Clinical Significance of APOE4 Genotyping: Potential for Personalized Therapy and Early Diagnosis of Alzheimer’s Disease
Abstract
1. Introduction
2. APOE4: Genetic Basis and Mechanisms of Action
2.1. Chromosomal Localization and Physiological Role of the APOE Gene
2.2. APOE Isoforms and Alzheimer’s Disease: Differential Risk Profiles of APOE2, APOE3, and APOE4
2.3. Pathogenic Mechanisms Underlying APOE4-Associated Disease Risk
3. Diagnostic Dynamics and Methodology of APOE4 Genotyping
3.1. PCR Technologies Without Fluorescent Detection Systems
3.2. Real-Time PCR Technologies with Fluorescent Detection
Allele-Specific Real-Time Quantitative Polymerase Chain Reaction (qPCR)
3.3. Sanger Sequencing
3.4. New Approaches
4. Clinical Significance of APOE4 Status Determination
4.1. Risk Assessment and Patient Stratification
4.2. Association with Earlier Onset, Faster Progression, and Sex Differences
4.3. Clinical Decision-Making: Should We Genotype All Cognitively Impaired Patients?
4.4. Differential Response to Anti-Amyloid Therapies
Antibody | Trial Name/Phase | ClinicalTrials.gov ID(s) | APOE Role |
---|---|---|---|
Trontinemab | Brainshuttle AD (Phase I/IIa) | NCT04639050 [133] | APOE genotyping for eligibility, stratification, and ARIA surveillance |
Remternetug | Early-stage and Phase III trials | NCT05463731 [137] | APOE genotyping to assess ARIA risk and stratify analysis |
Lecanemab | CLARITY-AD (Phase III) | NCT03887455 [138] | Stratification by APOE ε4 status; ARIA monitoring; regulatory guidance on ε4 homozygotes |
Gantenerumab | GRADUATE I and II (Phase III) | NCT03444870 [139] | APOE ε4 genotyping for safety/ARIA risk; subgroup analyses |
SCarlet RoAD (Phase III) | (Prior trial, published data) [140] | Genotyped for ARIA and cognitive biomarker correlations | |
Aducanumab | EMERGE and ENGAGE (Phase III) | NCT02484547 [141] | APOE ε4 genotyping at screening; higher ARIA incidence in carriers; subgroup analyses |
Post-ARIA safety study | NCT03639987 [142] | Continued dosing with ε4-based ARIA risk profiling | |
Bapineuzumab [143] (terminated) | Carrier and non-carrier trials (Phase III) | NCT00676143 (carriers), NCT00667810 (non-carriers) | Trials designed separately for ε4 carriers vs. non-carriers; higher ARIA in ε4+ participants |
Long-term extensions | NCT00998764, NCT00606476 | APOE-based subgroup safety monitoring (ARIA, vasogenic edema) | |
Crenezumab [144] (terminated) | API Colombia (Preclinical) | NCT01998841 | APOE and PSEN1 genotyping; stratification and ARIA risk monitoring |
CREAD (Phase III) | NCT02670083 | APOE-based inclusion and MRI/ARIA safety surveillance | |
Open-label extension | NCT03491150 | Continuation of genotyping and monitoring | |
Solanezumab [145] (terminated) | EXPEDITION 1–3 (Phase III) | NCT00905372, NCT00904683, NCT01900665 | APOE genotyping performed; subgroup analyses in cognitive/biomarker outcomes |
A4 preclinical study | NCT02008357 | Stratified/randomized by APOE ε4 status; key prevention platform | |
Biomarker substudy | NCT01148498 | APOE required for CSF/plasma Aβ analyses and stratification |
4.5. APOE4 Specific Mechanistic Targets and Novel Interventions
4.5.1. Antisense Oligonucleotides (ASOs)
4.5.2. Gene Editing and Epigenetic Silencing
4.5.3. APOE2 Gene Therapy (LX1001)
4.5.4. APOE4-Specific Monoclonal Antibodies
4.5.5. Small Molecule and Protein Modifiers
Agent | Modality | Status | APOE4 Mechanism |
---|---|---|---|
Anti-APOE ASO | Antisense oligonucleotide | Preclinical | Reduces APOE4 expression; attenuates tau and neuroinflammation |
CRISPR/dCas9 | Genome/epigenome editing | Preclinical | Converts or silences the APOE4 allele [151,160] |
LX1001 | AAV gene therapy | Phase 1/2 (NCT03634007) | Introduces APOE2 to counteract APOE4 toxicity [153] |
HAE-4 | Monoclonal antibody | Preclinical | Clears APOE-enriched plaques; preserves vascular function [155] |
Remternetug | Early-stage and Phase III trials | NCT05463731 [137] | APOE genotyping to assess ARIA risk and stratify analysis |
7C11 | Monoclonal antibody | Preclinical | Disrupts APOE-heparin interactions; prevents neurotoxic conformations [156] |
Valitramiprosoate (ALZ-801) | Small molecule (amyloid precursor protein antagonist) | Phase 3 | Amyloid precursor protein antagonist, no vasculature adverse effects [159] |
Solanezumab [145] (terminated) | EXPEDITION 1–3 (Phase III) | NCT00905372, NCT00904683, NCT01900665 | APOE genotyping performed; subgroup analyses in cognitive/biomarker outcomes |
A4 preclinical study | NCT02008357 | Stratified/randomized by APOE ε4 status; key prevention platform | |
Biomarker substudy | NCT01148498 | APOE required for CSF/plasma Aβ analyses and stratification |
4.6. Implications for Lifestyle Interventions and Prevention
5. Early Biomarkers and Monitoring APOE4 Carriers
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
Aβ | Amyloid beta |
APP | Amyloid precursor protein |
API | Alzheimer’s Prevention Initiative |
APOE | Apolipoprotein E |
APOE2 | Apolipoprotein E, epsilon 2 allele |
APOE3 | Apolipoprotein E, epsilon 3 allele |
APOE4 | Apolipoprotein E, epsilon 4 allele |
ARIA | Amyloid-related imaging abnormalities |
ARIA-E | Amyloid-related imaging abnormalities vasogenic edema |
ARIA-H | Amyloid-related imaging abnormalities cerebral microhemorrhages |
ARMS | Amplification refractory mutation system |
ASO | Antisense oligonucleotide |
AAV | Adeno-associated virus |
BBB | Blood-brain barrier |
CRISPR/Cas 9 | Clustered regularly interspaced short palindromic repeats/associated protein 9 |
CNS | Central nervous system |
CSF | Cerebrospinal fluid |
FOPPR | Fiber optic particle plasmon resonance |
GFAP | Glial fibrillary acidic protein |
HSPG | Heparan sulfate proteoglycans |
MCI | Mild cognitive impairment |
MRI | Magnetic resonance imaging |
NfL | Neurofilament light chain |
NGS | Next-generation sequencing |
PCR | Polymerase chain reaction |
p-tau | Phospho tau |
PET | Positron emission tomography |
PSEN1 | Presenilin 1 |
qPCR | Quantitative polymerase chain reaction |
RFLP | Restriction fragment length polymorphism |
SSP-PCR | Sequence-specific primer polymerase chain reaction |
References
- Kamatham, P.T.; Shukla, R.; Khatri, D.K.; Vora, L.K. Pathogenesis, Diagnostics, and Therapeutics for Alzheimer’s Disease: Breaking the Memory Barrier. Ageing Res. Rev. 2024, 101, 102481. [Google Scholar] [CrossRef]
- Shin, J.H. Dementia Epidemiology Fact Sheet 2022. Ann. Rehabil. Med. 2022, 46, 53–59. [Google Scholar] [CrossRef]
- Skaria, A.P. The Economic and Societal Burden of Alzheimer Disease: Managed Care Considerations. Am. J. Manag. Care 2022, 28, S188–S196. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S. Alzheimer’s Disease: A Comprehensive Review of Epidemiology, Risk Factors, Symptoms Diagnosis, Management, Caregiving, Advanced Treatments and Associated Challenges. Front. Med. 2024, 11, 1474043. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, J. Recent Advances in Alzheimer’s Disease: Mechanisms, Clinical Trials and New Drug Development Strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- 2025 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2025, 21, 70235. [CrossRef]
- Shawkatova, I.; Javor, J. Alzheimer’s Disease: Recent Developments in Pathogenesis, Diagnosis, and Therapy. Life 2025, 15, 549. [Google Scholar] [CrossRef]
- López-Antón, R. Recent Advances in Alzheimer’s Disease Research: From Biomarkers to Therapeutic Frontiers. Biomedicines 2024, 12, 2816. [Google Scholar] [CrossRef]
- Thal, D.R.; Poesen, K.; Vandenberghe, R.; Meyer, S. Alzheimer’s Disease Neuropathology and Its Estimation with Fluid and Imaging Biomarkers. Mol. Neurodegener. 2025, 20, 33. [Google Scholar] [CrossRef]
- Bellelli, F.; Angioni, D.; Arosio, B.; Vellas, B.; Souto Barreto, P. Hallmarks of Aging and Alzheimer’s Disease Pathogenesis: Paving the Route for New Therapeutic Targets. Ageing Res. Rev. 2025, 106, 102699. [Google Scholar] [CrossRef] [PubMed]
- Wijsman, E.M.; Daw, E.W.; Yu, X.; Steinbart, E.J.; Nochlin, D.; Bird, T.B.; Schellenberg, G.D. APOE and Other Loci Affect Age-At-Onset in Alzheimer’s Disease Families With PS2 Mutation. Am. J. Med. Genet.-Neuropsychiatr. Genet. 2005, 132B, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G. Lessons from genetic studies in Alzheimer disease. Rev. Neurol. 2024, 180, 368–377. [Google Scholar] [CrossRef]
- Fortea, J. Alzheimer’s Disease Associated with Down Syndrome: A Genetic Form of Dementia. Lancet Neurol. 2021, 20, 930–942. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.J.; Xiong, C.; Benzinger, T.L.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; et al. Clinical and Biomarker Changes in Dominantly Inherited Alzheimer’s Disease. N. Engl. J. Med. 2012, 367, 795–804. [Google Scholar] [CrossRef]
- Bellenguez, C.; Grenier-Boley, B.; Lambert, J.C. Genetics of Alzheimer’s Disease: Where We Are, and Where We Are Going. Curr. Opin. Neurobiol. 2020, 61, 40–48. [Google Scholar] [CrossRef]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New Insights into the Genetic Etiology of Alzheimer’s Disease and Related Dementias. Nat. Genet. 2022, 54, 412–436. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene Dose of Apolipoprotein E Type 4 Allele and the Risk of Alzheimer’s Disease in Late Onset Families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef]
- Farrer, L.A. Effects of Age, Sex, and Ethnicity on the Association between Apolipoprotein E Genotype and Alzheimer Disease. A Meta-Analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997, 278, 1349–1356. [Google Scholar] [CrossRef]
- Genin, E. APOE and Alzheimer Disease: A Major Gene with Semi-Dominant Inheritance. Mol. Psychiatry 2011, 16, 903–907. [Google Scholar] [CrossRef]
- Sharp, F.R.; DeCarli, C.S.; Jin, L.W.; Zhan, X. White Matter Injury, Cholesterol Dysmetabolism, and APP/Abeta Dysmetabolism Interact to Produce Alzheimer’s Disease (AD) Neuropathology: A Hypothesis and Review. Front. Aging Neurosci. 2023, 15, 1096206. [Google Scholar] [CrossRef] [PubMed]
- Fortea, J.; Pegueroles, J.; Alcolea, D.; Belbin, O.; Dols-Icardo, O.; Vaqué-Alcázar, L.; Videla, L.; Gispert, J.D.; Suárez-Calvet, M.; Johnson, S.C.; et al. APOE4 Homozygosity Represents a Distinct Genetic Form of Alzheimer’s Disease. Nat. Med. 2024, 30, 1284–1291. [Google Scholar] [CrossRef]
- Dias, D.; Socodato, R. Beyond Amyloid and Tau: The Critical Role of Microglia in Alzheimer’s Disease Therapeutics. Biomedicines 2025, 13, 279. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Noble, J.M. What’s in It for Me? Contextualizing the Potential Clinical Impacts of Lecanemab, Donanemab, and Other Anti-β-Amyloid Monoclonal Antibodies in Early Alzheimer’s Disease. Eneuro 2024, 11, ENEURO-0088. [Google Scholar] [CrossRef]
- Sikosek, T.; Heuvelman, M.; Mika, J.; Kahraman, M.; Jehn, J.; Frank, M.; Daniel-Moreno, A.; Ceiler, J.; Skottke, J.; Sanchez-Delgado, M.; et al. Early Detection of Alzheimer’s Disease Using Small RNAs. Results from the EPAD Cohort. J. Prev. Alzheimer’s Dis. 2025, 100257. [Google Scholar] [CrossRef] [PubMed]
- Das, H.K.; McPherson, J.; Bruns, G.A.; Karathanasis, S.K.; Breslow, J.L. Isolation, Characterization, and Mapping to Chromosome 19 of the Human Apolipoprotein E Gene. J. Biol. Chem. 1985, 260, 6240–6247. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Heo, J.H.; Kim, C.H.; Yoo, D.C.; Won, D.H.; Lee, S.G.; Cho, K.J.; Song, J.H.; Park, S.J.; Yang, Y.G.; et al. Rapid and Direct Detection of Apolipoprotein E Genotypes Using Whole Blood from Humans. J. Toxicol. Environ. Health A 2010, 73, 1502–1510. [Google Scholar] [CrossRef]
- Frieden, C.; Garai, K. Concerning the Structure of apoE. Protein Sci. 2013, 22, 1820–1825. [Google Scholar] [CrossRef]
- Yi, L.; Wu, T.; Luo, W.; Zhou, W.; Wu, J. A Non-Invasive, Rapid Method to Genotype Late-Onset Alzheimer′s Disease-Related Apolipoprotein E Gene Polymorphisms. Neural Regen. Res. 2014, 9, 69. [Google Scholar] [CrossRef]
- Weisgraber, K.H. Apolipoprotein E: Structure-Function Relationships. Adv. Protein Chem. 1994, 45, 249–302. [Google Scholar]
- Weisgraber, K.H.; Rall, S.C.; Mahley, R.W. Human E Apoprotein Heterogeneity. Cysteine-Arginine Interchanges in the Amino Acid Sequence of the Apo-E Isoforms. J. Biol. Chem. 1981, 256, 9077–9083. [Google Scholar] [CrossRef]
- Seripa, D.; Matera, M.G.; Daniele, A.; Bizzarro, A.; Rinaldi, M.; Gravina, C.; Bisceglia, L.; Corbo, R.M.; Panza, F.; Solfrizzi, V. The missing ApoE allele. Ann. Hum. Genet. 2007, 71, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Zhong, N.; Weisgraber, K.H. Understanding the Association of Apolipoprotein E4 with Alzheimer Disease: Clues from Its Structure. J. Biol. Chem. 2009, 284, 6027–6031. [Google Scholar] [CrossRef]
- Yu, J.-T.; Tan, L.; Hardy, J. Apolipoprotein E in Alzheimer’s Disease: An Update. Annu. Rev. Neurosci. 2014, 37, 79–100. [Google Scholar] [CrossRef]
- Huang, Y.; Mahley, R.W. Apolipoprotein E: Structure and Function in Lipid Metabolism, Neurobiology, and Alzheimer’s Diseases. Neurobiol. Dis. 2014, 72, 3–12. [Google Scholar] [CrossRef]
- Rebeck, G.W. The Role of APOE on Lipid Homeostasis and Inflammation in Normal Brains. J. Lipid Res. 2017, 58, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y. The Proportion of APOE4 Carriers among Non-Demented Individuals: A Pooled Analysis of 389,000 Community-Dwellers. J. Alzheimer’s Dis. 2021, 81, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Ward, A. Prevalence of Apolipoprotein E4 Genotype and Homozygotes (APOE E4/4) among Patients Diagnosed with Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology 2012, 38, 1–17. [Google Scholar] [CrossRef]
- Saunders, A.M.; Schmader, K.; Breitner, J.C.; Benson, M.D.; Brown, W.T.; Goldfarb, L.; Goldgaber, D.; Manwaring, M.G.; Szymanski, M.H.; McCown, N. Apolipoprotein E Epsilon 4 Allele Distributions in Late-Onset Alzheimer’s Disease and in Other Amyloid-Forming Diseases. Lancet 1993, 342, 710–711. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Risch, N.J.; Strittmatter, W.J.; Schmechel, D.E.; PC, G., Jr.; Rimmler, J.B.; Locke, P.A.; Conneally, P.M.; Schmader, K.E. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet. 1994, 7, 180–184. [Google Scholar] [CrossRef]
- Chiang, G.C.; Insel, P.; Tosun, D.; Schuff, N.; Truransacrey, D.; Raptentsetsang, S.T.; Jack, C.R.; Aisen, P.S.; Petersen, R.C.; Weiner, M.W.; et al. Hippocampal Atrophy Rates and CSF Biomarkers in Elderly APOE2 Normal Subjects. Neurology 2010, 75, 1976–1981. [Google Scholar] [CrossRef]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R. Genetic Meta-Analysis of Diagnosed Alzheimer’s Disease Identifies New Risk Loci and Implicates Aβ, Tau, Immunity and Lipid Processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef]
- Conejero-Goldberg, C.; Gomar, J.J.; Bobes-Bascaran, T.; Hyde, T.M.; Kleinman, J.E.; Herman, M.M.; Chen, S.; Davies, P.; Goldberg, T.E. APOE2 Enhances Neuroprotection against Alzheimer’s Disease through Multiple Molecular Mechanisms. Mol. Psychiatry 2014, 19, 1243–1250. [Google Scholar] [CrossRef]
- Wang, C.; Najm, R.; Xu, Q.; Jeong, D.; Walker, D.; Balestra, M.E.; Yoon, S.Y.; Yuan, H.; Li, G.; Miller, Z.A. Gain of Toxic Apolipoprotein E4 Effects in Human iPSC-Derived Neurons Is Ameliorated by a Small-Molecule Structure Corrector. Nat. Med. 2018, 24, 647–657. [Google Scholar] [CrossRef]
- Graff-Radford, N.R.; Green, R.C.; Go, R.C. Association between Apolipoprotein E Genotype and Alzheimer Disease in African American Subjects. Arch. Neurol. 2002, 59, 594–600. [Google Scholar] [CrossRef]
- Heffernan, A.L.; Chidgey, C.; Peng, P.; Masters, C.L.; Roberts, B.R. The Neurobiology and Age-Related Prevalence of the Ε4 Allele of Apolipoprotein E in Alzheimer’s Disease Cohorts. J. Mol. Neurosci. 2016, 60, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Roses, A.D. Apolipoprotein E Alleles As Risk Factors in Alzheimer’s Disease. Annu. Rev. Med. 1996, 47, 387–400. [Google Scholar] [CrossRef]
- Huang, Y. Aβ-Independent Roles of Apolipoprotein E4 in the Pathogenesis of Alzheimer’s Disease. Trends Mol. Med. 2010, 16, 287–294. [Google Scholar] [CrossRef]
- Blumenfeld, J.; Yip, O.; Kim, M.J.; Huang, Y. Cell Type-Specific Roles of APOE4 in Alzheimer Disease. Nat. Rev. Neurosci. 2024, 25, 91–110. [Google Scholar] [CrossRef] [PubMed]
- Elshourbagy, N.A.; Liao, W.S.; Mahley, R.W.; Taylor, J.M. Apolipoprotein E mRNA Is Abundant in the Brain and Adrenals, as Well as in the Liver, and Is Present in Other Peripheral Tissues of Rats and Marmosets. Proc. Natl. Acad. Sci. USA 1985, 82, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Kockx, M.; Traini, M.; Kritharides, L. Cell-Specific Production, Secretion, and Function of Apolipoprotein E. J. Mol. Med. 2018, 96, 361–371. [Google Scholar] [CrossRef]
- Linton, M.F.; Gish, R.; Hubl, S.T.; Bütler, E.; Esquivel, C.; Bry, W.I.; Boyles, J.K.; Wardell, M.R.; Young, S.G. Phenotypes of Apolipoprotein B and Apolipoprotein E after Liver Transplantation. J. Clin. Investig. 1991, 88, 270–281. [Google Scholar] [CrossRef]
- Liu, C.C.; Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013, 9, 106–118. [Google Scholar] [CrossRef]
- Xu, Q. Profile and Regulation of Apolipoprotein E (ApoE) Expression in the CNS in Mice with Targeting of Green Fluorescent Protein Gene to the ApoE Locus. J. Neurosci. 2006, 26, 4985–4994. [Google Scholar] [CrossRef]
- Shi, Y.; Manis, M.; Long, J. Microglia Drive APOE-Dependent Neurodegeneration in a Tauopathy Mouse Model. J. Exp. Med. 2019, 216, 2546–2561. [Google Scholar] [CrossRef] [PubMed]
- Koutsodendris, N.; Blumenfeld, J.; Agrawal, A. Neuronal APOE4 Removal Protects against Tau-Mediated Gliosis, Neurodegeneration and Myelin Deficits. Nat. Aging 2023, 3, 275–296. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, J.W.; Akay, L.A.; Davila-Velderrain, J. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature 2022, 611, 769–779. [Google Scholar] [CrossRef]
- Tcw, J.; Qian, L.; Pipalia, N.H. Cholesterol and Matrisome Pathways Dysregulated in Astrocytes and Microglia. Cell 2022, 185, 2213–2233.e25. [Google Scholar] [CrossRef] [PubMed]
- Victor, M.B.; Leary, N.; Luna, X. Lipid Accumulation Induced by APOE4 Impairs Microglial Surveillance of Neuronal-Network Activity. Cell Stem Cell 2022, 29, 1197–1212.e8. [Google Scholar] [CrossRef]
- Cruchaga, C.; Western, D.; Timsina, J. Proteogenomic Analysis of Human Cerebrospinal Fluid Identifies Neurologically Relevant Regulation and Informs Causal Proteins for Alzheimer’s Disease. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Vance, J.M.; Farrer, L.A.; Huang, Y.; Cruchaga, C. Report of the APOE4 National Institute on Aging/Alzheimer Disease Sequencing Project Consortium Working Group: Reducing APOE4 in Carriers Is a Therapeutic Goal for Alzheimer’s Disease. Ann. Neurol. 2024, 95, 625–634. [Google Scholar] [CrossRef]
- Gandy, S.; DeKosky, S.T. APOE Ε4 Status and Traumatic Brain Injury on the Gridiron or the Battlefield. Sci. Transl. Med. 2012, 4, 134ed4. [Google Scholar] [CrossRef] [PubMed]
- Belloy, M.E.; Napolioni, V.; Han, S.S.; Le Guen, Y.; Greicius, M.D.; Alzheimer’s Disease Neuroimaging Initiative. Association of Klotho-VS Heterozygosity with Risk of Alzheimer Disease in Individuals Who Carry APOE4. JAMA Neurol. 2020, 77, 849–862. [Google Scholar] [CrossRef]
- Liampas, I.; Kyriakoulopoulou, P.; Siokas, V.; Tsiamaki, E. Apolipoprotein E Gene in Alpha-Synucleinopathies: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 1795. [Google Scholar] [CrossRef] [PubMed]
- Bennet, A.M.; Di, A.E.; Ahlbom, A.; Keavney, B.; Collins, R.; Wiman, B.; Faire, U.; Danesh, J. Association of Apolipoprotein E Genotypes With Lipid Levels and Coronary Risk. JAMA 2007, 298, 1300–1311. [Google Scholar] [CrossRef]
- Wang, Y.L.; Sun, L.M.; Zhang, L.; Xu, H.T.; Dong, Z.; Wang, L.Q.; Wang, M.L. Association between Apolipoprotein E Polymorphism and Myocardial Infarction Risk: A Systematic Review and Meta-Analysis. FEBS Open Bio 2015, 5, 852–858. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, J.; Zhang, Y.; Ma, X.; Dai, Q.; Zhi, H.; Wang, B.; Wang, L. Apolipoprotein e Gene Variants and Risk of Coronary Heart Disease: A Meta-Analysis. Biomed Res. Int. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.K.; Au, A.; Menon, S.; Griffiths, L.R.; Kooi, C.W.; Irene, L.; Zhao, J.; Lee, C.; Alekseevna, A.M.; Hassan, M.R.A.; et al. Polymorphisms of MTHFR. J. Stroke Cerebrovasc. Dis. 2017, 26, 2482–2493. [Google Scholar] [CrossRef]
- Halliday, M.R.; Rege, S.V.; Ma, Q.; Zhao, Z.; Miller, C.A.; Winkler, E.A.; Zlokovic, B.V. Accelerated Pericyte Degeneration and Blood—Brain Barrier Breakdown in Apolipoprotein E4 Carriers with Alzheimer’s Disease. J. Cereb. Blood Flow Metab. 2016, 36, 216–227. [Google Scholar] [CrossRef]
- Galluzzi, S.; Pievani, M.; Zanetti, O.; Benussi, L.; The Italian-DIAfN Working Group; Frisoni, G.B.; Di Maria, E. Disclosure of Genetic Risk Factors for Alzheimer’s Disease to Cognitively Healthy Individuals-From Current Practice towards a Personalised Medicine Scenario. Biomedicines 2022, 10, 3177. [Google Scholar] [CrossRef]
- Kaur, A.; Mittal, M.; Bhatti, J.S.; Thareja, S.; Singh, S. A Systematic Literature Review on the Significance of Deep Learning and Machine Learning in Predicting Alzheimer’s Disease. Artif. Intell. Med. 2024, 154, 102928. [Google Scholar] [CrossRef]
- Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; et al. Meta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer’s Disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef]
- Harold, D.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; Dowzell, K.; Williams, A.; et al. Genome-Wide Association Study Identifies Variants at CLU and PICALM Associated with Alzheimer’s Disease. Nat. Genet. 2009, 41, 1088–1093. [Google Scholar] [CrossRef]
- Dourlen, P.; Kilinc, D.; Malmanche, N.; Chapuis, J.; Lambert, J.-C. The New Genetic Landscape of Alzheimer’s Disease: From Amyloid Cascade to Genetically Driven Synaptic Failure Hypothesis? Acta Neuropathol. 2019, 138, 221–236. [Google Scholar] [CrossRef]
- Nauck, M.; Hoffmann, M.M.; Wieland, H.; März, W. Evaluation of the Apo E Genotyping Kit on the LightCycler. Clin. Chem. 2000, 46, 722–724. [Google Scholar] [CrossRef]
- Rihn, B.H.; Berrahmoune, S.; Jouma, M.; Chamaa, S.; Marcocci, L.; Le Faou, A. APOE Genotyping: Comparison of Three Methods. Clin. Exp. Med. 2009, 9, 61–65. [Google Scholar] [CrossRef]
- Pantelidis, P.; Lambert-Hammill, M.; Wierzbicki, A.S. Simple Sequence-Specific-Primer-PCR Method to Identify the Three Main Apolipoprotein E Haplotypes. Clin. Chem. 2003, 49, 1945–1948. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Yousef, L.M.; Zaki, N.A.E. Apolipoprotein E Gene Polymorphism in Egyptian Acute Coronary Syndrome Patients. Egypt. J. Med. Hum. Genet. 2016, 17, 99–103. [Google Scholar] [CrossRef]
- Chen, C.-H. Development of a Melting Curve-Based Allele-Specific PCR of Apolipoprotein E (APOE) Genotyping Method for Genomic DNA, Guthrie Blood Spot, and Whole Blood. PLoS ONE 2016, 11, e0153593. [Google Scholar] [CrossRef]
- Calero, O.; Hortigüela, R.; Bullido, M.J.; Calero, M. Apolipoprotein E Genotyping Method by Real Time PCR, a Fast and Cost-Effective Alternative to the TaqMan and FRET Assays. J. Neurosci. Methods 2009, 183, 238–240. [Google Scholar] [CrossRef]
- Pourshaikhali, S.; Saleh-Gohari, N.; Saeidi, K.; Fekri Soofiabadi, M. Comparing PCR with High-Resolution Melting Analysis for Apolipoprotein E Genotyping in Alzheimer’s: A Case-Control Study. Basic Clin. Neurosci. 2024, 15, 37–48. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Papp, A.C.; Pinsonneault, J.K.; Cooke, G.; Sadée, W. Single Nucleotide Polymorphism Genotyping Using Allele-Specific PCR and Fluorescence Melting Curves. Biotechniques 2003, 34, 1068–1072. [Google Scholar] [CrossRef]
- Koch, W.; Ehrenhaft, A.; Griesser, K.; Pfeufer, A.; Müller, J.; Schömig, A.; Kastrati, A. TaqMan Systems for Genotyping of Disease-Related Polymorphisms Present in the Gene Encoding Apolipoprotein E. Clin. Chem. Lab. Med. 2002, 40, 1123–1131. [Google Scholar] [CrossRef]
- Steffensen, R.; Baech, J.; Nielsen, K.R. Allelic Discrimination by TaqMan-PCR for Genotyping of Human Neutrophil Antigens. In Molecular Typing of Blood Cell Antigens; Bugert, P., Ed.; Springer: New York, NY, USA, 2015; pp. 205–212. ISBN 978-1-4939-2690-9. [Google Scholar]
- Devyatkin, V.A.; Shklyar, A.A.; Fursova, A.Z.; Rumyantseva, Y.V.; Kozhevnikova, O.S. Allele-Specific PCR with Fluorescently Labeled Probes: Criteria for Selecting Primers for Genotyping. Vavilov J. Genet. Breed. 2024, 28, 351–359. [Google Scholar] [CrossRef]
- Zhong, L.; Xie, Y.-Z.; Cao, T.-T.; Wang, Z.; Wang, T.; Li, X.; Shen, R.-C.; Xu, H.; Bu, G.; Chen, X.-F. A Rapid and Cost-Effective Method for Genotyping Apolipoprotein E Gene Polymorphism. Mol. Neurodegener. 2016, 11, 2. [Google Scholar] [CrossRef]
- Belloy, M.E.; Eger, S.J.; Le Guen, Y.; Damotte, V.; Ahmad, S.; Ikram, M.A.; Ramirez, A.; Tsolaki, A.C.; Rossi, G.; Jansen, I.E.; et al. Challenges at the APOE Locus: A Robust Quality Control Approach for Accurate APOE Genotyping. Alzheimer’s Res. Ther. 2022, 14, 22. [Google Scholar] [CrossRef]
- Midorikawa, K.; Soukaloun, D.; Akkhavong, K.; Southivong, B.; Rattanavong, O.; Sengkhygnavong, V.; Pyaluanglath, A.; Sayasithsena, S.; Nakamura, S.; Midorikawa, Y.; et al. APOE Genotype in the Ethnic Majority and Minority Groups of Laos and the Implications for Non-Communicable Diseases. PLoS ONE 2016, 11, e0155072. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Wang, B.; Xu, J.; Li, Y.; Wang, W.; Li, T.; Du, P.; Guo, A. Correlation Analysis between APOE Gene Polymorphism and Alzheimer’s Disease. Int. J. Clin. Exp. Med. 2018, 11, 3672–3678. [Google Scholar]
- Bagaria, J.; Moon, Y.; Bagyinszky, E.; Shim, K.H.; An, S.S.A.; Kim, S.; Han, S.H. Whole Exome Sequencing Reveals a Novel APOE Mutation in a Patient With Sporadic Early-Onset Alzheimer’s Disease. Front. Neurol. 2022, 13, 899644. [Google Scholar] [CrossRef]
- Genetics, F. Alzheimer and Dementia NGS Panel|Fulgent Genetics. Available online: https://www.fulgentgenetics.com/alzheimer-dementia (accessed on 2 July 2025).
- Bonvicini, C.; Scassellati, C.; Benussi, L.; Di Maria, E.; Maj, C.; Ciani, M.; Fostinelli, S.; Mega, A.; Bocchetta, M.; Lanzi, G.; et al. Next Generation Sequencing Analysis in Early Onset Dementia Patients. J. Alzheimer’s Dis. 2019, 67, 243–256. [Google Scholar] [CrossRef]
- Chang, J.H.; Wang, C.H.; Chang, T.C.; Wen, W.C.; Huang, C.J.; Chen, Y.L.; Chau, L.K. Apolipoprotein E genetic analysis in unamplified genomic DNA extracts by ligase reaction and fiber optic particle plasmon resonance biosensor. Sens. Actuators B Chem. 2023, 393, 134237. [Google Scholar] [CrossRef]
- Kim, H.; Bae, J.H.; Yang, M.; Yang, Y.; Cha, W.; Kwak, T.; Jeon, S.; Bae, S.; Son, S.; Lee, E.; et al. One Pot PCR Genotyping of ApoE for Diagnosing Alzheimer’s Disease. Res. Sq. 2025. [Google Scholar] [CrossRef]
- Ritchie, M.; Sajjadi, S.A.; Grill, J.D. Apolipoprotein E Genetic Testing in a New Age of Alzheimer Disease Clinical Practice. Neurol. Clin. Pr. 2024, 14, e200230. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Committee for Medicinal Products for Human Use (CHMP) Guideline on Good Pharmacogenomic Practice; European Medicines Agency: Amsterdam, The Netherlands, 2018; Available online: https://www.ema.europa.eu/en/good-pharmacogenomic-practice-scientific-guideline (accessed on 20 August 2025).
- Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline Annotations 2025. Available online: https://cpicpgx.org/guidelines/ (accessed on 20 August 2025).
- Najd-Hassan-Bonab, L.; Hedayati, M.; Shahzadeh Fazeli, S.A.; Daneshpour, M.S. An Optimized Method for PCR-Based Genotyping to Detect Human APOE Polymorphisms. Heliyon 2023, 9, e21102. [Google Scholar] [CrossRef]
- Raulin, A.-C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.-C. ApoE in Alzheimer’s Disease: Pathophysiology and Therapeutic Strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef]
- Stocker, H.; Trares, K.; Beyer, L.; Perna, L.; Rujescu, D.; Holleczek, B.; Beyreuther, K.; Gerwert, K.; Schöttker, B.; Brenner, H. Alzheimer’s Polygenic Risk Scores, APOE, Alzheimer’s Disease Risk, and Dementia-Related Blood Biomarker Levels in a Population-Based Cohort Study Followed over 17 Years. Alzheimer’s Res. Ther. 2023, 15, 129. [Google Scholar] [CrossRef]
- Yin, Y.-W.; Li, J.-C.; Wang, J.-Z.; Li, B.-H.; Pi, Y.; Yang, Q.-W.; Fang, C.-Q.; Gao, C.-Y.; Zhang, L.-L. Association between Apolipoprotein E Gene Polymorphism and the Risk of Vascular Dementia: A Meta-Analysis. Neurosci. Lett. 2012, 514, 6–11. [Google Scholar] [CrossRef]
- Fleminger, S.; Oliver, D.L.; Lovestone, S.; Rabe-Hesketh, S.; Giora, A. Head Injury as a Risk Factor for Alzheimer’s Disease: The Evidence 10 Years on; a Partial Replication. J. Neurol. Neurosurg. Psychiatry 2003, 74, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, T.; Sasaki, K.; Tanizaki, Y.; Hata, J.; Fujimi, K.; Matsui, Y.; Sekita, A.; Suzuki, S.O.; Kanba, S.; Kiyohara, Y.; et al. Insulin Resistance Is Associated with the Pathology of Alzheimer Disease: The Hisayama Study. Neurology 2010, 75, 764–770. [Google Scholar] [CrossRef]
- Peila, R.; Rodriguez, B.L.; Launer, L.J. Honolulu-Asia Aging Study Type 2 Diabetes, APOE Gene, and the Risk for Dementia and Related Pathologies: The Honolulu-Asia Aging Study. Diabetes 2002, 51, 1256–1262. [Google Scholar] [CrossRef]
- Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Szoeke, C.; Macaulay, S.L.; Martins, R.; Maruff, P.; et al. Amyloid β Deposition, Neurodegeneration, and Cognitive Decline in Sporadic Alzheimer’s Disease: A Prospective Cohort Study. Lancet Neurol. 2013, 12, 357–367. [Google Scholar] [CrossRef]
- Veitch, D.P.; Weiner, M.W.; Miller, M.; Aisen, P.S.; Ashford, M.A.; Beckett, L.A.; Green, R.C.; Harvey, D.; Jack, C.R.; Jagust, W.; et al. The Alzheimer’s Disease Neuroimaging Initiative in the Era of Alzheimer’s Disease Treatment: A Review of ADNI Studies from 2021 to 2022. Alzheimer’s Dement. 2023, 20, 652–694. [Google Scholar] [CrossRef]
- Whitmer, R.A.; Baker, L.D.; Carrillo, M.C.; Snyder, H.M.; Cleveland, M.L.; Gitelman, D.R.; Kivipelto, M.; Leng, X.I.; Lovato, L.; Papp, K.V.; et al. Baseline Characteristics of the U.S. Study to Protect Brain Health Through Lifestyle Intervention to Reduce Risk (U.S. POINTER): Successful Enrollment of a Diverse Clinical Trial Cohort at Risk for Cognitive Decline. Alzheimer’s Dement. 2025, 21, e70351. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 Year Multidomain Intervention of Diet, Exercise, Cognitive Training, and Vascular Risk Monitoring versus Control to Prevent Cognitive Decline in at-Risk Elderly People (FINGER): A Randomised Controlled Trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- O’Shea, D.M.; Zhang, A.S.; Rader, K.; Shakour, R.L.; Besser, L.; Galvin, J.E. APOE Ε4 Carrier Status Moderates the Effect of Lifestyle Factors on Cognitive Reserve. Alzheimer’s Dement. 2024, 20, 8062–8073. [Google Scholar] [CrossRef] [PubMed]
- Sando, S.B.; Melquist, S.; Cannon, A.; Hutton, M.L.; Sletvold, O.; Saltvedt, I.; White, L.R.; Lydersen, S.; Aasly, J.O. APOE Ε4 Lowers Age at Onset and Is a High Risk Factor for Alzheimer’s Disease; A Case Control Study from Central Norway. BMC Neurol. 2008, 8, 9. [Google Scholar] [CrossRef]
- Therriault, J.; Benedet, A.L.; Pascoal, T.A.; Mathotaarachchi, S.; Savard, M.; Chamoun, M.; Thomas, E.; Kang, M.S.; Lussier, F.; Tissot, C.; et al. APOEε4 Potentiates the Relationship Between Amyloid-β and Tau Pathologies. Mol. Psychiatry 2021, 26, 5977–5988. [Google Scholar] [CrossRef]
- Xu, W.-L.; Caracciolo, B.; Wang, H.-X.; Santoni, G.; Winblad, B.; Fratiglioni, L. Accelerated Progression from Mild Cognitive Impairment to Dementia among APOE Ε4ε4 Carriers. J. Alzheimer’s Dis. 2013, 33, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C.; Oliver, M.D.; Berry, V.; Kamal, F.; Dadar, M. The Influence of APOE Status on Rate of Cognitive Decline. GeroScience 2024, 46, 3263–3274. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.; Pravalika, J.; Manjula, P.; Farooq, U. Gender and CVD-Does It Really Matters? Curr. Probl. Cardiol. 2023, 48, 101604. [Google Scholar] [CrossRef] [PubMed]
- Beam, C.R.; Kaneshiro, C.; Jang, J.Y.; Reynolds, C.A.; Pedersen, N.L.; Gatz, M. Differences Between Women and Men in Incidence Rates of Dementia and Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 64, 1077–1083. [Google Scholar] [CrossRef]
- Ungar, L.; Altmann, A.; Greicius, M.D. Apolipoprotein E, Gender, and Alzheimer’s Disease: An Overlooked, but Potent and Promising Interaction. Brain Imaging Behav. 2014, 8, 262–273. [Google Scholar] [CrossRef]
- Kang, J.H.; Grodstein, F. Postmenopausal Hormone Therapy, Timing of Initiation, APOE and Cognitive Decline. Neurobiol. Aging 2012, 33, 1129–1137. [Google Scholar] [CrossRef]
- Yaffe, K.; Haan, M.; Byers, A.; Tangen, C.; Kuller, L. Estrogen Use, APOE, and Cognitive Decline: Evidence of Gene-Environment Interaction. Neurology 2000, 54, 1949–1954. [Google Scholar] [CrossRef]
- Henderson, V.W. Aging, Estrogens, and Episodic Memory in Women. Cogn. Behav. Neurol. 2009, 22, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Kang, S.S.; Wang, M.; Wang, Z.; Xia, Y.; Liao, J.; Liu, X.; Yu, S.-P.; Zhang, Z.; Ryu, V.; et al. FSH and ApoE4 Contribute to Alzheimer’s Disease-like Pathogenesis via C/EBPβ/δ-Secretase in Female Mice. Nat. Commun. 2023, 14, 6577. [Google Scholar] [CrossRef]
- Jauregi-Zinkunegi, A.; Gleason, C.E.; Bendlin, B.; Okonkwo, O.; Hermann, B.P.; Blennow, K.; Zetterberg, H.; Hogervorst, E.; Johnson, S.C.; Langhough, R.; et al. Menopausal Hormone Therapy Is Associated with Worse Levels of Alzheimer’s Disease Biomarkers in APOE Ε4-Carrying Women: An Observational Study. Alzheimer’s Dement. 2025, 21, e14456. [Google Scholar] [CrossRef]
- Pa, J.; Aslanyan, V.; Casaletto, K.B.; Rentería, M.A.; Harrati, A.; Tom, S.E.; Armstrong, N.; Rajan, K.; Avila-Rieger, J.; Gu, Y.; et al. Effects of Sex, APOE4, and Lifestyle Activities on Cognitive Reserve in Older Adults. Neurology 2022, 99, e789–e798. [Google Scholar] [CrossRef]
- Stocker, H.; Perna, L.; Weigl, K.; Möllers, T.; Schöttker, B.; Thomsen, H.; Holleczek, B.; Rujescu, D.; Brenner, H. Prediction of Clinical Diagnosis of Alzheimer’s Disease, Vascular, Mixed, and All-Cause Dementia by a Polygenic Risk Score and APOE Status in a Community-Based Cohort Prospectively Followed over 17 Years. Mol. Psychiatry 2021, 26, 5812–5822. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.L.; Subramanian, P.; Bovenkamp, D.E. The Future Is Precision Medicine-Guided Diagnoses, Preventions and Treatments for Neurodegenerative Diseases. Front. Aging Neurosci. 2023, 15, 1128619. [Google Scholar] [CrossRef] [PubMed]
- Foley, K.E.; Wilcock, D.M. Three Major Effects of APOEε4 on Aβ Immunotherapy Induced ARIA. Front. Aging Neurosci. 2024, 16, 1412006. [Google Scholar] [CrossRef] [PubMed]
- Budd Haeberlein, S.; Aisen, P.S.; Barkhof, F.; Chalkias, S.; Chen, T.; Cohen, S.; Dent, G.; Hansson, O.; Harrison, K.; von Hehn, C.; et al. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. J. Prev. Alzheimer’s Dis. 2022, 9, 197–210. [Google Scholar] [CrossRef] [PubMed]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA 2023, 330, 512–527. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Aparicio, H.J.; Furie, K.L.; Goyal, M.S.; Hinman, J.D.; Kozberg, M.; Leonard, A.; Fisher, M.J.; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; et al. Vascular Neurology Considerations for Antiamyloid Immunotherapy: A Science Advisory From the American Heart Association. Stroke 2025, 56, e30–e38. [Google Scholar] [CrossRef]
- Cummings, J.; Apostolova, L.; Rabinovici, G.D.; Atri, A.; Aisen, P.; Greenberg, S.; Hendrix, S.; Selkoe, D.; Weiner, M.; Petersen, R.C.; et al. Lecanemab: Appropriate Use Recommendations. J. Prev. Alzheimer’s Dis. 2023, 10, 362–377. [Google Scholar] [CrossRef]
- Goldman, J.S.; Hahn, S.E.; Catania, J.W.; LaRusse-Eckert, S.; Butson, M.B.; Rumbaugh, M.; Strecker, M.N.; Roberts, J.S.; Burke, W.; Mayeux, R.; et al. Genetic Counseling and Testing for Alzheimer Disease: Joint Practice Guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet. Med. 2011, 13, 597–605. [Google Scholar] [CrossRef]
- Stoll, K.; Kubendran, S.; Cohen, S.A. The Past, Present and Future of Service Delivery in Genetic Counseling: Keeping up in the Era of Precision Medicine. Am. J. Med. Genet. C Semin. Med. Genet. 2018, 178, 24–37. [Google Scholar] [CrossRef]
- Wimo, A.; Handels, R.; Blennow, K.; Kirsebom, B.-E.; Selnes, P.; Bon, J.; Emersic, A.; Gonzalez-Ortiz, F.; Gregoric Kramberger, M.; Sköldunger, A.; et al. Cost-Effectiveness of Diagnosing and Treating Patients with Early Alzheimer’s Disease with Anti-Amyloid Treatment in a Clinical Setting. J. Alzheimer’s Dis. 2025, 104, 1167–1184. [Google Scholar] [CrossRef]
- Price, P.U.; Heggie, R.; Moriguti, J.C.; Pereira, L.R.L. Evaluating the Cost-Effectiveness of Pharmacological Therapy in Alzheimer Disease in Brazil. Value Health Reg. Issues 2025, 49, 101130. [Google Scholar] [CrossRef] [PubMed]
- Calero, O.; García-Albert, L.; Rodríguez-Martín, A.; Veiga, S.; Calero, M. A Fast and Cost-Effective Method for Apolipoprotein E Isotyping as an Alternative to APOE Genotyping for Patient Screening and Stratification. Sci. Rep. 2018, 8, 5969. [Google Scholar] [CrossRef]
- Eli Lilly and Company. Assessment of Safety, Tolerability, and Efficacy Measured by Amyloid Reduction of LY3372993 in Early Symptomatic Alzheimer’s Disease; 2025. Available online: https://clinicaltrials.gov/ (accessed on 20 August 2025).
- Eisai Inc. A Placebo-Controlled, Double-Blind, Parallel-Group, 18-Month Study with an Open-Label Extension Phase to Confirm Safety and Efficacy of BAN2401 in Subjects With Early Alzheimer’s Disease; 2025. Available online: https://clinicaltrials.gov/ (accessed on 20 August 2025).
- Hoffmann-La Roche. A Phase III, Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Efficacy, and Safety Study of Gantenerumab in Patients with Early (Prodromal to Mild) Alzheimer’s Disease; 2024. Available online: https://clinicaltrials.gov/ (accessed on 20 August 2025).
- Ostrowitzki, S.; Lasser, R.A.; Dorflinger, E.; Scheltens, P.; Barkhof, F.; Nikolcheva, T.; Ashford, E.; Retout, S.; Hofmann, C.; Delmar, P.; et al. A Phase III Randomized Trial of Gantenerumab in Prodromal Alzheimer’s Disease. Alzheimer’s Res. Ther. 2017, 9, 95. [Google Scholar] [CrossRef]
- Biogen. A Phase 3 Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study to Evaluate the Efficacy and Safety of Aducanumab (BIIB037) in Subjects with Early Alzheimer’s Disease; 2021. Available online: https://clinicaltrials.gov/ (accessed on 20 August 2025).
- Biogen. A Phase 2, Multicenter, Randomized, Parallel-Group, Double-Blind, Controlled Study of Aducanumab (BIIB037) in Subjects with Mild Cognitive Impairment Due to Alzheimer’s Disease or with Mild Alzheimer’s Disease Dementia to Evaluate the Safety of Continued Dosing in Subjects with Asymptomatic Amyloid-Related Imaging Abnormalities; 2021. Available online: https://clinicaltrials.gov/ (accessed on 20 August 2025).
- Salloway, S.; Sperling, R.; Fox, N.C.; Blennow, K.; Klunk, W.; Raskind, M.; Sabbagh, M.; Honig, L.S.; Porsteinsson, A.P.; Ferris, S.; et al. Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer’s Disease. N. Engl. J. Med. 2014, 370, 322–333. [Google Scholar] [CrossRef]
- Ostrowitzki, S.; Bittner, T.; Sink, K.M.; Mackey, H.; Rabe, C.; Honig, L.S.; Cassetta, E.; Woodward, M.; Boada, M.; van Dyck, C.H.; et al. Evaluating the Safety and Efficacy of Crenezumab vs Placebo in Adults With Early Alzheimer Disease: Two Phase 3 Randomized Placebo-Controlled Trials. JAMA Neurol. 2022, 79, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Honig, L.S.; Vellas, B.; Woodward, M.; Boada, M.; Bullock, R.; Borrie, M.; Hager, K.; Andreasen, N.; Scarpini, E.; Liu-Seifert, H.; et al. Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. N. Engl. J. Med. 2018, 378, 321–330. [Google Scholar] [CrossRef]
- Rinaldi, C.; Wood, M.J.A. Antisense Oligonucleotides: The next Frontier for Treatment of Neurological Disorders. Nat. Rev. Neurol. 2018, 14, 9–21. [Google Scholar] [CrossRef]
- Shi, Y.; Yamada, K.; Liddelow, S.A.; Smith, S.T.; Zhao, L.; Luo, W.; Tsai, R.M.; Spina, S.; Grinberg, L.T.; Rojas, J.C.; et al. ApoE4 Markedly Exacerbates Tau-Mediated Neurodegeneration in a Mouse Model of Tauopathy. Nature 2017, 549, 523–527. [Google Scholar] [CrossRef]
- Litvinchuk, A.; Huynh, T.-P.V.; Shi, Y.; Jackson, R.J.; Finn, M.B.; Manis, M.; Francis, C.M.; Tran, A.; Sullivan, P.M.; Ulrich, J.D.; et al. ApoE4 Reduction with ASOs Decreases Neurodegeneration in a Tauopathy Model. Ann. Neurol. 2021, 89, 952–966. [Google Scholar] [CrossRef]
- Rottner, A.K.; Lundin, A.; Li, S.; Firth, M.; Maresca, M.; Sienski, G. Optimized Prime Editing of the Alzheimer’s Disease-Associated APOE4 Mutation. Stem Cell Rep. 2025, 20, 102372. [Google Scholar] [CrossRef] [PubMed]
- Lopera, F.; Marino, C.; Chandrahas, A.S.; O’Hare, M.; Villalba-Moreno, N.D.; Aguillon, D.; Baena, A.; Sanchez, J.S.; Vila-Castelar, C.; Ramirez Gomez, L.; et al. Resilience to Autosomal Dominant Alzheimer’s Disease in a Reelin-COLBOS Heterozygous Man. Nat. Med. 2023, 29, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Perez-Corredor, P.; Vanderleest, T.E.; Vacano, G.N.; Sanchez, J.S.; Villalba-Moreno, N.D.; Marino, C.; Krasemann, S.; Mendivil-Perez, M.A.; Aguillón, D.; Jiménez-Del-Río, M.; et al. APOE3 Christchurch Modulates β-Catenin/Wnt Signaling in iPS Cell-Derived Cerebral Organoids from Alzheimer’s Cases. Front. Mol. Neurosci. 2024, 17, 1373568. [Google Scholar] [CrossRef]
- Teter, B.; Campagna, J.; Zhu, C.; McCauley, G.E.; Spilman, P.; Kohn, D.B.; John, V. Successful Gene Editing of Apolipoprotein E4 to E3 in Brain of Alzheimer Model Mice After a Single IV Dose of Synthetic Exosome-Delivered CRISPR. bioRxiv 2024. [Google Scholar] [CrossRef]
- Lexeo Therapeutics. A 52-Week, Multicenter, Phase 1/2 Open-Label Study to Evaluate the Safety of LX1001 in Participants with APOE4 Homozygote Alzheimer’s Disease; 2024. Available online: https://clinicaltrials.gov/ (accessed on 20 August 2025).
- Lexeo Therapeutics Announces Positive Interim Data for LX1001, First-Ever Gene Therapy to Impact the Underlying Genetic Cause of APOE4-Associated Alzheimer’s Disease, at the Clinical Trials on Alzheimer’s Disease (CTAD) Conference—Lexeo Therapeutics. Available online: https://ir.lexeotx.com/news-releases/news-release-details/lexeo-therapeutics-announces-positive-interim-data-lx1001-first/ (accessed on 16 July 2025).
- Xiong, M.; Jiang, H.; Serrano, J.R.; Gonzales, E.R.; Wang, C.; Gratuze, M.; Hoyle, R.; Bien-Ly, N.; Silverman, A.P.; Sullivan, P.M.; et al. APOE Immunotherapy Reduces Cerebral Amyloid Angiopathy and Amyloid Plaques While Improving Cerebrovascular Function. Sci. Transl. Med. 2021, 13, eabd7522. [Google Scholar] [CrossRef]
- Marino, C.; Perez-Corredor, P.; O’Hare, M.; Heuer, A.; Chmielewska, N.; Gordon, H.; Chandrahas, A.S.; Gonzalez-Buendia, L.; Delgado-Tirado, S.; Doan, T.H.; et al. APOE Christchurch-Mimetic Therapeutic Antibody Reduces APOE-Mediated Toxicity and Tau Phosphorylation. Alzheimer’s Dement. 2024, 20, 819–836. [Google Scholar] [CrossRef] [PubMed]
- Alzheon. Topline Results from Pivotal APOLLOE4 Phase 3 Trial of Oral Valiltramiprosate/ALZ-801 in Patients with Early Alzheimer’s Disease Carrying Two Copies of APOE4 Gene. Alzheon|Preserving Future Memories. 2025. Available online: https://alzheon.com/topline-results-from-pivotal-apolloe4-phase-3-trial-of-oral-valiltramiprosate-alz-801-in-patients-with-early-alzheimers-disease-carrying-two-copies-of-apoe4-gene/ (accessed on 20 August 2025).
- Hey, J.A.; Abushakra, S.; Blennow, K.; Reiman, E.M.; Hort, J.; Prins, N.D.; Sheardova, K.; Kesslak, P.; Shen, L.; Zhu, X.; et al. Effects of Oral ALZ-801/Valiltramiprosate on Plasma Biomarkers, Brain Hippocampal Volume, and Cognition: Results of 2-Year Single-Arm, Open-Label, Phase 2 Trial in APOE4 Carriers with Early Alzheimer’s Disease. Drugs 2024, 84, 811–823. [Google Scholar] [CrossRef]
- Abushakra, S.; Porsteinsson, A.P.; Sabbagh, M.; Watson, D.; Power, A.; Liang, E.; MacSweeney, E.; Boada, M.; Flint, S.; McLaine, R.; et al. APOLLOE4 Phase 3 Study of Oral ALZ-801/Valiltramiprosate in APOE Ε4/Ε4 Homozygotes with Early Alzheimer’s Disease: Trial Design and Baseline Characteristics. Alzheimer’s Dement. 2024, 10, e12498. [Google Scholar] [CrossRef]
- Park, J.-C.; Barahona-Torres, N.; Jang, S.-Y.; Mok, K.Y.; Kim, H.J.; Han, S.-H.; Cho, K.-H.; Zhou, X.; Fu, A.K.Y.; Ip, N.Y.; et al. Multi-Omics-Based Autophagy-Related Untypical Subtypes in Patients with Cerebral Amyloid Pathology. Adv. Sci. 2022, 9, 2201212. [Google Scholar] [CrossRef]
- Tai, L.M.; Thomas, R.; Marottoli, F.M.; Koster, K.P.; Kanekiyo, T.; Morris, A.W.; Bu, G. The Role of APOE in Cerebrovascular Dysfunction. Acta Neuropathol. 2016, 131, 709–723. [Google Scholar] [CrossRef]
- Allard, J.S.; Ntekim, O.; Johnson, S.P.; Ngwa, J.S.; Bond, V.; Pinder, D.; Gillum, R.F.; Fungwe, T.V.; Kwagyan, J.; Obisesan, T.O. APOEε4 Impacts Up-Regulation of Brain-Derived Neurotrophic Factor After a Six-Month Stretch and Aerobic Exercise Intervention in Mild Cognitively Impaired Elderly African Americans: A Pilot Study. Exp. Gerontol. 2017, 87, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.M.; Moiz, B.; Pena, G.S.; Kheradmand, M.; Wunderler, B.; Kettula, C.; Sangha, G.S.; Smith, J.C.; Clyne, A.M. Impacts of APOE-Ε4 and Exercise Training on Brain Microvascular Endothelial Cell Barrier Function and Metabolism. eBioMedicine 2025, 111, 105487. [Google Scholar] [CrossRef]
- Mulgrave, V.E.; Alsayegh, A.A.; Jaldi, A.; Omire-Mayor, D.T.; James, N.; Ntekim, O.; Walters, E.; Akala, E.O.; Allard, J.S. Exercise Modulates APOE Expression in Brain Cortex of Female APOE3 and APOE4 Targeted Replacement Mice. Neuropeptides 2023, 97, 102307. [Google Scholar] [CrossRef]
- Spencer, F.S.E.; Elsworthy, R.J.; Breen, L.; Bishop, J.R.B.; Dunleavy, C.; Aldred, S. The Effect of the APOE4 Genotype on Physiological and Cognitive Health in Randomised Controlled Trials with an Exercise Intervention: A Systematic Review and Meta-Analysis. Trials 2025, 26, 20. [Google Scholar] [CrossRef]
- Liu, X.; Beck, T.; Dhana, K.; Tangney, C.C.; Desai, P.; Krueger, K.; Evans, D.A.; Rajan, K.B. Dietary Fats and the APOE-E4 Risk Allele in Relation to Cognitive Decline: A Longitudinal Investigation in a Biracial Population Sample. J. Nutr. Health Aging 2024, 28, 100211. [Google Scholar] [CrossRef]
- Guan, Y.; Cheng, C.H.; Bellomo, L.I.; Narain, S.; Bigornia, S.J.; Garelnabi, M.O.; Scott, T.; Ordovás, J.M.; Tucker, K.L.; Bhadelia, R.; et al. APOE4 Allele-Specific Associations between Diet, Multimodal Biomarkers, and Cognition among Puerto Rican Adults in Massachusetts. Front. Aging Neurosci. 2023, 15, 1285333. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, X.; He, Z.; He, B.; Wan, K.; Wei, M.; Guo, T.; Han, Y. Sleep and APOE-ε4 Have a Synergistic Effect on Plasma Biomarkers and Longitudinal Cognitive Decline in Older Adults. CNS Neurosci. Ther. 2024, 30, e14558. [Google Scholar] [CrossRef]
- Li, W.; Wang, X.; Sun, L.; Yue, L.; Xiao, S. Correlation between the APOE Ε4 Genotype, Lifestyle Habits, and Cognitive Deficits in Chinese Adults over 60: A Cross-Sectional Analysis in China. Front. Public Health 2024, 12, 1417499. [Google Scholar] [CrossRef]
- NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease—Jack—2018—Alzheimer’s & Dementia—Wiley Online Library. Available online: https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2018.02.018 (accessed on 24 July 2025).
- Jack, C.R.; Andrews, J.S.; Beach, T.G.; Buracchio, T.; Dunn, B.; Graf, A.; Hansson, O.; Ho, C.; Jagust, W.; McDade, E.; et al. Revised Criteria for Diagnosis and Staging of Alzheimer’s Disease: Alzheimer’s Association Workgroup. Alzheimer’s Dement. 2024, 20, 5143–5169. [Google Scholar] [CrossRef]
- Jack, C.R.; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D.; et al. Tracking Pathophysiological Processes in Alzheimer’s Disease: An Updated Hypothetical Model of Dynamic Biomarkers. Lancet Neurol. 2013, 12, 207–216. [Google Scholar] [CrossRef]
- Fagan, A.M.; Roe, C.M.; Xiong, C.; Mintun, M.A.; Morris, J.C.; Holtzman, D.M. Cerebrospinal Fluid Tau/Beta-Amyloid(42) Ratio as a Prediction of Cognitive Decline in Nondemented Older Adults. Arch. Neurol. 2007, 64, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Turk, K.W.; Geada, A.; Alvarez, V.E.; Xia, W.; Cherry, J.D.; Nicks, R.; Meng, G.; Daley, S.; Tripodis, Y.; Huber, B.R. A Comparison between Tau and Amyloid-β Cerebrospinal Fluid Biomarkers in Chronic Traumatic Encephalopathy and Alzheimer Disease. Alzheimer’s Res. Ther. 2022, 14, 1–12. [Google Scholar] [CrossRef]
- Sunderland, T.; Mirza, N.; Putnam, K.T. Cerebrospinal Fluid Beta-Amyloid1-42 and Tau in Control Subjects at Risk for Alzheimer’s Disease: The Effect of APOE Epsilon4 Allele. Biol. Psychiatry 2004, 56, 670–676. [Google Scholar] [CrossRef]
- Castellano, J.M.; Kim, J.; Stewart, F.R. Human apoE Isoforms Differentially Regulate Brain Amyloid-β Peptide Clearance. Sci. Transl. Med. 2011, 3, 89ra57. [Google Scholar] [CrossRef]
- Pankiewicz, J.E.; Guridi, M.; Kim, J. Blocking the apoE/Aβ Interaction Ameliorates Aβ-Related Pathology in APOE Ε2 and Ε4 Targeted Replacement Alzheimer Model Mice. Acta Neuropathol. Commun. 2014, 2, 75. [Google Scholar] [CrossRef]
- Steward, A.; Biel, D.; Dewenter, A.; Roemer, S.; Wagner, F.; Dehsarvi, A.; Rathore, S.; Otero Svaldi, D.; Higgins, I.; Brendel, M.; et al. ApoE4 and Connectivity-Mediated Spreading of Tau Pathology at Lower Amyloid Levels. JAMA Neurol. 2023, 80, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, N.; Cullen, N.C.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2019, 76, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Verberk, I.M.W.; Laarhuis, M.B.; Bosch, K.A. Serum Markers Glial Fibrillary Acidic Protein and Neurofilament Light for Prognosis and Monitoring in Cognitively Normal Older People: A Prospective Memory Clinic-Based Cohort Study. Lancet Healthy Longev. 2021, 2, e87–e95. [Google Scholar] [CrossRef] [PubMed]
- Snellman, A.; Ekblad, L.L.; Ashton, N.J. Head-to-Head Comparison of Plasma p-Tau181, p-Tau231 and Glial Fibrillary Acidic Protein in Clinically Unimpaired Elderly with Three Levels of APOE4-Related Risk for Alzheimer’s Disease. Neurobiol. Dis. 2023, 183, 106175. [Google Scholar] [CrossRef]
- Ng, T.K.S.; Beck, T.; Boyle, P. APOE4, Blood Neurodegenerative Biomarkers, and Cognitive Decline in Community-Dwelling Older Adults. JAMA Netw. Open 2025, 8, e258903. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajič Bumber, J.; Rački, V.; Mežnarić, S.; Pelčić, G.; Mršić-Pelčić, J. Clinical Significance of APOE4 Genotyping: Potential for Personalized Therapy and Early Diagnosis of Alzheimer’s Disease. J. Clin. Med. 2025, 14, 6047. https://doi.org/10.3390/jcm14176047
Rajič Bumber J, Rački V, Mežnarić S, Pelčić G, Mršić-Pelčić J. Clinical Significance of APOE4 Genotyping: Potential for Personalized Therapy and Early Diagnosis of Alzheimer’s Disease. Journal of Clinical Medicine. 2025; 14(17):6047. https://doi.org/10.3390/jcm14176047
Chicago/Turabian StyleRajič Bumber, Jelena, Valentino Rački, Silvestar Mežnarić, Gordana Pelčić, and Jasenka Mršić-Pelčić. 2025. "Clinical Significance of APOE4 Genotyping: Potential for Personalized Therapy and Early Diagnosis of Alzheimer’s Disease" Journal of Clinical Medicine 14, no. 17: 6047. https://doi.org/10.3390/jcm14176047
APA StyleRajič Bumber, J., Rački, V., Mežnarić, S., Pelčić, G., & Mršić-Pelčić, J. (2025). Clinical Significance of APOE4 Genotyping: Potential for Personalized Therapy and Early Diagnosis of Alzheimer’s Disease. Journal of Clinical Medicine, 14(17), 6047. https://doi.org/10.3390/jcm14176047