrossRef]
- Stroke Rehabilitation in Adults NICE Guideline. October 2023. Available online: www.nice.org.uk/guidance/ng236 (accessed on 29 August 2025).
- De Peretti, C.; Grimaud, O.; Tuppin, P.; Chin, F.; Woimant, F. Prévalence des accidents vasculaires cérébraux et de leurs séquelles et impact sur les activités de la vie quotidienne: Apports des enquêtes déclaratives Handicap-santé-ménages et Handicap-santé-institution, 2008–2009. Bull. Epidémiologique Hebd. 2012, 1, 1–6. [Google Scholar]
- Jørgensen, H.S.; Nakayama, H.; Raaschou, H.O.; Olsen, T.S. Recovery of walking function in stroke patients: The copenhagen stroke study. Arch. Phys. Med. Rehabil. 1995, 76, 27–32. [Google Scholar] [CrossRef]
- Wade, D.T.; Wood, V.A.; Heller, A.; Maggs, J.; Langton Hewer, R. Walking after stroke. Measurement and recovery over the first 3 months. Scand. J. Rehabil. Med. 1987, 19, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Hesse, S. Treadmill training with partial body weight support after stroke: A review. NeuroRehabilitation 2008, 23, 55–65. [Google Scholar] [CrossRef]
- Pohl, P.S.; Perera, S.; Duncan, P.W.; Maletsky, R.; Whitman, R.; Studenski, S. Gains in Distance Walking in a 3-Month Follow-up Poststroke: What Changes? Neurorehabil. Neural Repair 2004, 18, 30–36. [Google Scholar] [CrossRef] [PubMed]
- De Haart, M.; Geurts, A.C.; Huidekoper, S.C. Recovery of standing balance in postacute stroke patients: A rehabilitation cohort study. Arch. Phys. Med. Rehabil. 2004, 85, 886–895. [Google Scholar] [CrossRef]
- Tasseel-Ponche, S.; Yelnik, A.P.; Bonan, I.V. Motor strategies of postural control after hemispheric stroke. Neurophysiol. Clin. 2015, 45, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Lamb, S.E.; Ferrucci, L.; Volapto, S.; Fried, L.P.; Guralnik, J.M. Risk factors for falling in home-dwelling older women with stroke: The women’s health and aging study. Stroke 2003, 34, 494–501. [Google Scholar] [CrossRef]
- Belgen, B.; Beninato, M.; Sullivan, P.E. The association of balance capacity and falls self-efficacy with history of falling in community-dwelling people with chronic stroke. Arch. Phys. Med. Rehabil. 2006, 87, 554–561. [Google Scholar] [CrossRef]
- Schmid, A.A.; Van Puymbroeck, M.; Altenburger, P.A.; Dierks, T.A.; Miller, K.K.; Damush, T.M.; Williams, L.S. Balance is associated with quality of life in chronic stroke. Top. Stroke Rehabil. 2013, 20, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Eng, J.J.; Pang, M.Y.C.; Ashe, M.C. Balance, falls, and bone health: Role of exercise in reducing fracture risk after stroke. J. Rehabil. Res. Dev. 2008, 45, 297–314. [Google Scholar] [CrossRef]
- Van Duijnhoven, H.J.R.; Heeren, A.; Peters, M.A.M.; Veerbeek, J.M.; Kwakkel, G.; Geurts, A.C.H.; Weerdesteyn, V. Effects of Exercise Therapy on Balance Capacity in Chronic Stroke: Systematic Review and Meta-Analysis. Stroke 2016, 47, 2603–2610. [Google Scholar] [CrossRef]
- Depaul, V.G.; Wishart, L.R.; Richardson, J.; Thabane, L.; Ma, J.; Lee, T.D. Varied overground walking training versus body-weight-supported treadmill training in adults within 1 year of stroke: A randomized controlled trial. Neurorehabil. Neural Repair 2015, 29, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.L.; Wang, R.Y.; Liao, K.K.; Huang, C.C.; Yang, Y.R. Gait training-induced change in corticomotor excitability in patients with chronic stroke. Neurorehabil. Neural Repair 2008, 22, 22–30. [Google Scholar] [CrossRef]
- Middleton, A.; Merlo-Rains, A.; Peters, D.; Greene, J.V.; Blanck, E.L.; Moran, R.; Fritz, S.L. Body weight-supported treadmill training is no better than overground training for individuals with chronic stroke: A randomized controlled trial. Top. Stroke Rehabil. 2014, 21, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Taly, A.B.; Gupta, A.; Kumar, S.; Murali, T. Bodyweight-supported treadmill training for retraining gait among chronic stroke survivors: A randomized controlled study. Ann. Phys. Rehabil. Med. 2016, 59, 235–241. [Google Scholar] [CrossRef]
- Chen, I.H.; Yang, Y.R.; Chan, R.C.; Wang, R.Y. Turning-based treadmill training improves turning performance and gait symmetry after stroke. Neurorehabil. Neural Repair 2014, 28, 45–55. [Google Scholar] [CrossRef]
- Langhammer, B.; Stanghelle, J.K. Exercise on a treadmill or walking outdoors? A randomized controlled trial comparing effectiveness of two walking exercise programmes late after stroke. Clin. Rehabil. 2010, 24, 46–54. [Google Scholar] [CrossRef]
- Bierbaum, S.; Peper, A.; Karamanidis, K.; Arampatzis, A. Adaptational responses in dynamic stability during disturbed walking in the elderly. J. Biomech. 2010, 43, 2362–2368. [Google Scholar] [CrossRef]
- Bierbaum, S.; Peper, A.; Karamanidis, K. Adaptive feedback potential in dynamic stability during disturbed walking in the elderly. J. Biomech. 2011, 44, 1921–1926. [Google Scholar] [CrossRef]
- Smania, N.; Corato, E.; Tinazzi, M.; Stanzani, C.; Fiaschi, A.; Girardi, P.; Gandolfi, M. Effect of balance training on postural instability in patients with idiopathic parkinsong’s disease. Neurorehabil. Neural Repair 2010, 24, 826–834. [Google Scholar] [CrossRef]
- Maki, B.E.; Cheng, K.C.C.; Mansfield, A.; Scovil, C.Y.; Perry, S.D.; Peters, A.L.; McKay, S.; Lee, T.; Marquis, A.; Corbeil, P.; et al. Preventing falls in older adults: New interventions to promote more effective change-in-support balance reactions. J. Electromyogr. Kinesiol. 2008, 18, 243–254. [Google Scholar] [CrossRef]
- Mansfield, A.; Peters, A.L.; Liu, B.A.; McIlroy, W.E.; Maki, B.E.; Fernie, G.R.; Corbeil, P.; Lee, T.; Marquis, A.; Scovil, C.Y.; et al. Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: A randomized controlled trial. Phys. Ther. 2010, 90, 476–491. [Google Scholar] [CrossRef] [PubMed]
- Tanvi, B.; Feng, Y.; Yi-Chung, P. Learning to resist gait-slip falls: Long-term retention in community-dwelling older adults. Arch. Phys. Med. Rehabil. 2012, 93, 557–564. [Google Scholar] [CrossRef]
- Pai, Y.C.; Bhatt, T.; Yang, F.; Wang, E.; Kannan, L.; Gangwani, R.; Dusane, S.; McIlroy, W.E.; Maki, B.E.; Liu, B.; et al. Perturbation training can reduce community-dwelling older adults’ annual fall risk: A randomized controlled trial. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 1586–1594. [Google Scholar] [CrossRef]
- Pai, Y.C.; Yang, F.; Bhatt, T.; Wang, E.; Kannan, L.; Gangwani, R.; Dusane, S.; McIlroy, W.E.; Maki, B.E.; Liu, B.; et al. Learning from laboratory-induced falling: Long-term motor retention among older adults. Age 2014, 36, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, T.; Dusane, S.; Gangwani, R.; Wang, S.; Kannan, L.; McIlroy, W.E.; Maki, B.E.; Liu, B.; McKay, S.; Lee, T.; et al. Motor adaptation and immediate retention to overground gait-slip perturbation training in people with chronic stroke: An experimental trial with a comparison group. Front. Sport. Act. Living 2023, 5, 1–17. [Google Scholar] [CrossRef]
- Protas, E.J.; Mitchell, K.; Williams, A.; Quershy, H.; Caroline, K.; Bryant, M.S.; Jackson, G.R.; Jankovic, J.; Lai, E.C.; McKay, S.; et al. Gait and step training to reduce falls in Parkinson’s disease. NeuroRehabilitation 2005, 20, 183–190. [Google Scholar] [CrossRef]
- Sakai, M.; Shiba, Y.; Sato, H.; Takahira, N. Motor adaptation during slip-perturbed gait in older adults. J. Phys. Ther. Sci. 2008, 20, 109–115. [Google Scholar] [CrossRef]
- Lurie, J.D.; Zagaria, A.B.; Pidgeon, D.M.; Forman, J.L.; Spratt, K.F. Pilot comparative effectiveness study of surface perturbation treadmill training to prevent falls in older adults. BMC Geriatr. 2013, 13, 49. [Google Scholar] [CrossRef]
- Hu, J.; Jin, L.; Wang, Y.; Shen, X. Feasibility of challenging treadmill speed-dependent gait and perturbation-induced balance training in chronic stroke patients with low ambulation ability: A randomized controlled trial. Front. Neurol. 2023, 14, 1167261. [Google Scholar] [CrossRef]
- Esmaeili, V.; Juneau, A.; Dyer, J.O.; Lamontagne, A.; Kairy, D.; Bouyer, L.; Duclos, C. Intense and unpredictable perturbations during gait training improve dynamic balance abilities in chronic hemiparetic individuals: A randomized controlled pilot trial. J. Neuroeng. Rehabil. 2020, 17, 79. [Google Scholar] [CrossRef]
- Dusane, S.; Bhatt, T. Mixed slip-trip perturbation training for improving reactive responses in people with chronic stroke. J. Neurophysiol. 2020, 124, 20–31. [Google Scholar] [CrossRef]
- Osman, H.E.; van den Bogert, A.J.; Reinthal, A. A progressive-individualized midstance gait perturbation protocol for reactive balance assessment in stroke survivors. J. Biomech. 2021, 123, 110477. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shimada, H.; Obuchi, S.; Furuna, T.; Suzuki, T. New intervention program for preventing falls among frail elderly people: The effects of perturbed walking exercise using a bilateral separated treadmill. Am. J. Phys. Med. Rehabil. 2004, 83, 493–499. [Google Scholar] [CrossRef]
- Mansfield, A.; Wong, J.S.; Bryce, J.; Maki, B.E. Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Phys. Ther. 2015, 95, 700–709. [Google Scholar] [CrossRef]
- Bang, D.H.; Shin, W.S.; Noh, H.J.; Kim, S.Y.; Kim, D.Y.; Lee, J.H.; Kim, H.J.; Lee, H.S. Effect of unstable surface training on walking ability in stroke patients. J. Phys. Ther. Sci. 2014, 26, 1689–1691. [Google Scholar] [CrossRef] [PubMed]
- Punt, M.; Bruijn, S.M.; van de Port, I.G.; Geurts, A.C.; Weerdesteyn, V.; van der Kooij, H.; Beek, P.J.; Kwakkel, G. Does a Perturbation-Based Gait Intervention Enhance Gait Stability in Fall-Prone Stroke Survivors? A Pilot Study. J. Appl. Biomech. 2019, 35, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Brott, T.; Adams, H.P.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Love, B.B.; Shucard, B.; Tomsick, T.; Huster, G.W.; et al. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef]
- Ashworth, B. Preliminary trial of carisoprodol in multiple sclerosis. Practitioner 1964, 192, 540–542. [Google Scholar]
- Charalambous, C.P. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. In Classic Papers in Orthopaedics; Banaszkiewicz, P., Kader, D., Eds.; Springer: London, UK, 2014. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B.E.; Morris, J.; Scymn, A.; Zarr, J. Measuring balance in the elderly: Validation of an instrument. Can. J. Public. Health 1992, 83 (Suppl. 2), 7–11. [Google Scholar]
- Duncan, P.W.; Weiner, D.K.; Chandler, J.; Studenski, S. Functional reach: A new clinical measure of balance. J. Gerontol. 1990, 45, M192–M197. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The Timed Up and Go: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.L.; Potter, K.; Blankshain, K.; Kaplan, S.L.; O’Dwyer, L.C.; Sullivan, J.E.J. A core set of outcome measures for adults with neurologic conditions undergoing rehabilitation: A clinical practice guideline. J. Neurol. Phys. Ther. 2018, 42, 174–220. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Al-Eisa, E.S.; Anwer, S.; Bahammam, A.S.; Brismée, J.M.; Iqbal, Z.A.; Iqbal, A.; Khan, S.A.; Rajan, R.; Zafar, H.; et al. Reliability, validity, and responsiveness of three scales for measuring balance in patients with chronic stroke. BMC Neurol. 2018, 18, 141. [Google Scholar] [CrossRef] [PubMed]
- Sahin, F.; Yilmaz, F.; Ozmaden, A.; Kotevoglu, N.; Sahin, T.; Kuran, B. Reliability and validity of the Turkish version of the Berg Balance Scale. J. Geriatr. Phys. Ther. 2008, 31, 32–37. [Google Scholar] [CrossRef]
- Merchán-Baeza, J.A.; González-Sánchez, M.; Cuesta-Vargas, A.I. Reliability in the parameterization of the functional reach test in elderly stroke patients: A pilot study. Biomed Res. Int. 2014, 2014, 8–11. [Google Scholar] [CrossRef]
- Flansbjer, U.B.; Holmbäck, A.M.; Downham, D. Reliability of gait performance tests in men and women with hemiparesis after stroke. J. Rehabil. Med. 2005, 37, 75–82. [Google Scholar] [CrossRef]
- Rossier, P.; Wade, D.T. Validity and reliability comparison of 4 mobility measures in patients presenting with neurologic impairment. Arch. Phys. Med. Rehabil. 2001, 82, 9–13. [Google Scholar] [CrossRef]
- Collen, F.M.; Wade, D.T.; Bradshaw, C.M. Mobility after stroke: Reliability of measures of impairment and disability. Disabil. Rehabil. 1990, 12, 6–9. [Google Scholar] [CrossRef]
- Tyson, S.; Connell, L. The psychometric properties and clinical utility of measures of walking and mobility in neurological conditions: A systematic review. Clin. Rehabil. 2009, 23, 1018–1033. [Google Scholar] [CrossRef]
- Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing 2005, 34, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, S.A. Analysis of measurement tools of fear of falling for high-risk, community-dwelling older adults. Clin. Nurs. Res. 2012, 21, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.T.; Friscia, L.A.; Whitney, S.L.; Furman, J.M.; Sparto, P.J. Reliability and validity of the falls efficacy scale-international (FES-I) in individuals with dizziness and imbalance. Otol. Neurotol. 2013, 34, 1104–1108. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Martinez-Martin, P.; Habibi, S.A.; Fereshtehnejad, S.M.; Abasi, A.; Niazi Khatoon, J.; Saneii, S.H.; Taghizadeh, G. Reliability and validity of fall efficacy scale-international in people with Parkinson’s disease during on- And off-drug phases. Parkinsons Dis. 2019, 2019, 6505232. [Google Scholar] [CrossRef] [PubMed]
- Marigold, D.S.; Eng, J.J.; Dawson, A.S.; Inglis, J.T.; Harris, J.E.; Gylfadottir, S. Exercise leads to faster postural reflexes, improved balance and mobility, and fewer falls in older persons with chronic stroke. J. Am. Geriatr. Soc. 2005, 53, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Todhunter-Brown, A.; Sellers, C.E.; Baer, G.D.; Choo, P.L.; Cowie, J.; Cheyne, J.D.; Langhorne, P.; Brown, J.; Morris, J.; Campbell, P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2025, 2, CD001920. [Google Scholar] [CrossRef] [PubMed]
- Sali, S.; Chai, R.; Ganesan, B. Recent trends and digital technology applications in lower limb injury rehabilitation. In Digital Technology in Public Health and Rehabilitation Care: COVID Era (Chapter 7); Tong, R.K.Y., Ganesan, B., Eds.; Academic Press: Cambridge, MA, USA, 2024. [Google Scholar] [CrossRef]
- Abdollahi, M.; Whitton, N.; Zand, R. A Systematic Review of Fall Risk Factors in Stroke Survivors: Towards Improved Assessment Platforms and Protocols. Front. Bioeng. Biotechnol. 2022, 10, 910698. [Google Scholar] [CrossRef]
- Abdollahi, M.; Rashedi, E.; Jahangiri, S. Fall Risk Assessment in Stroke Survivors: A Machine Learning Model Using Detailed Motion Data from Common Clinical Tests and Motor-Cognitive Dual-Tasking. Sensors 2024, 24, 812. [Google Scholar] [CrossRef] [PubMed]
Exercise | Total Exercise Duration | Walking Forward Without Perturbations | Lateral Translations | Forward-Backward Translations | |||||
---|---|---|---|---|---|---|---|---|---|
Duration | Frequency | Amplitude | Direction | Duration | Frequency | Amplitude | |||
1 | 10 min | 7 min | 3 min | Every 30 s | 7 cm | Only toward the paralyzed side | |||
2 | 8 cm | ||||||||
3 | 10 cm | ||||||||
4–6 | 15 min | 0 min | 5 min | Every 30 s | 15 cm | Toward the paralyzed and unaffected sides | 10 min | Every 30 s | 10 cm |
7–12 | 20 min | 7 min | Every 30 s | 18 cm | Toward the paralyzed and unaffected sides | 13 min | Every 30 s | 15 cm | |
13–18 | 20 min | 7 min | Every 30 s | 20 cm | Toward the paralyzed and unaffected sides | 13 min | Every 30 s | 15 cm |
Characteristics | Experimental Group (n = 25) | Control Group (n = 25) |
---|---|---|
1 Gender: female/male [n (%)] | 10 (40%)/15 (60%) | 9 (36%)/16 (64%) |
2 Age [years]: | ||
Mean (SD) | 60.87 (11.01) | 64.20 (6.38) |
Median (Q1, Q3) | 62.0 (54.6, 69.4) | 65.0 (60.7, 67.3) |
1 BMI [no. of Pts (%)]: | ||
<18.5 (underweight) | 0 (0%) | 0 (0%) |
18.5–24.99 (normal) | 8 (32% | 7 (28%) |
25.0–29.99 (overweight) | 13 (52%) | 14 (56%) |
30.0–34.99 (class I obesity) | 2 (8%) | 2 (8%) |
35.00–39.99 (class II obesity) | 2 (8%) | 2 (8%) |
1 Ischemic stroke/hemorrhagic stroke [no. of Pts (%)]: | 25 (100%)/0 (0%) | 25 (100%)/0 (0%) |
2 Time since stroke [months]: | ||
Mean (SD) | 12.33 (6.56) | 11.83 (5.95) |
Median (Q1, Q3) | 12.0 (7.6, 16.4) | 12.0 (7.0, 15.0) |
1 Affected side: right/left | 11 (44%)/14 (56%) | 13 (52%)/12 (48%) |
1 Affected side [dominant/non-dominant] [no. of Pts (%)] | 10 (40%)/15 (60%) | 14 (56%)/11 (44%) |
1 Brunnström Recovery Scale [number of Pts (%)] | ||
Stage III | 1 (4%) | 3 (12%) |
Stage IV | 4 (16%) | 2 (8%) |
Stage V | 5 (20%) | 3 (12%) |
Stage VI | 15 (60%) | 17 (68%) |
1 Modified Ashworth Spasticity Scale: 0/I/II [number of Pts (%)] | ||
Grade 0 | 18 (72%) | 21 (84%) |
Grade 1 | 5 (20%) | 3 (12%) |
Grade 2 | 2 (8%) | 1 (4%) |
1 Barthel Scale [points]: | ||
Mean (SD) | 94.5 (9.5) | 95.83 (6.83) |
Median (Q1, Q3) | 95.0 (88.0, 100.0) | 97.0 (91.0, 100.0) |
0–20 points (total dependence) | 0 (0%) | 0 (0%) |
21–60 points (severe dependence) | 1 (4%) | 0 (0%) |
61–90 points (moderate dependence) | 24 (96%) | 25 (100%) |
2 Berg Balance Scale [points]: | ||
Mean (SD) | 45.83 (8.85) | 46.00 (11.05) |
Median (Q1, Q3) | 47.0 (39.0, 53.0) | 46.0 (38.6, 53.4) |
2 Functional Reach Test [cm]: | ||
Mean (SD) | 33.23 (11.09) | 29.87 (9.29) |
Median (Q1, Q3) | 33.0 (25.5, 40.5) | 30.0 (23.7, 36.3) |
2 Timed Up and Go Test [s]: | ||
Mean (SD) | 13.86 (9.61) | 13.07 (6.56) |
Median (Q1, Q3) | 12.0 (6.5, 19.5) | 12.0 (7.6, 18.4) |
2 10 Meter Walk Test [m/s]: | ||
Mean (SD) | 0.64 (0.21) | 0.63 (0.25) |
Median (Q1, Q3) | 0.62 (0.50, 0.78) | 0.62 (0.46, 0.80) |
2 Falls Efficacy Scale—International [points]: | ||
Mean (SD) | 32.59 (11.83) | 28.47 (8.96) |
Median (Q1, Q3) | 32.0 (24.0, 40.8) | 28.0 (22.0, 34.0) |
Characteristics | Experimental Group (n = 25) | Control Group (n = 25) |
---|---|---|
Mean (SD) Median (Q1, Q3) | ||
Assessment of postural balance on a stabilometric platform (60 s) | ||
CoP path length [mm] | 668.10 (378.70) 701.0 (412.57, 923.63) | 622.45 (450.46) 688.41 (318.57, 926.33) |
95% confidence ellipse area [mm2] | 11.10 (6.27) 11.90 (6.87, 15.33) | 10.50 (7.25) 10.12 (5.61, 15.39) |
Spatiotemporal gait parameters | ||
Left side: step length [cm] | 27.5 (8.9) 27.8 (21.50, 33.50) | 27.6 (9.0) 27.9 (21.53, 33.67) |
Left side: stance phase [%] | 71.1 (4.5) 71.4 (68.06, 74.14) | 69.7 (3.5) 69.94 (67.34, 72.06) |
Right side: step length [cm] | 27.4 (8.2) 27.95 (21.87, 32.93) | 27.2 (8.1) 27.75 (21.74, 32.66) |
Right side: stance phase [%] | 69.0 (4.6) 69.31 (65.90, 72.10) | 68.5 (4.0) 68.77 (65.80, 71.20) |
Stride length [cm] | 55.2 (15.9) 56.27 (44.48, 65.92) | 55.7 (13.6) 56.62 (46.53, 64.87) |
Stride time [s] | 1.4 (0.24) 1.42 (1.24, 1.56) | 1.5 (0.22) 1.52 (1.35, 1.65) |
Step width [cm] | 13.1 (3.9) 13.36 (10.47, 15.73) | 12.2 (4.1) 12.48 (9.43, 14.97) |
Double stance phase [%] | 41.1 (8.5) 41.67 (35.37, 46.83) | 40.3 (6.4) 40.73 (35.98, 44.62) |
Cadence [step/min] | 82.4 (14.7) 83.39 (72.48, 92.32) | 80.9 (17.2) 82.06 (69.30, 92.50) |
Velocity [km/h] | 1.40 (0.4) 1.43 (1.13, 1.67) | 1.30 (0.2) 1.31 (1.17, 1.43) |
Characteristics | Experimental Group (n = 25 1) | Control Group (n = 25 1) | 3 Between-Group Level of Significance (p) |
---|---|---|---|
Mean (SD) Median (Q1, Q3) | |||
Berg Balance Scale [points] | |||
Before | 45.83 (8.85) * 44.84 (39.86, 51.80) | 46.00 (11.05) * 45.67 (38.55, 53.45) | 0.408 |
After | 49.50 (7.82) * 49.10 (44.23, 54.77) | 49.23 (9.80) * 49.22 (42.62, 55.84) | 0.256 |
2 Within-group level of significance (p): | 0.001 | 0.009 | |
Functional Reach Test [cm] | |||
Before | 33.23 (11.09) 33.20 (25.76, 40.70) | 29.87 (9.29) * 29.82 (23.61, 36.13) | 0.150 |
After | 34.47 (9.01) 34.41 (28.40, 40.54 | 34.50 (8.64) * 34.53 (28.68, 40.32) | 0.870 |
2 Within-group level of significance (p): | 0.513 | 0.021 | |
Timed Up and Go Test [s] | |||
Before | 13.86 (9.61) * 13.84 (7.38, 20.34) | 13.07 (6.56) * 13.04 (8.65, 17.49) | 0.958 |
After | 12.70 (7.49) * 12.67 (7.65, 17.75) | 11.13 (4.88) * 11.11 (7.82, 14.44) | 0.623 |
2 Within-group level of significance (p): | 0.047 | 0.009 | |
10 Meter Walk Test [s] | |||
Before | 0.64 (0.21) 0.62 (0.50, 0.78) | 0.63 (0.25) * 0.60 (0.46, 0.80) | 0.948 |
After | 0.66 (0.23) 0.70 (0.55, 0.82) | 0.70 (0.21) * 0.71 (0.56, 0.86) | 0.543 |
2 Within-group level of significance (p): | 0.170 | 0.015 | |
Falls Efficacy Scale—International [points] | |||
Before | 32.59 (11.83) 32.56 (24.62, 40.56) | 28.47 (8.96) * 28.45 (22.43, 34.51) | 0.525 |
After | 30.54 (11.83) 30.51 (22.57, 38.51) | 26.10 (9.10) * 26.12 (19.96, 32.24) | 0.527 |
2 Within-group level of significance (p): | 0.160 | 0.002 |
Characteristics | Experimental Group (n = 25 1) | Control Group (n = 25 1) | 3 Between-Group Level of Significance (p) |
---|---|---|---|
Mean (SD) Median (Q1, Q3) | |||
CoP Path Length [mm] | |||
Before | 668.10 (378.70) 687.04 (412.80, 923.40) | 622.45 (450.46) 599.93 (318.84, 926.06) | 0.678 |
After | 637.73 (400.82) 657.77 (367.58, 907.88) | 585.80 (398.27) 565.89 (317.37, 854.23) | 0.675 |
2 Within-group level of significance (p): | 0.385 | 0.824 | |
95% Confidence Ellipse Area [mm2] | |||
Before | 11.10 (6.27) 11.41 (6.87, 15.33) | 10.50 (7.25) 10.14 (5.61, 15.39) | 0.597 |
After | 10.63 (6.60) 10.96 (6.18, 15.08) | 9.77 (6.60) 9.44 (5.32, 14.22) | 0.672 |
2 Within-group level of significance (p): | 0.367 | 0.741 |
Characteristics | Experimental Group (n = 25 1) | Control Group (n = 25 1) | 3 Between-Group Level of Significance (p) |
---|---|---|---|
Mean (SD) Median (Q1, Q3) | |||
Left Side—Step Length [cm] | |||
Before | 27.5 (8.9) * 29.5 (23.5, 35.5) | 27.6 (9.0) 26.0 (19.9, 32.1) | 0.698 |
After | 30.1 (9.8) * 28.0 (21.4, 34.6) | 27.3 (7.4) 28.5 (23.5, 33.5) | 0.750 |
2 Within-group level of significance: | 0.045 | 0.736 | |
Left Side—Stance Phase [%]: | |||
Before | 71.1 (4.5) 70.0 (66.0, 74.0) | 69.7 (3.5) 71.0 (68.6, 73.4) | 0.6735 |
After | 68.0 (5.1) 69.5 (66.1, 72.9) | 69.8 (3.3) 68.0 (65.8, 70.2) | 0.4781 |
2 Within-group level of significance: | 0.335 | 0.958 | |
Right Side—Step Length [cm]: | |||
Before | 27.4 (8.2) * 25.0 (19.5, 30.5) | 27.2 (8.1) 28.0 (22.5, 33.5) | 0.9323 |
After | 30.3 (9.0) * 32.0 (25.9, 38.1) | 27.4 (8.4) 26.0 (20.3, 31.7) | 0.3192 |
2 Within-group level of significance: | 0.015 | 0.655 | |
Right Side—Stance Phase [%]: | |||
Before | 69.0 (4.6) 70.5 (67.4, 73.6) | 68.5 (4.0) 67.0 (64.3, 69.7) | 0.4187 |
After | 67.9 (5.0) 66.0 (62.6, 69.4) | 68.4 (3.9) 69.0 (66.4, 71.6) | 0.3630 |
2 Within-group level of significance: | 0.954 | 0.708 | |
Stride Length [cm] | |||
Before | 55.2 (15.9) 58.0 (47.3, 68.7) | 55.7 (13.6) 53.0 (43.8, 62.2) | 0.466 |
After | 59.1 (16.8) 57.0 (45.7, 68.3) | 55.1 (12.2) 56.0 (47.8, 64.2) | 0.825 |
2 Within-group level of significance: | 0.079 | 0.859 | 0.466 |
Stride Time [s] | |||
Before | 1.4 (0.2) 1.5 (1.37, 1.63) | 1.5 (0.2) 1.4 (1.27, 1.53) | 0.610 |
After | 1.52 (0.2) 1.4 (1.27, 1.53) | 1.52 (0.2) 1.6 (1.47, 1.73) | 0.955 |
2 Within-group level of significance: | 0.816 | 0.653 | |
Step Width [cm] | |||
Before | 13.1 (3.9) 12.0 (9.4, 14.6) | 12.2 (4.1) 13.5 (10.7, 16.3) | 0.057 |
After | 13.8 (4.2) 15.0 (12.2, 17.8) | 12.7 (4.3) 11.5 (8.6, 14.4) | 0.302 |
2 Within-group level of significance: | 0.444 | 0.150 | |
Double Stance Phase [%] | |||
Before | 41.1 (8.5) 39.0 (33.3, 44.7) | 40.3 (6.4) 42.0 (37.7, 46.3) | 0.644 |
After | 40.3 (7.9) 41.5 (36.2, 46.8) | 41.1 (6.9) 39.0 (34.4, 43.6) | 0.835 |
2 Within-group level of significance: | 0.763 | 0.519 | |
Cadence [step/min] | |||
Before | 82.4 (14.7) * 84.0 (74.1, 93.9) | 80.9 (17.2) 79.0 (67.4, 90.6) | 0.555 |
After | 79.6 (17.0) * 77.0 (65.6, 88.4) | 83.6 (18.1) 86.0 (73.8, 98.2) | 0.250 |
2 Within-group level of significance: | 0.029 | 0.354 | |
Velocity [km/h] | |||
Before | 1.43 (0.36) 1.50 (1.26, 1.74) | 1.31 (0.2) 1.25 (1.11, 1.39) | 0.605 |
After | 1.59 (0.39) 1.53 (1.27, 1.79) | 1.36 (0.2) 1.40 (1.26, 1.54) | 0.300 |
2 Within-group level of significance: | 0.314 | 0.409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niewolak, K.; Antkiewicz, J.; Piejko, L.; Sobota, G.; Maszczyk, A.; Nawrat-Szołtysik, A.; Opara, J.; Kucio, C.; Polak, A. Assessment of Postural Control and Gait in Patients with Chronic Stroke After Treadmill Perturbation-Based Training: A Randomized Clinical Trial. J. Clin. Med. 2025, 14, 6142. https://doi.org/10.3390/jcm14176142
Niewolak K, Antkiewicz J, Piejko L, Sobota G, Maszczyk A, Nawrat-Szołtysik A, Opara J, Kucio C, Polak A. Assessment of Postural Control and Gait in Patients with Chronic Stroke After Treadmill Perturbation-Based Training: A Randomized Clinical Trial. Journal of Clinical Medicine. 2025; 14(17):6142. https://doi.org/10.3390/jcm14176142
Chicago/Turabian StyleNiewolak, Kamila, Joanna Antkiewicz, Laura Piejko, Grzegorz Sobota, Adam Maszczyk, Agnieszka Nawrat-Szołtysik, Józef Opara, Cezary Kucio, and Anna Polak. 2025. "Assessment of Postural Control and Gait in Patients with Chronic Stroke After Treadmill Perturbation-Based Training: A Randomized Clinical Trial" Journal of Clinical Medicine 14, no. 17: 6142. https://doi.org/10.3390/jcm14176142
APA StyleNiewolak, K., Antkiewicz, J., Piejko, L., Sobota, G., Maszczyk, A., Nawrat-Szołtysik, A., Opara, J., Kucio, C., & Polak, A. (2025). Assessment of Postural Control and Gait in Patients with Chronic Stroke After Treadmill Perturbation-Based Training: A Randomized Clinical Trial. Journal of Clinical Medicine, 14(17), 6142. https://doi.org/10.3390/jcm14176142