Predictors of Metabolic Syndrome in Polish Women—The Role of Body Composition and Sociodemographic Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Sociodemographic and Lifestyle Data
2.3. Anthropometric Measurements
2.4. Biochemical Measurements and Blood Pressure Measurements
2.5. Criteria for Diagnosis of MetS
2.6. Statistical Analysis
2.7. Ethics Approval and Consent to Participate
3. Results
4. Discussion
4.1. Limitations
4.2. Strengths
4.3. Future Research Directions and Practical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- World Health Organization, European, Regional, Obesity Report. 2022, pp. 1–85. Available online: https://iris.who.int/bitstream/handle/10665/353747/9789289057738-eng.pdf?sequence=1 (accessed on 25 June 2025).
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Pigeot, I.; Ahrens, W. Epidemiology of metabolic syndrome. Pflug. Arch. 2025, 477, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Or, B.; Tsoi, M.F.; Cheung, C.L.; Cheung, B.M.Y. Prevalence of metabolic syndrome in the United States National Health and Nutrition Examination Survey 2011-18. Postgrad. Med. J. 2023, 99, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic distribution of metabolic syndrome and its components in the general adult population:, A meta-analysis of global data from 28 million individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef] [PubMed]
- Pucci, G.; Alcidi, R.; Tap, L.; Battista, F.; Mattace-Raso, F.; Schillaci, G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol. Res. 2017, 120, 34–42. [Google Scholar] [CrossRef]
- Wojtyniak, B.; Goryński, P. Health Status of Polish Population and Its Determinants 2022. National Institute of Public Health NIH-National Research Institute: Warsaw, Poland, 2022. Available online: https://www.pzh.gov.pl/download/21915/ (accessed on 26 June 2025).
- Baćmaga, G.A.; Dąbrowska, N.; Cicha-Mikołajczyk, A.; Bandosz, P.; Kozakiewicz, K.; Pająk, A.; Kwaśniewska, M.A.; Niklas, A.; Prejbisz, A.; Dobrowolski, P. Prevalence of the metabolic syndrome in Poland based on the new 2022 definition. Arter. Hypertens. 2023, 27, 215–222. [Google Scholar] [CrossRef]
- Lobstein, T.; Jackson-Leach, R.; Powis, J.; Brinsden, H.; Gray, M. World Obesity Atlas. 2023. Available online: https://data.worldobesity.org/publications/WOF-Obesity-Atlas-V5.pdf (accessed on 26 June 2025).
- Kapoor, N.; Arora, S.; Kalra, S. Gender Disparities in People Living with Obesity—An Unchartered Territory. J. Midlife Health. 2021, 12, 103–107. [Google Scholar] [CrossRef]
- Ball, K.; Mishra, G.D.; Crawford, D. Social factors and obesity: An investigation of the role of health behaviours. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 394–403. [Google Scholar] [CrossRef]
- Garawi, F.; Devries, K.; Thorogood, N.; Uauy, R. Global differences between women and men in the prevalence of obesity: Is there an association with gender inequality? Eur. J. Clin. Nutr. 2014, 68, 1101–1106. [Google Scholar] [CrossRef]
- Rocha, T.; Melson, E.; Zamora, J.; Fernandez-Felix, B.M.; Arlt, W.; Thangaratinam, S. Sex-Specific Obesity and Cardiometabolic Disease Risks in Low- and Middle-Income Countries: A Meta-Analysis Involving 3 916 276 Individuals. J. Clin. Endocrinol. Metab. 2024, 109, 1145–1153. [Google Scholar] [CrossRef]
- Censin, J.C.; Peters, S.A.E.; Bovijn, J.; Ferreira, T.; Pulit, S.L.; Mägi, R.; Mahajan, A.; Holmes, M.V.; Lindgren, C.M. Causal relationships between obesity and the leading causes of death in women and men. PLoS Genet. 2019, 15, e1008405. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Santacruz, E.; Luque-Ramírez, M.; Botella Carretero, J.I. Prevalence of ‘obesity-associated gonadal dysfunction’ in severely obese men and women and its resolution after bariatric surgery: A systematic review and meta-analysis. Hum. Reprod. Update 2017, 23, 390–408. [Google Scholar] [CrossRef] [PubMed]
- Bentley-Lewis, R.; Koruda, K.; Seely, E.W. The metabolic syndrome in women. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Chaquila, J.A.; Ramirez-Jeri, G.; Miranda-Torvisco, F.; Baquerizo-Sedano, L.; Aparco, J.P. Predictive ability of anthropometric indices for risk of developing metabolic syndrome: A cross-sectional study. J. Int. Med. Res. 2024, 52, 3000605241300017. [Google Scholar] [CrossRef]
- Li, L.; Xiong, L.; Liu, Z.; Zhang, L. Metabolic syndrome patterns by gender in major depressive disorder. PLoS ONE 2024, 19, e0313629. [Google Scholar] [CrossRef]
- Galvão, N.M.S.; Matos, S.M.A.; Almeida, M.D.C.C.; Gabrielli, L.; Barreto, S.M.; Aquino, E.M.L.; Schmidt, M.I.; Amorim, L.D.A.F. Patterns of metabolic syndrome and associated factors in women from the ELSA-Brasil: A latent class analysis approach. Cad. Saude Publica 2023, 39, e00039923. [Google Scholar] [CrossRef]
- Nichols, A.R.; Chavarro, J.E.; Oken, E. Reproductive risk factors across the female lifecourse and later metabolic health. Cell Metab. 2024, 36, 240–262. [Google Scholar] [CrossRef]
- Choe, S.A.; Yoon, N.H.; Yoo, S.; Kim, H. Gender-differences in predictors for time to metabolic syndrome resolution: A secondary analysis of a randomized controlled trial study. PLoS ONE 2020, 15, e0234035. [Google Scholar] [CrossRef]
- Zielińska, M.; Łuszczki, E.; Szymańska, A.; Dereń, K. Food addiction and the physical and mental health status of adults with overweight and obesity. PeerJ 2024, 12, e17639. [Google Scholar] [CrossRef]
- Łuszczki, E.; Zielińska, M.; Oleksy, Ł.; Stolarczyk, A.; Dereń, K. Age-Related Differences in Anthropometric and Lifestyle Factors Linked to Metabolic Syndrome in Women with Overweight and Obesity: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2025, 18, 1765–1781. [Google Scholar] [CrossRef]
- Jezewska-Zychowicz, M.; Gawecki, J.; Wadolowska, L.; Czarnocinska, J.; Galinski, G.; Kollajtis-Dolowy, A.; Roszkowski, W.; Wawrzyniak, A.; Przybylowicz, K.; Krusinska, B.; et al. Dietary habits and nutrition beliefs questionnaire for people 15–65 years old, version 1.1. interviewer administered questionnaire. In Dietary Habits and Nutrition Beliefs Questionnaire and the Manual for Developing of Nutritional Data; Polish Academy of Sciences: Olsztyn, Poland, 2018; pp. 3–20. [Google Scholar]
- Bergier, J.; Wasilewska, M.; Szepeluk, A. Global physical activity questionnaire (GPAQ)—The Polish version. Health Probl. Civilization 2019, 13, 1–8. [Google Scholar] [CrossRef]
- Bull, F.C.; Maslin, T.S.; Armstrong, T. Global physical activity questionnaire (GPAQ): Nine country reliability and validity study. J. Phys. Act. Health 2009, 6, 790–804. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Physical Activity Questionnaire (GPAQ) Analysis Guide. 2012. Available online: https://cdn.who.int/media/docs/default-source/ncds/ncd-surveillance/gpaq-analysis-guide.pdf?sfvrsn=1e83d571_2 (accessed on 28 June 2025).
- von Hurst, P.; Walsh, D.; Conlon, C.; Ingram, M.; Kruger, R.; Stonehouse, W. Validity and reliability of bioelectrical impedance analysis to estimate body fat percentage against air displacement plethysmography and dual-energy X-ray absorptiometry. Nutr. Diet. 2016, 73, 197–204. [Google Scholar] [CrossRef]
- Andreacchi, A.T.; Griffith, L.E.; Guindon, G.E.; Mayhew, A.; Bassim, C.; Pigeyre, M.; Stranges, S.; Anderson, L.N. Body mass index, waist circumference, waist-to-Hip ratio, and body fat in relation to health care use in the Canadian longitudinal study on aging. Int. J. Obes. 2021, 45, 666–676. [Google Scholar] [CrossRef]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Seixas, R.; Gálvez, J.M.; Climent, V. Cardiovascular risk factors: Is the metabolic syndrome related to aging? Epidemiology in a Portuguese population. Diabetes Metab. Syndr. 2018, 12, 885–891. [Google Scholar] [CrossRef]
- Fatahi, A.; Doosti-Irani, A.; Cheraghi, Z. Prevalence and Incidence of Metabolic Syndrome in Iran: A Systematic Review and Meta-Analysis. Int. J. Prev. Med. 2020, 11, 64. [Google Scholar] [CrossRef]
- Gouveia, É.R.; Gouveia, B.R.; Marques, A.; Peralta, M.; França, C.; Lima, A.; Campos, A.; Jurema, J.; Kliegel, M.; Ihle, A. Predictors of Metabolic Syndrome in Adults and Older Adults from Amazonas, BrazilInt. J. Environ. Res. Public Health 2021, 18, 1303. [Google Scholar] [CrossRef]
- Szostak-Węgierek, D.; Waśkiewicz, A.; Piotrowski, W.; Stepaniak, U.; Pająk, A.; Kwaśniewska, M.; Nadrowski, P.; Niklas, A.; Puch-Walczak, A.; Drygas, W. Metabolic syndrome and its components in Polish women of childbearing age: A nationwide study. BMC Public Health 2017, 18, 15. [Google Scholar] [CrossRef]
- Rajca, A.; Wojciechowska, A.; Śmigielski, W.; Drygas, W.; Piwońska, A.; Pająk, A.; Tykarski, A.; Kozakiewicz, K.; Kwaśniewska, M.; Zdrojewski, T. Increase in the prevalence of metabolic syndrome in Poland: Comparison of the results of the WOBASZ (2003–2005) and WOBASZ II. (2013–2014) studies. Pol. Arch. Intern. Med. 2021, 131, 520–526. [Google Scholar] [CrossRef]
- Chung, H.Y.; Kim, D.H.; Lee, E.K.; Chung, K.W.; Chung, S.; Lee, B.; Seo, A.Y.; Chung, J.H.; Jung, Y.S.; Im, E.; et al. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis. 2019, 10, 367–382. [Google Scholar] [CrossRef]
- Pataky, M.W.; Young, W.F.; Nair, K.S. Hormonal and Metabolic Changes of Aging and the Influence of Lifestyle Modifications. Mayo Clin. Proc. 2021, 96, 788–814. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, Y.; Luo, Y.; Song, Y.; Xiong, G.; Ma, Y.; Sun, X.; Kan, C. Metabolic diseases and healthy aging: Identifying environmental and behavioral risk factors and promoting public health. Front. Public Health 2023, 11, 1253506. [Google Scholar] [CrossRef]
- Blanquet, M.; Legrand, A.; Pélissier, A.; Mourgues, C. Socio-economics status and metabolic syndrome: A meta-analysis. Diabetes Metab. Syndr. 2019, 13, 1805–1812. [Google Scholar] [CrossRef]
- Yi, Y.; An, J. Sex Differences in Risk Factors for Metabolic Syndrome in the Korean Population. Int. J. Environ. Res. Public Health 2020, 17, 9513. [Google Scholar] [CrossRef] [PubMed]
- Witkam, R.; Gwinnutt, J.M.; Humphreys, J.; Gandrup, J.; Cooper, R.; Verstappen, S.M.M. Do associations between education and obesity vary depending on the measure of obesity used? A systematic literature review and meta-analysis. SSM Popul. Health 2021, 15, 100884. [Google Scholar] [CrossRef] [PubMed]
- Margolis, R. Educational differences in healthy behavior changes and adherence among middle-aged Americans. J. Health Soc. Behav. 2013, 54, 353–368. [Google Scholar] [CrossRef] [PubMed]
- de Mestral, C.; Mayén, A.L.; Petrovic, D.; Marques-Vidal, P.; Bochud, M.; Stringhini, S. Socioeconomic Determinants of Sodium Intake in Adult Populations of High-Income Countries: A Systematic Review and Meta-Analysis. Am. J. Public Health 2017, 107, e1–e12. [Google Scholar] [CrossRef]
- Schoger, L.I. Coping with work-related stressors: Does education reduce work-related stress? J. Public Health 2025, 33, 1123–1134. [Google Scholar] [CrossRef]
- Paczkowska, A.; Hoffmann, K.; Kus, K.; Kopciuch, D.; Zaprutko, T.; Ratajczak, P.; Michalak, M.; Nowakowska, E.; Bryl, W. Impact of patient knowledge on hypertension treatment adherence and efficacy: A single-centre study in Poland. Int. J. Med. Sci. 2021, 18, 852–860. [Google Scholar] [CrossRef]
- Kim, H.; Cho, Y. Factors Associated with Metabolic Syndrome among Middle-Aged Women in their 50s: Based on National Health Screening Data. Int. J. Environ. Res. Public Health 2020, 17, 3008. [Google Scholar] [CrossRef]
- Nowicki, G.J.; Ślusarska, B.; Naylor, K.; Prystupa, A.; Rudnicka-Drożak, E.; Halyuk, U.; Pokotylo, P. The Relationship Between the Metabolic Syndrome and the Place of Residence in the Local Community on the Example of the Janów Lubelski District in Eastern Poland: A Population-Based Study. Diabetes Metab. Syndr. Obes. 2021, 14, 2041–2056. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, C.; Ming, J.; Xu, S.; Wang, Y.; Yao, X.; Jia, A.; Li, H.; Sui, J.; Qin, J.; et al. Rural, urban and suburban differences in the prevalence of MetS in individuals aged ≥ 50 years in Northwest China. Front. Public Health 2025, 13, 1589196. [Google Scholar] [CrossRef]
- Nsabimana, P.; Sombié, O.O.; Pauwels, N.S.; Boynito, W.G.; Tariku, E.Z.; Vasanthakaalam, H.; De Henauw, S.; Abbeddou, S. Association between urbanization and metabolic syndrome in low- and middle-income countries: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Zila-Velasque, J.P.; Grados-Espinoza, P.; Challapa-Mamani, M.R.; Sánchez-Alcántara, F.; Cedillo-Balcázar, J.; Cs, A.D.; Hernandez-Bustamante, E.A.; Tejada-Flores, J.; Piano Suárez, A.; Pacheco-Mendoza, J.; et al. Prevalence of metabolic syndrome and its components according to altitude levels: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 27581. [Google Scholar] [CrossRef] [PubMed]
- Gafirita, J.; Musarurwa, C.; Ntaganda, E.; Uwimana, M.; Hirwa, A.D.; Mukahigiro, M.; Twizerimana, L.; Nshimirimana, M.L.; Rulisa, S.; Bavuma, C.; et al. Prevalence of MetS and its components among rural and urban populations at a provincial hospital in Northern Rwanda: A cross-sectional study. Pan Afr. Med. J. 2025, 50, 43. [Google Scholar] [CrossRef] [PubMed]
- Raczkiewicz, D.; Owoc, A.; Wierzbińska-Stępniak, A.; Bojar, I. Metabolic syndrome in peri-and postmenopausal women performing intellectual work. Ann. Agric. Environ. Med. 2018, 25, 610–615. [Google Scholar] [CrossRef]
- Roeters van Lennep, J.E.; Tokgözoğlu, L.S.; Badimon, L.; Dumanski, S.M.; Gulati, M.; Hess, C.N.; Holven, K.B.; Kavousi, M.; Kayıkçıoğlu, M.; Lutgens, E.; et al. Women, lipids, and atherosclerotic cardiovascular disease: A call to action from the European Atherosclerosis Society. Eur. Heart J. 2023, 44, 4157–4173. [Google Scholar] [CrossRef]
- Katsi, V.; Argyriou, N.; Fragoulis, C.; Tsioufis, K. The Role of Non-HDL Cholesterol and Apolipoprotein B in Cardiovascular Disease: A Comprehensive Review. J. Cardiovasc. Dev. Dis. 2025, 12, 256. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Maulik, S.G. To Study the Impact of Stress Management Programme on Lipid Profile in Young Female School Teachers: A Longitudinal Interventional Study. Int. J. Res. Rev. 2019, 6, 175–183. [Google Scholar]
- Assadi, S.N. What are the effects of psychological stress and physical work on blood lipid profiles? Medicine 2017, 96, e6816. [Google Scholar] [CrossRef] [PubMed]
- Limbers, C.A.; McCollum, C.; Ylitalo, K.R.; Hebl, M. Physical activity in working mothers: Running low impacts quality of life. Womens Health 2020, 16, 1745506520929165. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Wang, D.; Zhu, Q.; Luo, L.; Zhang, T. Prevalence of dyslipidemia and associated factors in sedentary occupational population from Shanghai: A cross-sectional study. Arch. Public Health 2024, 82, 21. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.; Ramachandran, H.J.; Er, J.B.T.; Ng, P.; Tam, W.W.S.; Jiang, Y. The predictors of health-enhancing physical activity among working women in Singapore two years into COVID-19: A cross-sectional study. Sci. Rep. 2022, 12, 21493. [Google Scholar] [CrossRef]
- Escoto, K.H.; Laska, M.N.; Larson, N.; Neumark-Sztainer, D.; Hannan, P.J. Work hours and perceived time barriers to healthful eating among young adults. Am. J. Health Behav. 2012, 36, 786–796. [Google Scholar] [CrossRef]
- Van Ancum, J.M.; Jonkman, N.H.; van Schoor, N.M.; Tressel, E.; Meskers, C.G.M.; Pijnappels, M.; Maier, A.B. Predictors of metabolic syndrome in community-dwelling older adults. PLoS ONE 2018, 13, e0206424. [Google Scholar] [CrossRef]
- Eyvazlou, M.; Hosseinpouri, M.; Mokarami, H.; Gharibi, V.; Jahangiri, M.; Cousins, R.; Nikbakht, H.A.; Barkhordari, A. Prediction of metabolic syndrome based on sleep and work-related risk factors using an artificial neural network. BMC Endocr. Disord. 2020, 20, 169. [Google Scholar] [CrossRef]
- Suliga, E.; Kozieł, D.; Głuszek, S. Prevalence of metabolic syndrome in normal weight individuals. Ann. Agric. Environ. Med. 2016, 23, 631–635. [Google Scholar] [CrossRef]
- Bartosiewicz, A.; Łuszczki, E.; Nagórska, M.; Oleksy, Ł.; Stolarczyk, A.; Dereń, K. Risk Factors of Metabolic Syndrome among Polish Nurses. Metabolites 2021, 11, 267. [Google Scholar] [CrossRef]
- Babicki, M. The Prevalence of Obesity and Metabolic Syndrome among Polish Women without Pre-Existing Cardiovascular Conditions and Diabetes: A Multicenter Study in Poland. J. Clin. Med. 2024, 13, 5014. [Google Scholar] [CrossRef]
- Pouragha, H.; Amiri, M.; Saraei, M.; Pouryaghoub, G.; Mehrdad, R. Body impedance analyzer and anthropometric indicators; predictors of metabolic syndrome. J. Diabetes Metab. Disord. 2021, 20, 1169–1178. [Google Scholar] [CrossRef]
- Gutiérrez-Esparza, G.; Martinez-Garcia, M.; Ramírez-delReal, T.; Groves-Miralrio, L.E.; Marquez, M.F.; Pulido, T.; Amezcua-Guerra, L.M.; Hernández-Lemus, E. Sleep Quality, Nutrient Intake, and Social Development Index Predict Metabolic Syndrome in the Tlalpan 2020 Cohort: A Machine Learning and Synthetic Data Study. Nutrients 2024, 16, 612. [Google Scholar] [CrossRef]
- Krishnamoorthy, Y.; Rajaa, S.; Murali, S.; Sahoo, J.; Kar, S.S. Association Between Anthropometric Risk Factors and Metabolic Syndrome Among Adults in India: A Systematic Review and Meta-Analysis of Observational Studies. Prev. Chronic Dis. 2022, 19, E24. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, Q.; Hao, C.; Wang, H.H.; Ma, T.; Chen, X.; Ngai, F.W.; Xie, Y.J. Combined lifestyle factors and metabolic syndrome risk: A systematic review and meta-analysis. Int. J. Obes. 2025, 49, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Kang, S.H.; Jang, S.I.; Park, E.C. Association between lifestyle factors and the risk of metabolic syndrome in the South Korea. Sci. Rep. 2022, 12, 13356. [Google Scholar] [CrossRef] [PubMed]
- Cleven, L.; Krell-Roesch, J.; Schmidt, S.C.E.; Dziuba, A.; Bös, K.; Jekauc, D.; Woll, A. Longitudinal association between physical activity and the risk of incident metabolic syndrome in middle-aged adults in Germany. Sci. Rep. 2022, 12, 19424. [Google Scholar] [CrossRef]
- Jamali, Z.; Ayoobi, F.; Jalali, Z.; Bidaki, R.; Lotfi, M.A.; Esmaeili-Nadimi, A.; Khalili, P. Metabolic syndrome: A population-based study of prevalence and risk factors. Sci. Rep. 2024, 14, 3987. [Google Scholar] [CrossRef]
- Takeuchi, T.; Nakao, M.; Nomura, K.; Yano, E. Association of metabolic syndrome with smoking and alcohol intake in Japanese men. Nicotine Tob. Res. 2009, 11, 1093–1098. [Google Scholar] [CrossRef]
- Kim, H.J.; Cho, Y.J. Smoking cessation and risk of metabolic syndrome: A meta-analysis. Medicine 2024, 103, e38328. [Google Scholar] [CrossRef]
- Jee, Y.; Shin, S.Y.; Ryu, M.; Samet, J.M. The effect of heated tobacco products on metabolic syndrome: A cohort study. Tob. Induc. Dis. 2024, 22. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Jung, S. Trend of Metabolic Syndrome Indicators in Working Korean Women According to Smoking Status and Workplace Size: A Population-Based Retrospective Longitudinal Study. Public Health Nurs. 2025, 42, 709–722. [Google Scholar] [CrossRef]
- Mohseni, P.; Khalili, D.; Niknam, M.; Izadi, N. The interplay of physical activity and smoking with metabolic syndrome and its components in the STEPS survey. Sci. Rep. 2025, 15, 12590. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Shao, M.; Li, M.; Li, T.; Zheng, Y.; Sun, W.; Ni, C.; Li, L. Sphingolipid metabolites involved in the pathogenesis of atherosclerosis: Perspectives on sphingolipids in atherosclerosis. Cell Mol. Biol. Lett. 2025, 30, 18. [Google Scholar] [CrossRef]
- Li, L.; Li, T.; Liang, X.; Zhu, L.; Fang, Y.; Dong, L.; Zheng, Y.; Xu, X.; Li, M.; Cai, T.; et al. A decrease in Flavonifractor plautii and its product, phytosphingosine, predisposes individuals with phlegm-dampness constitution to metabolic disorders. Cell Discov. 2025, 11, 25. [Google Scholar] [CrossRef]
- Huang, C.; Xu, S.; Chen, R.; Ding, Y.; Fu, Q.; He, B.; Jiang, T.; Zeng, B.; Bao, M.; Li, S. Assessing causal associations of bile acids with obesity indicators: A Mendelian randomization study. Medicine 2024, 103, e38610. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Luo, X.; Xiao, Y.; Tu, T.; Liu, C.; Liu, Q.; Wang, C.; Dai, Y.; Zhang, Z.; et al. The triglyceride-glucose index and its obesity-related derivatives as predictors of all-cause and cardiovascular mortality in hypertensive patients: Insights from NHANES data with machine learning analysis. Cardiovasc. Diabetol. 2025, 24, 47. [Google Scholar] [CrossRef]
Variable | Frequency | Percent (%) | |
---|---|---|---|
Place of residence | Village | 47 | 18.8 |
City | 203 | 81.2 | |
Employment | Retirement or pension | 63 | 25.2 |
Non-working | 1 | 0.4 | |
Casual work | 12 | 4.8 | |
Permanent work | 174 | 69.6 | |
Education | Primary | 1 | 0.4 |
Lower secondary | 4 | 1.6 | |
Vocational | 9 | 3.6 | |
Secondary | 65 | 26 | |
Higher | 171 | 68.4 | |
BMI | Underweight | 4 | 1.6 |
Normal body weight | 79 | 31.6 | |
Overweight | 81 | 32.4 | |
Obesity class I | 55 | 22 | |
Obesity class II | 21 | 8.4 | |
Obesity class III | 10 | 4 | |
Smoking | No | 207 | 82.8 |
Yes | 43 | 17.2 | |
Level of PA | Insufficient | 111 | 44.4 |
Sufficient | 59 | 23.6 | |
High | 80 | 32 | |
TC | Normal | 86 | 34.4 |
Abnormal | 164 | 65.6 | |
HDL | Normal | 197 | 78.8 |
Abnormal | 53 | 21.2 | |
TG | Normal | 158 | 63.2 |
Abnormal | 92 | 36.8 | |
LDL | Normal | 129 | 51.6 |
Abnormal | 121 | 48.4 | |
Fasting glucose | Normal | 135 | 54 |
Abnormal | 115 | 46 | |
Non-HDL | Normal | 96 | 38.4 |
Abnormal | 154 | 61.6 | |
Blood pressure | Normal | 131 | 52.4 |
Abnormal | 119 | 47.6 | |
MetS | No | 159 | 63.6 |
Yes | 91 | 36.4 |
Variable | N | Min | Max | Me |
---|---|---|---|---|
Age | 250 | 23 | 85 | 55 |
TC (mg/dL) | 250 | 100 | 359 | 198 |
HDL (mg/dL) | 250 | 15 | 109 | 58.5 |
TG (mg/dL) | 250 | 45 | 385 | 120.5 |
LDL (mg/dL) | 250 | 12 | 254 | 113 |
Fasting glucose (mg/dL) | 250 | 69 | 158 | 98 |
non-HDL (mg/dL) | 250 | 31 | 313 | 138.5 |
SBP (mmHg) | 250 | 80 | 175 | 121.5 |
DBP (mmHg) | 250 | 50 | 96 | 75 |
BMI (kg/m2) | 250 | 16.7 | 47.6 | 27.2 |
Body weight (kg) | 250 | 42.7 | 121.6 | 71.65 |
BFM (kg) | 250 | 9.7 | 64.4 | 27.55 |
WHR | 250 | 0.46 | 1.41 | 0.86 |
MetS Components | BMI | Test Result | ||||
---|---|---|---|---|---|---|
Normal Body Weight | Overweight | Obesity | ||||
Obesity criterion | No | N | 58 | 25 | 1 | χ2 = 96.177 df = 2 p = 0.001 |
% | 73.4% | 30.9% | 1.2% | |||
Yes | N | 21 | 56 | 85 | ||
% | 26.6% | 69.1% | 98.8% | |||
Blood pressure criterion | No | N | 52 | 48 | 29 | χ2 = 19.266 df = 2 p = 0.001 |
% | 65.8% | 59.3% | 33.7% | |||
Yes | N | 27 | 33 | 57 | ||
% | 34.2% | 40.7% | 66.3% | |||
Criterion fasting glucose | No | N | 57 | 43 | 31 | χ2 = 21.563 df = 2 p = 0.001 |
% | 72.2% | 53.1% | 36.0% | |||
Yes | N | 22 | 38 | 55 | ||
% | 27.8% | 46.9% | 64% | |||
Non-HDL cholesterol criterion | No | N | 30 | 30 | 34 | χ2 = 0.113 df = 2 p = 0.945 |
% | 38.0% | 37.0% | 39.5% | |||
Yes | N | 49 | 51 | 52 | ||
% | 62.0% | 63.0% | 60.5% | |||
MetS | No | N | 71 | 56 | 29 | χ2 = 57.664 df = 2 p = 0.001 |
% | 89.9% | 69.1% | 33.7% | |||
Yes | N | 8 | 25 | 57 | ||
% | 10.1% | 30.9% | 66.3% |
Variable | Level of the Variable | Odds Ratio (OR) for MetS and Its Components | ||||
---|---|---|---|---|---|---|
MetS | Obesity | Elevated BP | Elevated Glucose | Elevated Non-HDL | ||
Age | – | 1.06 ** | 1.04 | 1.06 *** | 1.05 *** | 1.04 ** |
SB | – | 1 | 1 | 1 | 1 | 1 * |
PA | – | 1 | 1 | 1 | 1 | 1 |
BFM | – | 1.15 | 1.42 *** | 1.06 ** | 1.06 ** | 1.02 |
WHR | – | 356.97 ** | 5.89 × 1030 *** | 0.27 | 1.09 | 5.59 |
Place of residence | Village | 1 | 1 | 1 | 1 | 1 |
City | 2.53 * | 0.05 | 2.65 * | 0.90 | 1.74 | |
Employment | Non-working | 1 | 1 | 1 | 1 | 1 |
Working | 1.63 | 0.30 | 1.01 | 1.56 | 5.90 *** | |
Education | Secondary or less | 1 | 1 | 1 | 1 | 1 |
Higher | 0.6 | 2.05 | 0.40 * | 1.15 | 0.75 | |
Smoking | No | 1 | 1 | 1 | 1 | 1 |
Yes | 0.87 | 7.77 | 1.18 | 1.03 | 0.75 |
MetS | |||||
---|---|---|---|---|---|
Age (Years) | BFM (kg) | WHR | p | SE | 95% CI |
42.55 | 18.5 | 0.73 | 0.02 | 0.01 | 0–0.07 |
42.55 | 18.5 | 0.85 | 0.04 | 0.02 | 0.01–0.11 |
42.55 | 18.5 | 0.97 | 0.07 | 0.04 | 0.02–0.2 |
42.55 | 27.84 | 0.73 | 0.06 | 0.03 | 0.02–0.18 |
42.55 | 27.84 | 0.85 | 0.12 | 0.05 | 0.05–0.26 |
42.55 | 27.84 | 0.97 | 0.22 | 0.08 | 0.10–0.42 |
42.55 | 37.18 | 0.73 | 0.19 | 0.09 | 0.07–0.44 |
42.55 | 37.18 | 0.85 | 0.33 | 0.11 | 0.16–0.56 |
42.55 | 37.18 | 0.97 | 0.51 | 0.12 | 0.29–0.72 |
55.74 | 18.5 | 0.73 | 0.04 | 0.02 | 0.01–0.10 |
55.74 | 18.5 | 0.85 | 0.07 | 0.03 | 0.03–0.16 |
55.74 | 18.5 | 0.97 | 0.14 | 0.05 | 0.06–0.28 |
55.74 | 27.84 | 0.73 | 0.12 | 0.05 | 0.05–0.25 |
55.74 | 27.84 | 0.85 | 0.22 | 0.06 | 0.13–0.34 |
55.74 | 27.84 | 0.97 | 0.37 | 0.08 | 0.23–0.52 |
55.74 | 37.18 | 0.73 | 0.33 | 0.1 | 0.16–0.55 |
55.74 | 37.18 | 0.85 | 0.51 | 0.08 | 0.35–0.66 |
55.74 | 37.18 | 0.97 | 0.68 | 0.07 | 0.52–0.81 |
68.93 | 18.5 | 0.73 | 0.07 | 0.03 | 0.03–0.18 |
68.93 | 18.5 | 0.85 | 0.13 | 0.05 | 0.06–0.27 |
68.93 | 18.5 | 0.97 | 0.24 | 0.08 | 0.12–0.44 |
68.93 | 27.84 | 0.73 | 0.21 | 0.07 | 0.1–0.4 |
68.93 | 27.84 | 0.85 | 0.36 | 0.07 | 0.23–0.51 |
68.93 | 27.84 | 0.97 | 0.54 | 0.08 | 0.38–0.7 |
68.93 | 37.18 | 0.73 | 0.50 | 0.12 | 0.29–0.71 |
68.93 | 37.18 | 0.85 | 0.68 | 0.08 | 0.51–0.81 |
68.93 | 37.18 | 0.97 | 0.81 | 0.06 | 0.67–0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dereń, K.; Zielińska, M.; Bartosiewicz, A.; Łuszczki, E. Predictors of Metabolic Syndrome in Polish Women—The Role of Body Composition and Sociodemographic Factors. J. Clin. Med. 2025, 14, 5911. https://doi.org/10.3390/jcm14165911
Dereń K, Zielińska M, Bartosiewicz A, Łuszczki E. Predictors of Metabolic Syndrome in Polish Women—The Role of Body Composition and Sociodemographic Factors. Journal of Clinical Medicine. 2025; 14(16):5911. https://doi.org/10.3390/jcm14165911
Chicago/Turabian StyleDereń, Katarzyna, Magdalena Zielińska, Anna Bartosiewicz, and Edyta Łuszczki. 2025. "Predictors of Metabolic Syndrome in Polish Women—The Role of Body Composition and Sociodemographic Factors" Journal of Clinical Medicine 14, no. 16: 5911. https://doi.org/10.3390/jcm14165911
APA StyleDereń, K., Zielińska, M., Bartosiewicz, A., & Łuszczki, E. (2025). Predictors of Metabolic Syndrome in Polish Women—The Role of Body Composition and Sociodemographic Factors. Journal of Clinical Medicine, 14(16), 5911. https://doi.org/10.3390/jcm14165911