Non HIV-Associated Buffalo Hump as a Clinical Marker of Metabolic Disease
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Representative Case Presentations
3.1.1. Case 1
3.1.2. Case 2
3.1.3. Case 3
3.2. Statistical Findings
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HIV | Human Immunodeficiency Virus |
BMI | Body Mass Index |
MRI | Magnetic Resonance Imaging |
SPSS | Statistical Package for the Social Sciences |
WHO | World Health Organization |
LFT | Liver Function Test |
NAFLD | Nonalcoholic Fatty Liver Disease |
References
- Carr, A. HIV protease inhibitor-related lipodystrophy syndrome. Clin. Infect. Dis. 2000, 30 (Suppl. S2), S135–S142. [Google Scholar] [CrossRef] [PubMed]
- Gold, D.R.; Annino, D.J., Jr. HIV-associated cervicodorsal lipodystrophy: Etiology and management. Laryngoscope 2005, 115, 791–795. [Google Scholar] [CrossRef]
- Sharma, D.; Bitterly, T.J. Buffalo hump in HIV patients: Surgical management with liposuction. J. Plast. Reconstr. Aesthetic Surg. 2009, 62, 946–949. [Google Scholar] [CrossRef]
- Hadigan, C.; Rabe, J.; Meininger, G.; Aliabadi, N.; Breu, J.; Grinspoon, S. Inhibition of lipolysis improves insulin sensitivity in protease inhibitor-treated HIV-infected men with fat redistribution. Am. J. Clin. Nutr. 2003, 77, 490–494. [Google Scholar] [CrossRef]
- Carr, A.; Samaras, K.; Thorisdottir, A.; Kaufmann, G.R.; Chisholm, D.J.; Cooper, D.A. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: A cohort study. Lancet 1999, 353, 2093–2099. [Google Scholar] [CrossRef]
- Guaraldi, G.; Orlando, G.; Squillace, N.; De Santis, G.; Pedone, A.; Spaggiari, A.; De Fazio, D.; Vandelli, M.; De Paola, M.; Bertucelli, C.; et al. Multidisciplinary approach to the treatment of metabolic and morphologic alterations of HIV-related lipodystrophy. HIV Clin. Trials 2006, 7, 97–106. [Google Scholar] [CrossRef]
- Yun, J.; Jung, K.; Park, J.H.; Bang, J.H.; Kim, N.; Roh, E.Y.; Shin, S.; Yoon, J.H.; Park, H. HIV-1 Drug Resistance Mutations and Their Clinical Implications in South Korea. Lab. Med. Online 2022, 12, 100–108. [Google Scholar] [CrossRef]
- Guaraldi, G.; Baraboutis, I.G. Evolving perspectives on HIV-associated lipodystrophy syndrome: Moving from lipodystrophy to non-infectious HIV co-morbidities. J. Antimicrob. Chemother. 2009, 64, 437–440. [Google Scholar] [CrossRef]
- Zheng, S.; Teng, L.; Wang, X.; Yang, F.; He, X.; Yeoh, S.; Qi, F.; Liu, J. Dissector-Assisted Liposuction for Dorsocervical Fibro-Lipodystrophy (Buffalo Hump): Results from 57 Patients. Plast. Reconstr. Surg. 2025. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Mahmoudi, P.; Zamani, F.; Moradi, S. Neck circumference and metabolic syndrome: A cross-sectional population-based study. Prim. Care Diabetes 2021, 15, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Fardet, L.; Cabane, J.; Lebbé, C.; Morel, P.; Flahault, A. Incidence and risk factors for corticosteroid-induced lipodystrophy: A prospective study. J. Am. Acad. Dermatol. 2007, 57, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Villarroya, F.; Domingo, P.; Giralt, M. Lipodystrophy in HIV 1-infected patients: Lessons for obesity research. Int. J. Obes. 2007, 31, 1763–1776. [Google Scholar] [CrossRef] [PubMed]
- Patel, L.M.; Lambert, P.J.; Gagna, C.E.; Maghari, A.; Lambert, W.C. Cutaneous signs of systemic disease. Clin. Dermatol. 2011, 29, 511–522. [Google Scholar] [CrossRef]
- Barton, N.; Moore, R.; Prasad, K.; Evans, G. Excisional lipectomy versus liposuction in HIV-associated lipodystrophy. Arch. Plast. Surg. 2021, 48, 685–690. [Google Scholar] [CrossRef]
- Misra, A.; Garg, A. Clinical features and metabolic derangements in acquired generalized lipodystrophy: Case reports and review of the literature. Medicine 2003, 82, 129–146. [Google Scholar] [CrossRef]
- Mann, J.P.; Savage, D.B. What lipodystrophies teach us about the metabolic syndrome. J. Clin. Investig. 2019, 129, 4009–4021. [Google Scholar] [CrossRef]
- Kim, S.; Park, E. Differences in Height, Weight, BMI, and Obesity Rate Between 2018 Community Health and Korea National Health and Nutrition Examination Surveys. J. Health Inform. Stat. 2020, 45, 281–287. [Google Scholar] [CrossRef]
- Kim, H.C.; Lee, H.; Lee, H.H.; Ahn, S.V.; Lee, J.M.; Cheon, D.Y.; Jhee, J.H.; Yoon, M.; Shin, M.H.; Heo, J.; et al. Korea Hypertension Fact Sheet 2024: Nationwide population-based analysis with a focus on young adults. Clin. Hypertens. 2025, 31, e11. [Google Scholar] [CrossRef] [PubMed]
- Park, S.E.; Ko, S.-H.; Kim, J.Y.; Kim, K.; Moon, J.H.; Kim, N.H.; Han, K.D.; Choi, S.H.; Cha, B.S. Diabetes Fact Sheets in Korea 2024. Diabetes Metab. J. 2025, 49, 24–33. [Google Scholar] [CrossRef]
- Bindlish, S.; Presswala, L.S.; Schwartz, F. Lipodystrophy: Syndrome of severe insulin resistance. Postgrad. Med. 2015, 127, 511–516. [Google Scholar] [CrossRef]
- Huang-Doran, I.; Sleigh, A.; Rochford, J.J.; O’Rahilly, S.; Savage, D.B. Lipodystrophy: Metabolic insights from a rare disorder. J. Endocrinol. 2010, 207, 245–255. [Google Scholar] [CrossRef]
- Chen, D.; Misra, A.; Garg, A. Clinical review 153: Lipodystrophy in human immunodeficiency virus-infected patients. J. Clin. Endocrinol. Metab. 2002, 87, 4845–4856. [Google Scholar] [CrossRef]
- Ali, A.T.; Ferris, W.F.; Naran, N.H.; Crowther, N.J. Insulin resistance in the control of body fat distribution: A new hypothesis. Horm. Metab. Res. 2011, 43, 77–80. [Google Scholar] [CrossRef]
- Bavaresco, A.; Mazzeo, P.; Lazzara, M.; Barbot, M. Adipose tissue in cortisol excess: What Cushing’s syndrome can teach us? Biochem. Pharmacol. 2024, 223, 116137. [Google Scholar] [CrossRef]
- Sahin, S.B.; Sezgin, H.; Ayaz, T.; Uslu Gur, E.; Ilkkilic, K. Routine Screening for Cushing’s Syndrome Is Not Required in Patients Presenting with Obesity. ISRN Endocrinol. 2013, 2013, 321063. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.J.; Araujo-Vilar, D.; Cheung, P.T.; Dunger, D.; Garg, A.; Jack, M.; Mungai, L.; Oral, E.A.; Patni, N.; Rother, K.I.; et al. The Diagnosis and Management of Lipodystrophy Syndromes: A Multi-Society Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 4500–4511. [Google Scholar] [CrossRef]
- Davison, S.P.; Timpone, J., Jr.; Hannan, C.M. Surgical algorithm for management of HIV lipodystrophy. Plast. Reconstr. Surg. 2007, 120, 1843–1858. [Google Scholar] [CrossRef]
- Misra, A.; Jaiswal, A.; Shakti, D.; Wasir, J.; Vikram, N.K.; Pandey, R.M.; Kondal, D.; Bhushan, B. Novel phenotypic markers and screening score for the metabolic syndrome in adult Asian Indians. Diabetes Res. Clin. Pract. 2008, 79, e1–e5. [Google Scholar] [CrossRef]
- Hudd, T.R.; Chugh, P.; Zaiken, K. A unique case of buffalo hump after prolonged use of spironolactone. J. Am. Pharm. Assoc. 2018, 58, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Lyu, H.; Xu, B.; Lee, J.H. Madelung Disease Epidemiology and Clinical Characteristics: A Systemic Review. Aesthetic Plast. Surg. 2021, 45, 977–986. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 12) | |
---|---|
Mean Age (years) | 56.92 ± 16.69 |
Sex (Male:Female) | 2:10 |
Mean BMI (kg/m2) | 30.15 ± 4.59 |
Hypertension (%) | 8 (66.7%) |
Diabetes Mellitus (%) | 6 (50%) |
Abnormal LFT (%) | 8 (66.7%) |
Hyperlipidemia (%) | 9 (75%) |
Variables | Newly Diagnosed (n = 3) | Others (n = 9) | p-Value |
---|---|---|---|
Mean Age (years) | 45.67 ± 21.46 | 60.67 ± 14.31 | 0.194 |
Female (%) | 3 (100%) | 7 (77.8%) | |
Mean BMI (kg/m2) | 32.44 ± 2.39 | 29.39 ± 4.99 | 0.145 |
Hypertension (%) | 2 (66.7%) | 6 (66.7%) | 1.000 |
Diabetes Mellitus (%) | 2 (66.7%) | 4 (44.4%) | 1.000 |
Abnormal LFT (%) | 3 (100%) | 5 (55.6%) | 1.000 |
Hyperlipidemia (%) | 3 (100%) | 6 (66.7%) | 0.509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, N.-H.; Lim, B.J.; Shin, J.Y.; Chung, Y.K.; Roh, S.-G. Non HIV-Associated Buffalo Hump as a Clinical Marker of Metabolic Disease. J. Clin. Med. 2025, 14, 5997. https://doi.org/10.3390/jcm14175997
Lee N-H, Lim BJ, Shin JY, Chung YK, Roh S-G. Non HIV-Associated Buffalo Hump as a Clinical Marker of Metabolic Disease. Journal of Clinical Medicine. 2025; 14(17):5997. https://doi.org/10.3390/jcm14175997
Chicago/Turabian StyleLee, Nae-Ho, Beom Jin Lim, Jin Yong Shin, Yoon Kyu Chung, and Si-Gyun Roh. 2025. "Non HIV-Associated Buffalo Hump as a Clinical Marker of Metabolic Disease" Journal of Clinical Medicine 14, no. 17: 5997. https://doi.org/10.3390/jcm14175997
APA StyleLee, N.-H., Lim, B. J., Shin, J. Y., Chung, Y. K., & Roh, S.-G. (2025). Non HIV-Associated Buffalo Hump as a Clinical Marker of Metabolic Disease. Journal of Clinical Medicine, 14(17), 5997. https://doi.org/10.3390/jcm14175997