Genomic Evaluation of AML—Main Techniques and Novel Approaches
Abstract
1. Introduction
1.1. Classifications
1.2. Risk Stratification
1.3. Recommendations and Guidelines
2. Gene Panels
3. Whole-Exome Sequencing
4. Whole-Genome Sequencing
5. SNP-Array
6. Optical Genome Mapping
7. Long-Read Sequencing
8. Hi-C Analysis
9. Machine Learning and Artificial Intelligence
10. Summary and Future Directions
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
AML | acute myeloid leukemia |
Bp | base pairs |
CCA | conventional cytogenetic analysis |
CNAs | copy number alterations |
ELN | European Leukemia Net |
Hi-C | High-throughput chromosome conformation capture |
ICC | International Consensus Classification |
MDS | myelodysplastic syndrome |
MRD | measurable residual disease |
NGS | next-generation sequencing |
OGM | optical genome mapping |
SNP | single-nucleotide polymorphism |
SNV | single-nucleotide variant |
SV | structural variant |
TADs | topologically associating domains |
TAT | turnaround time |
VAF | variant allele frequency |
VUS | variant of unknown significance |
WES | whole-exome sequencing |
WGS | whole-genome sequencing |
WHO | World Health Organization |
References
- Vakiti, A.; Mewawalla, P. Acute Myeloid Leukemia. StatPearls. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507875/ (accessed on 6 June 2025).
- Vardiman, J.W.; Harris, N.L.; Brunning, R.D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002, 100, 2292–2302. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. Available online: https://www.nature.com/articles/s41375-022-01613-1 (accessed on 6 June 2025). [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.-M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Demir, D. Insights into the New Molecular Updates in Acute Myeloid Leukemia Pathogenesis. Genes 2023, 14, 1424. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Pogosova-Agadjanyan, E.L.; Moseley, A.; Othus, M.; Appelbaum, F.R.; Chauncey, T.R.; Chen, I.-M.L.; Erba, H.P.; Godwin, J.E.; Jenkins, I.C.; Fang, M.; et al. AML risk stratification models utilizing ELN-2017 guidelines and additional prognostic factors: A SWOG report. Biomark. Res. 2020, 8, 1–13. Available online: https://biomarkerres.biomedcentral.com/articles/10.1186/s40364-020-00208-1 (accessed on 6 June 2025). [CrossRef] [PubMed]
- Yohe, S. Molecular Genetic Markers in Acute Myeloid Leukemia. J. Clin. Med. 2015, 4, 460–478. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4470139/ (accessed on 6 June 2025). [CrossRef] [PubMed]
- Berisha, S.Z.; Shetty, S.; Prior, T.W.; Mitchell, A.L. Cytogenetic and molecular diagnostic testing associated with prenatal and postnatal birth defects. Birth Defects Res. 2020, 112, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Akkari, Y.; Baughn, L.B.; Kim, A.; Karaca, E.; Raca, G.; Shao, L.; Mikhail, F.M. Section E6.1–6.6 of the American College of Medical Genetics and Genomics (ACMG) Technical Laboratory Standards: Cytogenomic studies of acquired chromosomal abnormalities in neoplastic blood, bone marrow, and lymph nodes. Genet. Med. 2024, 26, 101054. [Google Scholar] [CrossRef]
- Harper, L.M.; Sutton, A.L.; Longman, R.E.; Odibo, A.O. An economic analysis of prenatal cytogenetic technologies for sonographically detected fetal anomalies. Am. J. Med Genet. Part A 2014, 164, 1192–1197. [Google Scholar] [CrossRef]
- Qin, D. Molecular testing for acute myeloid leukemia. Cancer Biol. Med. 2021, 18, 4–13. [Google Scholar] [CrossRef]
- Nair, M.; Sandhu, S.S.; Sharma, A.K. Cancer molecular markers: A guide to cancer detection and management. Semin. Cancer Biol. 2018, 52, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, M.; Such, E.; Onecha, E.; Gómez-Seguí, I.; Liquori, A.; Sellés, J.; Hervás-Marín, D.; Barragán, E.; Ayala, R.; Llop, M.; et al. Analysis of SNP Array Abnormalities in Patients with DE NOVO Acute Myeloid Leukemia with Normal Karyotype. Sci. Rep. 2020, 10, 1–12. Available online: https://www.nature.com/articles/s41598-020-61589-9 (accessed on 7 June 2025). [CrossRef] [PubMed]
- Berry, N.K.; Scott, R.J.; Rowlings, P.; Enjeti, A.K. Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies. Crit. Rev. Oncol. 2019, 142, 58–67. Available online: https://pubmed.ncbi.nlm.nih.gov/31377433/ (accessed on 7 June 2025). [CrossRef]
- Leisch, M.; Jansko, B.; Zaborsky, N.; Greil, R.; Pleyer, L. Next Generation Sequencing in AML—On the Way to Becoming a New Standard for Treatment Initiation and/or Modulation? Cancers 2019, 11, 252. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6406956/ (accessed on 7 June 2025). [CrossRef]
- Yang, F.; Anekpuritanang, T.; Press, R.D. Clinical Utility of Next-Generation Sequencing in Acute Myeloid Leukemia. Mol. Diagn. Ther. 2020, 24, 1–13. [Google Scholar] [CrossRef]
- Abel, H.J.; Duncavage, E.J. Detection of structural DNA variation from next generation sequencing data: A review of informatic approaches. Cancer Genet. 2013, 206, 432–440. [Google Scholar] [CrossRef]
- Han, E.; Yoo, J.; Chae, H.; Lee, S.; Kim, D.-H.; Kim, K.J.; Kim, Y.; Kim, M. Detection of BRCA1/2 large genomic rearrangement including BRCA1 promoter-region deletions using next-generation sequencing. Clin. Chim. Acta 2020, 505, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Schiavinato, M.; del Olmo, V.; Muya, V.N.; Gabaldón, T. JLOH: Inferring loss of heterozygosity blocks from sequencing data. Comput. Struct. Biotechnol. J. 2023, 21, 5738–5750. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L.; Valk, P.J.M. Next-generation sequencing in the diagnosis and minimal residual disease assessment of acute myeloid leukemia. Haematologica 2019, 104, 868–871. Available online: https://pubmed.ncbi.nlm.nih.gov/30923100/ (accessed on 7 June 2025). [CrossRef] [PubMed]
- Orsmark-Pietras, C.; Lyander, A.; Ladenvall, C.; Hallström, B.; Staffas, A.; Awier, H.; Krstic, A.; Baliakas, P.; Barbany, G.; Håkansson, C.B.; et al. Precision Diagnostics in Myeloid Malignancies: Development and Validation of a National Capture-Based Gene Panel. Genes Chromosom. Cancer 2024, 63, e23257. [Google Scholar] [CrossRef]
- Weinberg, O.K.; Sohani, A.R.; Bhargava, P.; Nardi, V. Diagnostic work-up of acute myeloid leukemia. Am. J. Hematol. 2017, 92, 317–321. Available online: https://pubmed.ncbi.nlm.nih.gov/28066929/ (accessed on 7 June 2025). [CrossRef]
- Lee, T.D.; Aisner, D.L.; David, M.P.; Eno, C.C.; Gagan, J.; Gocke, C.D.; Guseva, N.V.; Haley, L.; Jajosky, A.N.; Jones, D.; et al. Current clinical practices and challenges in molecular testing: A GOAL Consortium Hematopathology Working Group report. Blood Adv. 2023, 7, 4599–4607. [Google Scholar] [CrossRef]
- Woolbright, W.C.; Wong, V.; Severson, E.; Kuo, D.J. The Application of Next-generation Sequencing Tumor Molecular Profiling in the Diagnosis and Management of a Case of Acute Myelogenous Leukemia With MLL-PTD in a Pediatric Heart Transplant Recipient. J. Pediatr. Hematol. 2021, 43, e246–e249. [Google Scholar] [CrossRef]
- Krizsán, S.; Péterffy, B.; Egyed, B.; Nagy, T.; Sebestyén, E.; Hegyi, L.L.; Jakab, Z.; Erdélyi, D.J.; Müller, J.; Péter, G.; et al. Next-Generation Sequencing–Based Genomic Profiling of Children with Acute Myeloid Leukemia. J. Mol. Diagn. 2023, 25, 555–568. [Google Scholar] [CrossRef]
- Kumar, S.; Bennett, A.; Campbell, P.A.; Palidwor, G.; Lo, B.; Perkins, T.J.; Nochaiwong, S.; Sekhon, H.S.; Stewart, D.J.; Thavorn, K. Costs of Next-Generation Sequencing Assays in Non-Small Cell Lung Cancer: A Micro-Costing Study. Curr. Oncol. 2022, 29, 5238–5246. [Google Scholar] [CrossRef] [PubMed]
- Desai, K.; Hooker, G.; Gilbert, K.; Cropper, C.; Metcalf, R.; Kachroo, S. Real-world trends in costs of next generation sequencing (NGS) testing in U.S. setting. J. Clin. Oncol. 2021, 39 (Suppl. S15), e18824. [Google Scholar] [CrossRef]
- Arteche-López, A.; Ávila-Fernández, A.; Romero, R.; Riveiro-Álvarez, R.; López-Martínez, M.A.; Giménez-Pardo, A.; Vélez-Monsalve, C.; Gallego-Merlo, J.; García-Vara, I.; Almoguera, B.; et al. Sanger sequencing is no longer always necessary based on a single-center validation of 1109 NGS variants in 825 clinical exomes. Sci. Rep. 2021, 11, 1–7. Available online: https://www.nature.com/articles/s41598-021-85182-w (accessed on 10 June 2025). [CrossRef] [PubMed]
- Holt, J.M.; Kelly, M.; Sundlof, B.; Nakouzi, G.; Bick, D.; Lyon, E. Reducing Sanger confirmation testing through false positive prediction algorithms. Anesthesia Analg. 2021, 23, 1255–1262. [Google Scholar] [CrossRef]
- Walter, R.B.; Ofran, Y.; Wierzbowska, A.; Ravandi, F.; Hourigan, C.S.; Ngai, L.L.; Venditti, A.; Buccisano, F.; Ossenkoppele, G.J.; Roboz, G.J. Measurable residual disease as a biomarker in acute myeloid leukemia: Theoretical and practical considerations. Leukemia 2021, 35, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Solis-Ruiz, J.; Yang, F.; Long, N.; Tong, C.H.; Lacbawan, F.L.; Racke, F.K.; Press, R.D. NGS-defined measurable residual disease (MRD) after initial chemotherapy as a prognostic biomarker for acute myeloid leukemia. Blood Cancer J. 2023, 13, 59. [Google Scholar] [CrossRef]
- Chen, B.; Wang, L.; Wang, Z.; Zhang, H.; Chen, L.; Zhang, L.; Li, J.; Yan, X.; Zhao, M.; Lin, Y.; et al. An NGS based MRD evaluation from acute myeloid leukemia patients. Int. J. Lab. Hematol. 2023, 45, 353–359. [Google Scholar] [CrossRef]
- Kim, J.J.; Jang, J.E.; Lee, H.A.; Park, M.R.; Kook, H.W.; Lee, S.-T.; Choi, J.R.; Min, Y.H.; Shin, S.; Cheong, J.-W. Development of a Next-generation Sequencing-based Gene Panel Test to Detect Measurable Residual Disease in Acute Myeloid Leukemia. Ann. Lab. Med. 2023, 43, 328–336. [Google Scholar] [CrossRef]
- Thol, F.; Gabdoulline, R.; Liebich, A.; Klement, P.; Schiller, J.; Kandziora, C.; Hambach, L.; Stadler, M.; Koenecke, C.; Flintrop, M.; et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 2018, 132, 1703–1713. [Google Scholar] [CrossRef]
- Patkar, N.; Kakirde, C.; Shaikh, A.F.; Salve, R.; Bhanshe, P.; Chatterjee, G.; Rajpal, S.; Joshi, S.; Chaudhary, S.; Kodgule, R.; et al. Clinical impact of panel-based error-corrected next generation sequencing versus flow cytometry to detect measurable residual disease (MRD) in acute myeloid leukemia (AML). Leukemia 2021, 35, 1392–1404. [Google Scholar] [CrossRef]
- Heuser, M.; Heida, B.; Büttner, K.; Wienecke, C.P.; Teich, K.; Funke, C.; Brandes, M.; Klement, P.; Liebich, A.; Wichmann, M.; et al. Posttransplantation MRD monitoring in patients with AML by next-generation sequencing using DTA and non-DTA mutations. Blood Adv. 2021, 5, 2294–2304. [Google Scholar] [CrossRef] [PubMed]
- Hourigan, C.S.; Dillon, L.W.; Gui, G.; Logan, B.R.; Fei, M.; Ghannam, J.; Li, Y.; Licon, A.; Alyea, E.P.; Bashey, A.; et al. Impact of Conditioning Intensity of Allogeneic Transplantation for Acute Myeloid Leukemia With Genomic Evidence of Residual Disease. J. Clin. Oncol. 2020, 38, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Jongen-Lavrencic, M.; Grob, T.; Hanekamp, D.; Kavelaars, F.G.; al Hinai, A.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.; Gradowska, P.L.; Meijer, R.; Cloos, J.; et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N. Engl. J. Med. 2018, 378, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Sahasrabudhe, K.D.; Mims, A.S. MRD in AML: Who, what, when, where, and how? Blood 2024, 143, 296–298. [Google Scholar] [CrossRef]
- Bader, M.; Mahmuti, A.; Leßmann, J.; Hupe, H.C.; Gabdoulline, R.; Wichmann, M.; Venturini, L.; Stadler, M.; Puppe, W.; Fiedler, W.; et al. Myelodysplasia-Related Gene Mutations for NGS-Based MRD Assessment in Acute Myeloid Leukemia. Blood 2023, 142 (Suppl. S1), 2944. [Google Scholar] [CrossRef]
- Hirsch, P.; Lambert, J.; Bucci, M.; Deswarte, C.; Boudry, A.; Lambert, J.; Fenwarth, L.; Micol, J.-B.; Terré, C.; Celli-Lebras, K.; et al. Multi-target measurable residual disease assessed by error-corrected sequencing in patients with acute myeloid leukemia: An ALFA study. Blood Cancer J. 2024, 14, 97. [Google Scholar] [CrossRef] [PubMed]
- Slade, M.J.; Ghasemi, R.; O’LAughlin, M.; Burton, T.; Fulton, R.S.; Abel, H.J.; Duncavage, E.J.; Ley, T.J.; Jacoby, M.A.; Spencer, D.H. Persistent Molecular Disease in Adult Patients With AML Evaluated with Whole-Exome and Targeted Error-Corrected DNA Sequencing. JCO Precis. Oncol. 2023, 7, e2200559. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, D.; Suárez-González, J.; Chicano, M.; Andrés-Zayas, C.; Triviño, J.C.; Rodríguez-Macías, G.; Bastos-Oreiro, M.; Font, P.; Ballesteros, M.; Muñiz, P.; et al. Next-Generation Sequencing Improves Diagnosis, Prognosis and Clinical Management of Myeloid Neoplasms. Cancers 2019, 11, 1364. [Google Scholar] [CrossRef]
- Ahmed, F.; Zhong, J. Advances in DNA/RNA Sequencing and Their Applications in Acute Myeloid Leukemia (AML). Int. J. Mol. Sci. 2024, 26, 71. [Google Scholar] [CrossRef]
- Yan, Y.H.; Chen, S.X.; Cheng, L.Y.; Rodriguez, A.Y.; Tang, R.; Cabrera, K.; Zhang, D.Y. Confirming putative variants at ≤ 5% allele frequency using allele enrichment and Sanger sequencing. Sci. Rep. 2021, 11, 11640. [Google Scholar] [CrossRef]
- Nurchis, M.C.; Radio, F.C.; Salmasi, L.; Alizadeh, A.H.; Raspolini, G.M.; Altamura, G.; Tartaglia, M.; Dallapiccola, B.; Pizzo, E.; Gianino, M.M.; et al. Cost-Effectiveness of Whole-Genome vs. Whole-Exome Sequencing Among Children with Suspected Genetic Disorders. JAMA Netw. Open 2024, 7, e2353514. [Google Scholar] [CrossRef]
- Kansal, R. Rapid Whole-Genome Sequencing in Critically Ill Infants and Children with Suspected, Undiagnosed Genetic Diseases: Evolution to a First-Tier Clinical Laboratory Test in the Era of Precision Medicine. Children 2025, 12, 429. [Google Scholar] [CrossRef] [PubMed]
- Duncavage, E.J.; Schroeder, M.C.; O’Laughlin, M.; Wilson, R.; MacMillan, S.; Bohannon, A.; Kruchowski, S.; Garza, J.; Du, F.; Hughes, A.E.O.; et al. Genome Sequencing as an Alternative to Cytogenetic Analysis in Myeloid Cancers. N. Engl. J. Med. 2021, 384, 924–935. [Google Scholar] [CrossRef]
- Aypar, U.; Smoley, S.A.; Pitel, B.A.; Pearce, K.E.; Zenka, R.M.; Vasmatzis, G.; Johnson, S.H.; Smadbeck, J.B.; Peterson, J.F.; Geiersbach, K.B.; et al. Mate pair sequencing improves detection of genomic abnormalities in acute myeloid leukemia. Eur. J. Haematol. 2019, 102, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Pitel, B.A.; Zepeda-Mendoza, C.; Sachs, Z.; Tang, H.; Shivaram, S.; Sharma, N.; Smadbeck, J.B.; Smoley, S.A.; Pearce, K.E.; Luoma, I.M.; et al. Prospective evaluation of genome sequencing to compare conventional cytogenetics in acute myeloid leukemia. Blood Cancer J. 2023, 13, 138. [Google Scholar] [CrossRef] [PubMed]
- Giudice, V.; Serio, B.; Errichiello, S.; Ferrara, I.; Galdiero, A.; Bertolini, A.; Visconti, R.; De Novellis, D.; Guariglia, R.; Luponio, S.; et al. Subclones with variants of uncertain clinical significance might contribute to ineffective hemopoiesis and leukemia predisposition. Eur. J. Haematol. 2023, 111, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, T.; Wirta, V.; Orsmark-Pietras, C.; Cavelier, L.; Fioretos, T.; Barbany, G.; Olsson-Arvidsson, L.; Pandzic, T.; Staffas, A.; Rosenquist, R.; et al. Micro-costing of genetic diagnostics in acute leukemia in Sweden: From standard-of-care to whole-genome sequencing. J. Med Econ. 2024, 27, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Berglund, E.; Barbany, G.; Orsmark-Pietras, C.; Fogelstrand, L.; Abrahamsson, J.; Golovleva, I.; Hallböök, H.; Höglund, M.; Lazarevic, V.; Levin, L.; et al. A Study Protocol for Validation and Implementation of Whole-Genome and -Transcriptome Sequencing as a Comprehensive Precision Diagnostic Test in Acute Leukemias. Front. Med. 2022, 9, 842507. [Google Scholar] [CrossRef]
- Suratannon, N.; van Wijck, R.T.A.; Broer, L.; Xue, L.; van Meurs, J.B.J.; Barendregt, B.H.; van der Burg, M.; Dik, W.A.; Chatchatee, P.; Langerak, A.W.; et al. Rapid Low-Cost Microarray-Based Genotyping for Genetic Screening in Primary Immunodeficiency. Front. Immunol. 2020, 11, 614. [Google Scholar] [CrossRef]
- Yang, H.; Garcia-Manero, G.; Sasaki, K.; Montalban-Bravo, G.; Tang, Z.; Wei, Y.; Kadia, T.; Chien, K.; Rush, D.; Nguyen, H.; et al. High-resolution structural variant profiling of myelodysplastic syndromes by optical genome mapping uncovers cryptic aberrations of prognostic and therapeutic significance. Leukemia 2022, 36, 2306–2316. [Google Scholar] [CrossRef] [PubMed]
- Sahajpal, N.S.; Mondal, A.K.; Singh, H.; Vashisht, A.; Ananth, S.; Saul, D.; Hastie, A.R.; Hilton, B.; DuPont, B.R.; Savage, N.M.; et al. Clinical Utility of Optical Genome Mapping and 523-Gene Next Generation Sequencing Panel for Comprehensive Evaluation of Myeloid Cancers. Cancers 2023, 15, 3214. [Google Scholar] [CrossRef]
- Levy, B.; Baughn, L.B.; Akkari, Y.; Chartrand, S.; LaBarge, B.; Claxton, D.; Lennon, P.A.; Cujar, C.; Kolhe, R.; Kroeger, K.; et al. Optical genome mapping in acute myeloid leukemia: A multicenter evaluation. Blood Adv. 2023, 7, 1297–1307. [Google Scholar] [CrossRef]
- Loghavi, S.; Wei, Q.; Ravandi, F.; Quesada, A.E.; Routbort, M.J.; Hu, S.; Toruner, G.A.; Wang, S.A.; Wang, W.; Miranda, R.N.; et al. Optical genome mapping improves the accuracy of classification, risk stratification, and personalized treatment strategies for patients with acute myeloid leukemia. Am. J. Hematol. 2024, 99, 1959–1968. [Google Scholar] [CrossRef]
- Gerding, W.M.; Tembrink, M.; Nilius-Eliliwi, V.; Mika, T.; Dimopoulos, F.; Ladigan-Badura, S.; Eckhardt, M.; Pohl, M.; Wünnenberg, M.; Farshi, P.; et al. Optical genome mapping reveals additional prognostic information compared to conventional cytogenetics in AML/MDS patients. Int. J. Cancer 2022, 150, 1998–2011. [Google Scholar] [CrossRef]
- Levy, B.; Kanagal-Shamanna, R.; Sahajpal, N.S.; Neveling, K.; Rack, K.; Dewaele, B.; Weghuis, D.O.; Stevens-Kroef, M.; Puiggros, A.; Mallo, M.; et al. A framework for the clinical implementation of optical genome mapping in hematologic malignancies. Am. J. Hematol. 2024, 99, 642–661. [Google Scholar] [CrossRef]
- Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020, 21, 30. [Google Scholar] [CrossRef]
- Wang, J.; Bhakta, N.; Miller, V.A.; Revsine, M.; Litzow, M.R.; Paietta, E.; Fedoriw, Y.; Roberts, K.G.; Gu, Z.; Mullighan, C.G.; et al. Acute Leukemia Classification Using Transcriptional Profiles From Low-Cost Nanopore mRNA Sequencing. JCO Precis. Oncol. 2022, 6, e2100326. [Google Scholar] [CrossRef]
- Bravo-Perez, C.; Cifuentes-Riquelme, R.; Padilla, J.; de la Morena-Barrio, M.E.; Ortuño, F.J.; Garrido-Rodríguez, P.; Amigo, M.L.; Heras, I.; Vicente, V.; Lozano, M.L.; et al. The whole is greater than the sum of its parts: Long-read sequencing for solving clinical problems in haematology. J. Cell. Mol. Med. 2024, 28, 17961. [Google Scholar] [CrossRef]
- Au, C.H.; Ho, D.N.; Ip, B.B.; Wan, T.S.; Ng, M.H.; Chiu, E.K.; Chan, T.L.; Ma, E.S. Rapid detection of chromosomal translocation and precise breakpoint characterization in acute myeloid leukemia by nanopore long-read sequencing. Cancer Genet. 2019, 239, 22–25. [Google Scholar] [CrossRef]
- Espinosa, E.; Bautista, R.; Larrosa, R.; Plata, O. Advancements in long-read genome sequencing technologies and algorithms. Genomics 2024, 116, 110842. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Pongpanich, M.; Porntaveetus, T. Unraveling metagenomics through long-read sequencing: A comprehensive review. J. Transl. Med. 2024, 22, 111. [Google Scholar] [CrossRef] [PubMed]
- Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.-C.; Hall, R.J.; Concepcion, G.T.; Ebler, J.; Fungtammasan, A.; Kolesnikov, A.; Olson, N.D.; et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 2019, 37, 1155–1162. [Google Scholar] [CrossRef]
- Schmitt, A.D.; Sikkink, K.; Ahmed, A.A.; Melnyk, S.; Reid, D.; Van Meter, L.; Guest, E.M.; Lansdon, L.A.; Pastinen, T.; Pushel, I.; et al. Evaluation of Hi-C Sequencing for Detection of Gene Fusions in Hematologic and Solid Tumor Pediatric Cancer Samples. Cancers 2024, 16, 2936. [Google Scholar] [CrossRef]
- Kim, K.; Kim, M.; Kim, Y.; Lee, D.; Jung, I. Hi-C as a molecular rangefinder to examine genomic rearrangements. Semin. Cell Dev. Biol. 2022, 121, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Xu, J.; Dixon, J.; Yue, F. Analysis of Hi-C Data for Discovery of Structural Variations in Cancer. In Hi-C Data Analysis: Methods and Protocols; Springer: New York, NY, USA, 2022; pp. 143–161. [Google Scholar]
- Yeung, C.C.; Eacker, S.M.; Sala-Torra, O.; Beppu, L.; Woolston, D.W.; Liachko, I.; Malig, M.; Stirewalt, D.; Fang, M.; Radich, J. Evaluation of Acute Myeloid Leukemia Genomes using Genomic Proximity Mapping. medRxiv 2024. [Google Scholar] [CrossRef]
- Fang, C.; Rao, S.; Crispino, J.D.; Ntziachristos, P. Determinants and role of chromatin organization in acute leukemia. Leukemia 2020, 34, 2561–2575. [Google Scholar] [CrossRef]
- Díaz, N.; Kruse, K.; Erdmann, T.; Staiger, A.M.; Ott, G.; Lenz, G.; Vaquerizas, J.M. Chromatin conformation analysis of primary patient tissue using a low input Hi-C method. Nat. Commun. 2018, 9, 4938. [Google Scholar] [CrossRef]
- Mallard, C.; Johnston, M.J.; Bobyn, A.; Nikolic, A.; Argiropoulos, B.; Chan, J.A.; Guilcher, G.M.; Gallo, M. Hi-C detects genomic structural variants in peripheral blood of pediatric leukemia patients. Mol. Case Stud. 2022, 8, a006157. [Google Scholar] [CrossRef] [PubMed]
- Klever, M.-K.; Sträng, E.; Hetzel, S.; Jungnitsch, J.; Dolnik, A.; Schöpflin, R.; Schrezenmeier, J.-F.; Schick, F.; Blau, O.; Westermann, J.; et al. AML with complex karyotype: Extreme genomic complexity revealed by combined long-read sequencing and Hi-C technology. Blood Adv. 2023, 7, 6520–6531. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Liu, Y.; Eacker, S.; Neufeld-Kaiser, W. Evaluation of Hi-C versus optical genome mapping for diagnosing constitutional genomic structural variants. Cancer Genet. 2023, 278–279, 4. [Google Scholar] [CrossRef]
- Haferlach, T.; Eckardt, J.-N.; Walter, W.; Maschek, S.; Kather, J.N.; Pohlkamp, C.; Middeke, J.M. AML diagnostics in the 21st century: Use of AI. In Seminars in Hematology; WB Saunders: Philadelphia, PA, USA, 2025. [Google Scholar]
- Park, S.; Park, Y.H.; Huh, J.; Baik, S.M.; Park, D.J. Deep learning model for differentiating acute myeloid and lymphoblastic leukemia in peripheral blood cell images via myeloblast and lymphoblast classification. Digit. Heal. 2024, 10, 20552076241258079. [Google Scholar] [CrossRef]
- Qin, Y.; Pu, X.; Hu, D.; Yang, M. Machine learning-based biomarker screening for acute myeloid leukemia prognosis and therapy from diverse cell-death patterns. Sci. Rep. 2024, 14, 17874. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Wu, F.; Ding, Y.; Wu, J.; Lu, L.; Bajpai, A.K.; Sang, M.; Wang, X. Identification of hub genes and potential molecular mechanisms related to drug sensitivity in acute myeloid leukemia based on machine learning. Front. Pharmacol. 2024, 15, 1359832. [Google Scholar] [CrossRef]
Acute myeloid leukaemia with defining genetic abnormalities |
Acute promyelocytic leukaemia with PML::RARA fusion |
Acute myeloid leukaemia with RUNX1::RUNX1T1 fusion |
Acute myeloid leukaemia with CBFB::MYH11 fusion |
Acute myeloid leukaemia with DEK::NUP214 fusion |
Acute myeloid leukaemia with RBM15::MRTFA fusion |
Acute myeloid leukaemia with BCR::ABL1 fusion |
Acute myeloid leukaemia with KMT2A rearrangement |
Acute myeloid leukaemia with MECOM rearrangement |
Acute myeloid leukaemia with NUP98 rearrangement |
Acute myeloid leukaemia with NPM1 mutation |
Acute myeloid leukaemia with CEBPA mutation |
Acute myeloid leukaemia, myelodysplasia-related |
Acute myeloid leukaemia with other defined genetic alterations |
Acute myeloid leukaemia, defined by differentiation |
Acute myeloid leukaemia with minimal differentiation |
Acute myeloid leukaemia without maturation |
Acute myeloid leukaemia with maturation |
Acute basophilic leukaemia |
Acute myelomonocytic leukaemia |
Acute monocytic leukaemia |
Acute erythroid leukaemia |
Acute megakaryoblastic leukaemia |
Risk Category | Genetic Abnormality |
---|---|
Favorable |
|
Intermediate |
|
Adverse |
|
Method | Advantages | Limitations | Sensitivity and Resolution | TAT | MRD Detection | Cost per Sample | Routine Use |
---|---|---|---|---|---|---|---|
CCA | Whole-genome assessment of large-scale alterations. Essential for diagnosis, as its markers are included in WHO 2022 classification and ELN 2022 risk stratification. | Poor resolution. Can miss clones with less than 10% sensitivity. | 10% for clones 5–10 megabases | 7–21 days | No | USD 150 | Yes, gold-standard |
NGS gene panels | Simultaneous evaluation of multiple genes Detects single-nucleotide variations, CNAs, translocations, and indels. Contributes to therapy selection and relapse risk assessment. | Relatively high price. | Up to 0.01% SNVs | 2–7 days for rapid results | Yes | A few hundred–a few thousand USD | Yes, standard of care |
WES | Useful as a diagnostic tool when targeted gene panels are inconclusive. | Limited in detecting large SVs and CNAs. Blind to 99% of the genome. | 5–10% VAF SNVs | A few weeks | No | Up to USD 2000 | No |
WGS | Detects all classes of genetic alterations in a single assay. Shows high concordance with established methods, while uncovering additional clinically relevant information. | High costs and massive data storage needs vast numbers of VUSs. | 5–10% VAF SNVs | Longer than WES, rapid results possible in a few days. | No | Up to USD 4000 | No |
SNP-microarray | Detects microdeletions, amplifications, and loss of heterozygosity, and interstitial deletions in about 25% of common fusion genes. Clarifies marker and ring chromosomes. | Cannot report balanced changes. May miss clones with less than 10% VAF. Cannot detect minor single-gene variants. | 10% VAF 5–10 kilobases | 14–21 days | No | A few hundred USD | Yes, but not as a sole molecular-genetic method |
OGM | Identifies CNAs and SVs, potentially doubling the number of findings compared to CCA. Could establish itself as a new gold standard for cytogenetic changes. | Higher cost than CCA. Reduced sensitivity for Robertsonian translocations, compared to CCA. | 5% VAF 500 bp resolution | 7–14 days | No | USD 500 | Yes |
Long-read sequencing | Detects large SVs often missed by short-read sequencing. Has been used to successfully detect novel and cryptic translocations in AML. | Historically higher raw read error rates, Higher per-sample costs, lower throughput, and need for specialized bioinformatics. | ≥10% VAF SNVs | 3–14 days, depending on the platform. | No | Highly variable. depending on the platform; on average, a few thousand USD. | No |
Hi-C analysis | Genome-wide detection of large-scale rearrangements and gene fusions missed by other methods. Uncovers additional clinically actionable fusions in cases with cryptic karyotypes. | Does not detect single-nucleotide variants. Requires specialized bioinformatic pipelines. Higher costs, related to sequencing depth. | ≥10–20% VAF 35 kilobases | Not standardized for clinical use; the lab process is multi-day, and complex data analysis adds significant time. | No | USD 1800–2000 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahya, D.; Stoyanova, M.; Hachmeriyan, M.; Levkova, M. Genomic Evaluation of AML—Main Techniques and Novel Approaches. J. Clin. Med. 2025, 14, 5685. https://doi.org/10.3390/jcm14165685
Yahya D, Stoyanova M, Hachmeriyan M, Levkova M. Genomic Evaluation of AML—Main Techniques and Novel Approaches. Journal of Clinical Medicine. 2025; 14(16):5685. https://doi.org/10.3390/jcm14165685
Chicago/Turabian StyleYahya, Dinnar, Milena Stoyanova, Mari Hachmeriyan, and Mariya Levkova. 2025. "Genomic Evaluation of AML—Main Techniques and Novel Approaches" Journal of Clinical Medicine 14, no. 16: 5685. https://doi.org/10.3390/jcm14165685
APA StyleYahya, D., Stoyanova, M., Hachmeriyan, M., & Levkova, M. (2025). Genomic Evaluation of AML—Main Techniques and Novel Approaches. Journal of Clinical Medicine, 14(16), 5685. https://doi.org/10.3390/jcm14165685