Comparison of Patient-Reported Outcome Measures Between Robotic-Assisted and Manual Total Hip Arthroplasty: A Systematic Review with a Minimum 2-Year Follow-Up
Abstract
1. Introduction
2. Materials and Methods
2.1. Quality Assessment
2.2. Data Extraction
2.3. Patient-Reported Outcome Measures (PROMs)
3. Results
3.1. Study Identification and Quality
3.2. Study Characteristics
3.3. Patient Reported Outcomes Measures
3.4. Complications
3.5. Leg-Length Discrepancy
3.6. Operative Times
4. Discussion
4.1. Limitations
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef]
- Ethgen, O.; Bruyere, O.; Richy, F.; D’ardennes, C.; Reginster, J. Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J. Bone Jt. Surg. Am. 2004, 86, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Paul, H.A.D.; Bargar, W.L.; Mittlestadt, B.; Musits, B.; Taylor, R.H.; Lzanzides, P.; Zuhars, J.; Williamson, B.; Hanson, W.M.; Kazanzides, P. Development of a surgical robot for cementless total hip arthroplasty. Clin. Orthop. Relat. Res. 1992, 285, 57–66. [Google Scholar] [CrossRef]
- Kayani, B.; Konan, S.; Ayuob, A.; Ayyad, S.; Haddad, F.S. The current role of robotics in total hip arthroplasty. EFORT Open Rev. 2019, 4, 618–625. [Google Scholar] [CrossRef]
- Emara, A.K.; Samuel, L.T.; Acuña, A.J.; Kuo, A.; Khlopas, A.; Kamath, A.F. Robotic-arm assisted versus manual total hip arthroplasty: Systematic review and meta-analysis of radiographic accuracy. Int. J. Med. Robot. Comput. Assist. Surg. 2021, 17, e2332. [Google Scholar] [CrossRef] [PubMed]
- Ng, N.; Gaston, P.; Simpson, P.M.; Macpherson, G.J.; Patton, J.T.; Clement, N.D. Robotic arm-assisted versus manual total hip arthroplasty: A systematic review and meta-analysis. Bone Jt. J. 2021, 103, 1009–1020. [Google Scholar] [CrossRef]
- Booth, R.E.; Sharkey, P.F.; Parvizi, J. Robotics in Hip and Knee Arthroplasty: Real Innovation or Marketing Ruse. J. Arthroplast. 2019, 34, 2197–2198. [Google Scholar] [CrossRef]
- Wasterlain, A.S.; Buza, J.A.; Thakkar, S.C.; Schwarzkopf, R.; Vigdorchik, J. Navigation and Robotics in Total Hip Arthroplasty. JBJS Rev. 2017, 5, e2. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.F.; Kazarian, G.S.; Jessop, G.W.; Makhdom, A. Robotic Technology in Orthopaedic Surgery. J. Bone Jt. Surg. Am. 2018, 100, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Hohmann, E.; Feldman, M.; Hunt, T.J.; Cote, M.P.; Brand, J.C. Research Pearls: How Do We Establish the Level of Evidence? Arthroscopy 2018, 34, 3271–3277. [Google Scholar] [CrossRef]
- Domb, B.G.; Chen, J.W.; Lall, A.C.; Perets, I.; Maldonado, D.R. Minimum 5-Year Outcomes of Robotic-assisted Primary Total Hip Arthroplasty With a Nested Comparison Against Manual Primary Total Hip Arthroplasty: A Propensity Score-Matched Study. J. Am. Acad. Orthop. Surg. 2020, 28, 847–856. [Google Scholar] [CrossRef]
- Perets, I.; Walsh, J.P.; Mu, B.H.; Mansor, Y.; Rosinsky, P.J.; Maldonado, D.R.; Lall, A.C.; Domb, B.G. Short-term Clinical Outcomes of Robotic-Arm Assisted Total Hip Arthroplasty: A Pair-Matched Controlled Study. Orthopedics 2021, 44, e236–e242. [Google Scholar] [CrossRef]
- Banchetti, R.; Dari, S.; Ricciarini, M.E.; Lup, D.; Carpinteri, F.; Catani, F.; Caldora, P. Comparison of conventional versus robotic-assisted total hip arthroplasty using the Mako System: An Italian retrospective study. J. Health Soc. Sci. 2018, 3, 37–48. [Google Scholar] [CrossRef]
- Ma, M.; Song, P.; Zhang, S.; Kong, X.; Chai, W. Does robot-assisted surgery reduce leg length discrepancy in total hip replacement? Robot-assisted posterior approach versus direct anterior approach and manual posterior approach: A propensity score-matching study. J. Orthop. Surg. Res. 2023, 18, 445. [Google Scholar] [CrossRef]
- Chai, W.; Xu, C.; Guo, R.-W.; Kong, X.-P.; Fu, J.; Tang, P.-F.; Chen, J.-Y. Does robotic-assisted computer navigation improve acetabular cup positioning in total hip arthroplasty for Crowe III/IV hip dysplasia? A propensity score case-match analysis. Int. Orthop. 2022, 46, 769–777. [Google Scholar] [CrossRef]
- Singh, V.; Realyvasquez, J.; Simcox, T.; Rozell, J.C.; Schwarzkopf, R.; Davidovitch, R.I. Robotics Versus Navigation Versus Conventional Total Hip Arthroplasty: Does the Use of Technology Yield Superior Outcomes? J. Arthroplast. 2021, 36, 2801–2807. [Google Scholar] [CrossRef]
- Bargar, W.L.; Parise, C.A.; Hankins, A.; Marlen, N.A.; Campanelli, V.; Netravali, N.A. Fourteen Year Follow-Up of Randomized Clinical Trials of Active Robotic-Assisted Total Hip Arthroplasty. J. Arthroplast. 2018, 33, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Hananouchi, T.; Sugano, N.; Nishii, T.; Nakamura, N.; Miki, H.; Kakimoto, A.; Yamamura, M.; Yoshikawa, H. Effect of robotic milling on periprosthetic bone remodeling. J. Orthop. Res. 2007, 25, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Fontalis, A.; Kayani, B.; Haddad, I.C.; Donovan, C.; Tahmassebi, J.; Haddad, F.S. Patient-Reported Outcome Measures in Conventional Total Hip Arthroplasty Versus Robotic-Arm Assisted Arthroplasty: A Prospective Cohort Study with Minimum 3 Years’ Follow-Up. J. Arthroplast. 2023, 38, S324–S329. [Google Scholar] [CrossRef]
- Nakamura, N.; Sugano, N.; Sakai, T.; Nakahara, I. Does Robotic Milling For Stem Implantation in Cementless THA Result in Improved Outcomes Scores or Survivorship Compared with Hand Rasping? Results of a Randomized Trial at 10 Years. Clin. Orthop. Relat. Res. 2018, 476, 2169–2173. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, S.; Sugano, N.; Nishii, T.; Miki, H.; Nakamura, N.; Yoshikawa, H. Comparison between hand rasping and robotic milling for stem implantation in cementless total hip arthroplasty. J. Arthroplast. 2006, 21, 957–966. [Google Scholar] [CrossRef]
- Honl, M.; Dierk, O.; Gauck, C.; Carrero, V.; Lampe, F.; Dries, S.; Quante, M.; Schwieger, K.; Hille, E.; Morlock, M.M. Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. J. Bone Jt. Surg. Am. 2003, 85, 1470–1478. [Google Scholar] [CrossRef]
- Lim, S.-J.; Ko, K.-R.; Park, C.-W.; Moon, Y.-W.; Park, Y.-S. Robot-assisted primary cementless total hip arthroplasty with a short femoral stem: A prospective randomized short-term outcome study. Comput. Aided Surg. 2015, 20, 41–46. [Google Scholar] [CrossRef]
- Jacofsky, D.J.; Allen, M. Robotics in Arthroplasty: A Comprehensive Review. J. Arthroplast. 2016, 31, 2353–2363. [Google Scholar] [CrossRef]
- Sweet, M.C.; Borrelli, G.J.; Manawar, S.S.; Miladore, N. Comparison of Outcomes After Robotic-Assisted or Conventional Total Hip Arthroplasty at a Minimum 2-Year Follow-up: A Systematic Review. JBJS Rev 2021, 9, e20. [Google Scholar] [CrossRef]
- Desai, A.S.; Dramis, A.; Board, T.N. Leg length discrepancy after total hip arthroplasty: A review of literature. Curr. Rev. Musculoskelet. Med. 2013, 6, 336–341. [Google Scholar] [CrossRef]
- Perets, I.; Mu, B.H.; A Mont, M.; Rivkin, G.; Kandel, L.; Domb, B.G. Current topics in robotic-assisted total hip arthroplasty: A review. HIP Int. 2020, 30, 118–124. [Google Scholar] [CrossRef]
- Nakamura, N.; Sugano, N.; Nishii, T.; Kakimoto, A.; Miki, H. A comparison between robotic-assisted and manual implantation of cementless total hip arthroplasty. Clin. Orthop. Relat. Res. 2010, 468, 1072–1081. [Google Scholar] [CrossRef]
- Smith, R.; Borukhov, I.; Hampp, E.; Thompson, M.; Byrd, Z.O.; Sodhi, N.; Mont, M.A.; Scholl, L. Comparison of Precision for Manual versus Robotic-Assisted Total Hip Arthroplasty Performed by Fellows. J. Hip Surg. 2020, 4, 117–123. [Google Scholar] [CrossRef]
- Illgen, R.L.; Bukowski, B.R.; Abiola, R.; Anderson, P.; Chughtai, M.; Khlopas, A.; A Mont, M. Robotic-Assisted Total Hip Arthroplasty: Outcomes at Minimum Two-Year Follow-Up. Surg. Technol. Int. 2017, 30, 365–372. [Google Scholar]
- Domb, B.G.; El Bitar, Y.F.; Sadik, A.Y.; Stake, C.E.; Botser, I.B. Comparison of robotic-assisted and conventional acetabular cup placement in THA: A matched-pair controlled study. Clin. Orthop. Relat. Res. 2014, 472, 329–336. [Google Scholar] [CrossRef]
- Redmond, J.M.; Gupta, A.; Hammarstedt, J.E.; Petrakos, A.E.; Finch, N.A.; Domb, B.G. The Learning Curve Associated with Robotic-Assisted Total Hip Arthroplasty. J. Arthroplast. 2015, 30, 50–54. [Google Scholar] [CrossRef]
- Kayani, B.; Konan, S.; Huq, S.S.; Ibrahim, M.S.; Ayuob, A.; Haddad, F.S. The learning curve of robotic-arm assisted acetabular cup positioning during total hip arthroplasty. HIP Int. 2021, 31, 311–319. [Google Scholar] [CrossRef]
- Bohl, D.D.; Ondeck, N.T.; Darrith, B.; Hannon, C.P.; Fillingham, Y.A.; Della Valle, C.J. Impact of Operative Time on Adverse Events Following Primary Total Joint Arthroplasty. J. Arthroplast. 2018, 33, 2256–2262.e4. [Google Scholar] [CrossRef]
Study | Bias Due to Confounding | Bias in Selection of Participants | Bias in Measurement of Intervention | Bias Due to Deviations from Intended Intervention | Bias Due to Missing Data | Bias in Measurement of Outcomes | Bias in Selection of the Reported Result | Overall Risk of Bias |
---|---|---|---|---|---|---|---|---|
Nishihara 2006 [24] | Moderate | Low | Moderate | Low | Low | Moderate | Moderate | Moderate |
Hananouchi 2007 [21] | Moderate | Low | Low | Low | Low | Moderate | Moderate | Moderate |
Bargar 2018 [20] | Moderate | Low | Low | Low | Moderate | Moderate | Moderate | Moderate |
Nakamura 2018 [23] | Serious | Low | Low | Low | Low | Moderate | Moderate | Serious |
Banchetti 2018 [16] | Moderate | Low | Low | Low | Moderate | Moderate | Moderate | Moderate |
Domb 2020 [14] | Low | Low | Low | Low | Low | Low | Low | Low |
Perets 2021 [15] | Low | Low | Low | Low | Low | Low | Low | Low |
Singh 2021 [19] | Low | Low | Low | Low | Low | Low | Low | Low |
Chai 2022 [18] | Low | Low | Low | Low | Low | Low | Low | Low |
Ma 2023 [17] | Moderate | Low | Low | Low | Low | Moderate | Moderate | Moderate |
Fontalis 2023 [22] | Moderate | Low | Low | Low | Moderate | Moderate | Moderate | Moderate |
Study | Randomization Process | Deviations from Intended Intervention | Missing Outcome Data | Measurement of the Outcome | Selection of the Reporter Result | Overall Risk of Bias |
---|---|---|---|---|---|---|
Honl 2003 [25] | Low | Some Concerns | Low | Some Concerns | Low | Some Concerns |
Lim 2015 [26] | Low | Low | Low | Some Concerns | Low | Some Concerns |
Study | Country | Level of Evidence | Study Design | Robot Used | Robotic Component Placed | Surgical Approach | Sample Size | |
---|---|---|---|---|---|---|---|---|
Robotic THA | Manual THA | |||||||
Honl 2003 [25] | Germany | I | RCT | ROBODOC | Femoral Stem | Anterolateral | 61 | 80 |
Nishihara 2006 [24] | Japan | II | Prospective | ROBODOC | Femoral Stem | Postero-lateral | 78 | 78 |
Hananouchi 2007 [21] | Japan | II | Prospective | ROBODOC | Femoral Stem | No report | 31 | 27 |
Lim 2015 [26] | South Korea | I | RCT | ROBODOC | Femoral Stem | No report | 24 | 25 |
Bargar 2018 [20] | United States | III | Retrospective from 2 previous RCT cohorts | ROBODOC | Femoral Stem | Postero-lateral | 45 | 22 |
Nakamura 2018 [23] | Japan | II | Prospective | ROBODOC | Femoral Stem | No report | 64 | 64 |
Banchetti 2018 [16] | Italy | III | Retrospective | Mako | Acetabular Cup | Postero-lateral | 56 | 51 |
Domb 2020 [14] | United States | III | Retrospective | Mako | Acetabular Cup | Direct anterior and Posterior | 66 | 66 |
Perets 2021 [15] | United States | III | Retrospective | Mako | Acetabular Cup | Direct anterior and Posterior | 85 | 85 |
Singh 2021 [19] | United States | III | Retrospective | Mako | Acetabular Cup | Direct anterior and Posterior | 135 | 929 |
Chai 2022 [18] | China | III | Retrospective | Mako | Acetabular Cup | Postero-lateral | 27 | 27 |
Ma 2023 [17] | China | III | Retrospective | Mako | Acetabular Cup | Robotic Posterior approach, Manual Direct Anterior | 40 | 40 |
Posterior Approach Robotic, Manual | 58 | 58 | ||||||
Fontalis 2023 [22] | United Kingdom | II | Prospective | Mako | Acetabular Cup | Posterior | 50 | 50 |
Study | Age | Male | Female | ||||
Robotic THA | Manual THA | Robotic THA | Manual THA | Robotic THA | Manual THA | ||
Honl 2003 [25] | 71.5 ± 7.1 | 70.7 ± 8.3 | 24 | 24 | 37 | 56 | |
Nishihara 2006 [24] | 58 | 58 | 14 | 14 | 64 | 64 | |
Hananouchi 2007 [21] | 56.7 ± 9.2 | 57.4 ± 7.1 | 0 | 0 | 31 | 27 | |
Lim 2015 [26] | 51.2 (19–67) | 45.6 (21–65) | 11 | 13 | 13 | 12 | |
Bargar 2018 [20] | 59.1 (8.2) | 59.8 (9.4) | 35 | 12 | 10 | 10 | |
Nakamura 2018 [23] | 57 ± 9 | 57 ± 9 | 12 | 11 | 52 | 53 | |
Banchetti 2018 [16] | 71.5 ± 7.1 | 70.7 ± 8.3 | 31 | 26 | 25 | 25 | |
Domb 2020 [14] | 59.01 ± 8.16 | 57.77 ± 10.50 | 24 | 25 | 42 | 41 | |
Perets 2021 [15] | 57.0 ± 9.1 | 56.6 ± 9.6 | 37 | 37 | 48 | 48 | |
Singh 2021 [19] | 61.62 ± 13.04 | 63.74 ± 10.04 | 59 | 401 | 76 | 528 | |
Chai 2022 [18] | 43.04 ± 8.92 | 44.56 ± 9.53 | 0 | 0 | 27 | 27 | |
Ma 2023 [17] | Robotic vs. DAA | 50.21 ± 10.89 (31–69) | 50.26 ± 9.35 (27–69) | 23 | 26 | 17 | 14 |
Robotic vs. Posterior | 51.15 ± 10. 96 (31–69) | 51.88 ± 8.90 (29–72) | 35 | 36 | 23 | 22 | |
Fontalis 2023 [22] | 67 (50–77) | 69 (49–80) | 23 | 25 | 27 | 25 |
Study | Outcome Measures | Robotic THA | Manual THA | p Value | |
---|---|---|---|---|---|
Honl 2003 [25] | Merle d’Aubigne | Pre-op | 9.7 ± 2.1 | 10.1 ± 1.9 | 0.37 |
2-year | 15.7 ± 2.2 | 14.9 ± 2.1 | 0.06 | ||
Mayo | Pre-op | 27.7 ± 15.6 | 28.1 ± 11.5 | 0.39 | |
2-year | 73.1 ± 7.3 | 65.5 ± 9.1 | 0.07 | ||
HHS | Pre-op | 44.4 ± 12.9 | 47.6 ± 11.5 | 0.87 | |
2-year | 85.9 ± 12.0 | 83.6 ± 11.9 | 0.06 | ||
Nishihara 2006 [24] | Merle d’Aubigne | Pre-op | 10.1 [6–14] | 9.8 [5–16] | 0.48 |
2-year | 17.4 [14–18] | 17.1 [14–18] | <0.05 | ||
Hananouchi 2007 [21] | Merle d’Aubigne | Pre-op | 9.5 ± 2.7 | 9.9 ± 2.3 | 0.67 |
2-year | 17.8 ± 0.6 | 17.7 ± 0.7 | 0.83 | ||
Lim 2015 [26] | HHS | Pre-op | 52 [37–61] | 55 [41–60] | 0.155 |
2-year | 93 [85–100] | 95 [89–100] | 0.512 | ||
WOMAC | Pre-op | 60 [44–85] | 61 [45–89] | 0.517 | |
2-year | 11 [6–17] | 12 [5–15] | 0.301 | ||
Bargar 2018 [20] | Vas pain | 4.69 ± 10.15 | 6.42 ± 10.89 | 0.112 | |
HSQ pain | 83.75 ± 20.4 | 72.65 ± 16.31 | 0.019 | ||
HSQ role physical | 81.39 ± 28.25 | 70.88 ± 35.23 | 0.317 | ||
HSQ physical functioning | 84.26 ± 26.71 | 75.49 ± 26.43 | 0.102 | ||
Total HSQ 12 | 683.52 ± 113.09 | 637.13 ± 104.53 | 0.087 | ||
Harris pain score | 41.81 ± 5.05 | 39.09 ± 7.37 | 0.025 | ||
Total Harris | 93.49 ± 8.77 | 89.5 ± 12.03 | 0.089 | ||
WOMAC | 8.44 ± 11.48 | 11.32 ± 11.92 | 0.034 | ||
UCLA | 6.09 ± 1.86 | 5.71 ± 1.45 | 0.087 | ||
Nakamura 2018 [23] | JOA | Pre-op | 48 ± 11 | 52 ± 15 | 0.07 |
10-year | 97 ± 5 | 96 ± 7 | 0.159 | ||
Banchetti 2018 [16] | HHS | Pre-op | 44.3 ± 8.1 | 46 ± 8.7 | 0.43 |
2-year | 85.6 ± 8.1 | 85.15 ± 7.7 | 0.72 | ||
WOMAC | Pre-op | 70.1 ± 14.8 | 68.9 ± 11.2 | 0.62 | |
2-year | 6.8 ± 11.1 | 6.9 ± 10.2 | 0.95 | ||
NRS | Pre-op | 8.6 ± 1.2 | 8 ± 1.1 | 0.084 | |
2-year | 0.82 ± 1.5 | 0.84 ± 1.5 | 0.9377 | ||
Domb 2020 [14] | HHS | 90.57 ± 13.46 | 84.62 ± 14.45 | <0.001 | |
FJS-12 | 82.69 ± 21.53 | 70.61 ± 26.74 | 0.002 | ||
VAS | 1.27 ± 2.20 | 1.07 ± 1.87 | 0.45 | ||
Satisfaction | 8.91 ± 2.00 | 8.52 ± 2.62 | 0.35 | ||
VR-12 Mental | 60.76 ± 5.94 | 58.97 ± 6.93 | 0.17 | ||
VR-12 Physical | 50.30 ± 8.83 | 45.92 ± 9.44 | 0.002 | ||
SF-12 Mental | 56.59 ± 5.60 | 56.20 ± 6.62 | 0.81 | ||
SF-12 Physical | 48.97 ± 9.21 | 44.01 ± 10.26 | 0.001 | ||
Perets 2021 [15] | HHS | 91.0 ± 12.4 | 84.4 ± 14.9 | p < 0.001 | |
FJS | 80.2 ± 21.3 | 68.6 ± 27.3 | p = 0.003 | ||
VAS | 9.0 ± 1.9 | 8.9 ± 1.9 | 0.591 | ||
Singh 2021 [19] | FJS-12 | 73.35 ± 25.33 | 74.63 ± 25.96 | 0.004 | |
FJS-12 posterior approach sub-analysis | 73.35 ± 25.33 | 71.51 ± 28.21 | 0.022 | ||
Chai 2022 [18] | HHS | Pre-op | 63.0 ± 13.0 | 58.4 ± 13.6 | 0.269 |
2-year | 94.5 ± 3.3 | 93.5 ± 3.9 | 0.313 | ||
WOMAC | 13.4 ± 7.4 | 15.1 ± 11.5 | 0.512 | ||
MA 2023 [17] | HHS (Robotic vs. DAA) | Pre-op | 55.98 ± 11.41 | 48.29 ± 19.81 | 0.081 |
2-year | 87.04 ± 7.06 | 85.33 ± 8.34 | 0.202 | ||
HHS (Robotic vs. Posterior Approach) | Pre-op | 51.56 ± 13.99 | 49.71 ± 21.80 | 0.708 | |
2-year | 89.38 ± 6.81 | 85.33 ± 8.81 | 0.019 | ||
Fontalis 2023 [22] | OHS (Oxford Hip Score) | Pre-op | 22.6 ± 8.8 | 21 ± 7 | 0.312 |
3-year | 42 [37–43.25] | 41 [37.5–43] | 0.914 | ||
UCLA | Pre-op | 4 [3–5] | 4 [3–4] | 0.994 | |
3-year | 7.5 [6–9] | 7 [6–8] | 0.381 | ||
FJS (Forgotten Joint Score) | Pre-op | 52.3 ± 9.5 | 53.8 ± 8.8 | 0.41 | |
3-year | 89 [82.75–92] | 86 [80–89] | 0.065 |
Study | Complications | Dislocations | Revision | Limb Length Discrepancy | |
---|---|---|---|---|---|
Robotic THA | Manual THA | ||||
Honl 2003 [25] | Nerve palsy, 4 (7%). Prolonged wound healing, 4 (7%). DVT, 3 (5%). Heterotopic ossification, 8 (10%). | Nerve palsy (1%). Prolonged wound healing, 3 (4%). DVT, 3 (4%). Heterotopic ossification, 6 (10%). | rTHA, 11 (18%) mTHA, 3 (p < 0.001) | Infection: mTHA, 2 (3%) rTHA, 9 (15%) (p = 0.007) Non-infection: mTHA 0 rTHA 9 (15%) (p < 0.001) | rTHA resulted in significantly less inequality and variance. (p < 0.001) |
Nishihara 2006 [24] | No Complications | Intraoperative femoral fractures, 5 (Statistically significant) | Not reported | Not reported | Not reported |
Hananouchi 2007 [21] | Heterotopic ossification, 1 patient. | Intraoperative femoral fractures, 2 | Not reported | No revisions | Not reported |
Lim 2015 [26] | No complications | Intraoperative femoral fractures, 2 | Not reported | Not reported | mTHA, 2 LLD outliers |
Bargar 2018 [20] | No complications | No complications | No dislocations | mTHA, 6 rTHA, 4 (post-operative periprosthetic fracture; polyethylene wear) | Not reported |
Nakamura 2018 [23] | Heterotopic ossification, 19 (30%) | Heterotopic ossification, 12 (19%) | Not reported | No revisions | Not reported |
Banchetti 2018 [16] | Not reported | Not reported | Not reported | Not reported | Not reported |
Domb 2020 [14] | Superficial infections, 2. Deep vein thrombosis, 1. | Minor numbness in the thigh, 3. Sciatic nerve injury, 1. | rTHA, 1 | No significance | No significance |
Perets 2021 [15] | Superficial infections, 6. DVT, 1. | Superficial infection, 2. lateral femoral cutaneous nerve numbness, 2. Numbness around the incision scar, 1. Calcar split, 1. | Not reported | rTHA, 1 (1.1%) mTHA, 3 (3.5%) | Significantly less discrepancy in the robotic group |
Singh 2021 [19] | Not reported | Not reported | Not reported | No significance 90-day all-cause revisions | Not reported |
Chai 2022 [18] | No complications | Wound exudation, 2. | No dislocations | Not reported | No significance |
MA 2023 [17] | Not reported | Not reported | Not reported | Not reported | Significant differences in postoperative LLD between rTHA and mTHA posterior approach. |
Fontalis 2023 [22] | Not reported | Not reported | No dislocations | No revision surgeries | Not reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ron, I.; Shapira, J.; Kahana-Rojkind, A.H.; Quesada, R.; Domb, B.G. Comparison of Patient-Reported Outcome Measures Between Robotic-Assisted and Manual Total Hip Arthroplasty: A Systematic Review with a Minimum 2-Year Follow-Up. J. Clin. Med. 2025, 14, 6036. https://doi.org/10.3390/jcm14176036
Ron I, Shapira J, Kahana-Rojkind AH, Quesada R, Domb BG. Comparison of Patient-Reported Outcome Measures Between Robotic-Assisted and Manual Total Hip Arthroplasty: A Systematic Review with a Minimum 2-Year Follow-Up. Journal of Clinical Medicine. 2025; 14(17):6036. https://doi.org/10.3390/jcm14176036
Chicago/Turabian StyleRon, Itay, Jacob Shapira, Ady H. Kahana-Rojkind, Roger Quesada, and Benjamin G. Domb. 2025. "Comparison of Patient-Reported Outcome Measures Between Robotic-Assisted and Manual Total Hip Arthroplasty: A Systematic Review with a Minimum 2-Year Follow-Up" Journal of Clinical Medicine 14, no. 17: 6036. https://doi.org/10.3390/jcm14176036
APA StyleRon, I., Shapira, J., Kahana-Rojkind, A. H., Quesada, R., & Domb, B. G. (2025). Comparison of Patient-Reported Outcome Measures Between Robotic-Assisted and Manual Total Hip Arthroplasty: A Systematic Review with a Minimum 2-Year Follow-Up. Journal of Clinical Medicine, 14(17), 6036. https://doi.org/10.3390/jcm14176036