Tuberculosis in Pregnant Women After COVID-19: Features of Prevention, Diagnosis, and Treatment (Narrative Review)
Abstract
1. Introduction
2. Materials and Methods
3. Background and Post-COVID-19 Maternal Mortality Rates
Features of the Course of Tuberculosis in Pregnant Women
4. Immunodiagnostic Methods of Tuberculosis Diagnosis for Pregnant Women
5. Prevention and Treatment of Tuberculosis in Pregnant Women
6. Vaccinations Against COVID-19 in Pregnant Tuberculosis Patients
7. The Combination of COVID-19 and Tuberculosis in Pregnant Women
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2024; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Harding, E. WHO Global Progress Report on Tuberculosis Elimination. Lancet Respir. Med. 2020, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization and the European Centre for Disease Prevention and Control. Tuberculosis Surveillance and Monitoring in Europe 2023: 2021 Data. 3; World Health Organization and the European Centre for Disease Prevention and Control: Solna, Sweden, 2023. [Google Scholar]
- WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment—Drug-Susceptible Tuberculosis Treatment; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Nesterenko, A.V.; Zimina, V.N.; Kayukova, S.I. Impact of tuberculosis on the course of pregnancy, delivery and perinatal outcomes. Tuberc. Lung Dis. 2018, 96, 62–63. (In Russian) [Google Scholar] [CrossRef]
- Mitnick, C.; Khan, U.; Guglielmetti, L. SP01 Innovation to guide practice in MDR/RR-TB treatment: Efficacy and safety results of the end TB trial. In Proceedings of the Union World Conference on Lung Health, Paris, France, 15–18 November 2023. [Google Scholar]
- WHO Consolidated Guidelines on Tuberculosis. Module 5: Management of Tuberculosis in Children and Adolescents; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Court, R.; Gausi, K.; Mkhize, B.; Wiesner, L.; Waitt, C.; McIlleron, H.; Maartens, G.; Denti, P.; Loveday, M. Bedaquiline exposure in pregnancy and breastfeeding in women with rifampicin-resistant tuberculosis. Br. J. Clin. Pharmacol. 2022, 88, 3548–3558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sugarman, J.; Colvin, C.; Moran, A.C.; Oxlade, O. Tuberculosis in pregnancy: An estimate of the global burden of disease. Lancet Glob. Health 2014, 2, e710–e716. [Google Scholar] [CrossRef]
- Jonsson, J.; Kühlmann-Berenzon, S.; Berggren, I.; Bruchfeld, J. Increased risk of active tuberculosis during pregnancy and postpartum: A register-based cohort study in Sweden. Eur. Respir. J. 2020, 55, 1901886. [Google Scholar] [CrossRef]
- Bothamley, G.H.; Ehlers, C.; Salonka, I.; Skrahina, A.; Orcau, A.; Codecasa, L.R.; Ferrarese, M.; Pesut, D.; Solovic, I.; Dudnyk, A.; et al. Pregnancy in patients with tuberculosis: A TBNET cross-sectional survey. BMC Pregnancy Childbirth 2016, 16, 304. [Google Scholar] [CrossRef]
- Gai, X.Y.; Chi, H.B.; Zeng, L.; Cao, W.; Chen, L.X.; Zhang, C.; Lu, M.; Ning, L.D.; Chang, C.; Zhang, W.X.; et al. Untreated Prior Pulmonary Tuberculosis Adversely Affects Pregnancy Outcomes in Infertile Women Undergoing in vitro Fertilization and Embryo Transfer: A Large Retrospective Cohort Study. Biomed. Enviorn. Sci. 2021, 34, 130–138. [Google Scholar] [CrossRef]
- Alene, K.A.; Jegnie, A.; Adane, A.A. Multidrug-resistant tuberculosis during pregnancy and adverse birth outcomes: A systematic review and meta-analysis. Int. J. Obstet. Gynaecol. 2021, 128, 1125–1133. [Google Scholar] [CrossRef]
- Gajbhiye, R.K.; Mahajan, N.N.; Kamath, N.; Bahirat, S.; Patokar, G.; Bhurke, A.V.; Modi, D.N.; Mahale, S.D. Clinical presentations, pregnancy complications, and maternal outcomes in pregnant women with COVID-19 and tuberculosis: A retrospective cohort study. Int. J. Gynaecol. Obstet. 2021, 153, 176–179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Modi, P.; Khanna, R.; Reddy, N.; Patankar, A.; Patel, S.; Nair, G.; Gopal, S.; Uppe, A. COVID-19 and tuberculosis co-infection in pregnancy—A case series and review. J. Mother Child. 2022, 25, 127–134. [Google Scholar] [PubMed] [PubMed Central]
- Hui, S.Y.A.; Lao, T.T. Tuberculosis in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2022, 85 Pt A, 34–44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rybakowski, J. Infections and mental diseases: From tuberculosis to COVID-19. Psychiatr. Pol. 2022, 56, 931–944, (In English, Polish). [Google Scholar] [CrossRef] [PubMed]
- Kudlay, D.; Kofiadi, I.; Khaitov, M. Peculiarities of the T Cell Immune Response in COVID-19. Vaccines 2022, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Savchenko, A.A.; Tikhonova, E.; Kudryavtsev, I.; Kudlay, D.; Korsunsky, I.; Beleniuk, V.; Borisov, A. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses 2022, 14, 646. [Google Scholar] [CrossRef]
- Starshinova, A.A.; Kudryavtsev, I.; Malkova, A.; Zinchenko, U.; Karev, V.; Kudlay, D.; Glushkova, A.; Starshinova, A.Y.; Dominguez, J.; Villar-Hernández, R.; et al. Molecular and Cellular Mechanisms of M. tuberculosis and SARS-CoV-2 Infections—Unexpected Similarities of Pathogenesis and What to Expect from Co-Infection. Int. J. Mol. Sci. 2022, 23, 2235. [Google Scholar] [CrossRef]
- Theocharis, P.; Wong, J.; Pushparajah, K.; Mathur, S.K.; Simpson, J.M.; Pascall, E.; Cleary, A.; Stewart, K.; Adhvaryu, K.; Savis, A.; et al. Multimodality cardiac evaluation in children and young adults with multisystem inflammation associated with COVID-19. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 896–903. [Google Scholar] [CrossRef]
- Makarov, I.; Mayrina, S.; Makarova, T.; Karonova, T.; Starshinova, A.; Kudlay, D.; Mitrofanova, L. Morphological Changes in the Myocardium of Patients with Post-Acute Coronavirus Syndrome: A Study of Endomyocardial Biopsies. Diagnostics 2023, 13, 2212. [Google Scholar] [CrossRef]
- Mitrofanova, L.B.; Makarov, I.A.; Gorshkov, A.N.; Runov, A.L.; Vonsky, M.S.; Pisareva, M.M.; Komissarov, A.B.; Makarova, T.A.; Li, Q.; Karonova, T.L.; et al. Comparative Study of the Myocardium of Patients from Four COVID-19 Waves. Diagnostics 2023, 13, 1645. [Google Scholar] [CrossRef]
- Narang, K.; Miller, M.; Trinidad, C.; Wick, M.; Theiler, R.; Weaver, A.L.; Mehta, R.A.; Schenone, M. Impact of asymptomatic and mild COVID-19 infection on fetal growth during pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 281, 63–67. [Google Scholar] [CrossRef]
- Abuova, G.; Ayazbekov, A.; Nurkhasimova, R.; Shaimardenova, G.; Kulbaeva, S.; Nurmagambet, S. Asymptomatic forms of COVID-19 in pregnant women: Long-term consequences. Int. J. Infect. Dis. 2022, 116, S46. [Google Scholar] [CrossRef]
- Esakandari, H.; Nabi-Afjadi, M.; Fakkari-Afjadi, J.; Farahmandian, N.; Miresmaeili, S.M.; Bahreini, E. A comprehensive review of COVID-19 characteristics. Biol. Proced. Online 2020, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Nigoghossian, C.D.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef] [PubMed]
- Brumback, B.D.; Dmytrenko, O.; Robinson, A.N.; Bailey, A.L.; Ma, P.; Liu, J.; Hicks, S.C.; Ng, S.; Li, G.; Zhang, D.M.; et al. Human Cardiac Pericytes Are Susceptible to SARS-CoV-2 Infection. JACC Basic Transl. Sci. 2023, 8, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Mojiri, A.; Alavi, P.; Lorenzana Carrillo, M.A.; Nakhaei-Nejad, M.; Sergi, C.M.; Thebaud, B.; Aird, W.C.; Jahroudi, N. Endothelial cells of different organs exhibit heterogeneity in von Willebrand factor expression in response to hypoxia. Atherosclerosis 2019, 282, 1–10. [Google Scholar] [CrossRef]
- Malashenkov, E.A.; Gudova, S.V.; Gusev, D.A.; Fedunyak, I.P.; Denisova, E.L.; Fedunyak, O.I.; Gorelova, E.A.; Kozmovskaya, N.V.; Pershin, S.S.; Chernozemova, E.A. Novel coronavirus infection (COVID-19) in tuberculosis patients in St. Petersburg. J. Infectol. 2021, 13, 38–43. (In Russian) [Google Scholar] [CrossRef]
- Kawakami, R.; Sakamoto, A.; Kawai, K.; Gianatti, A.; Pellegrini, D.; Nasr, A.; Kutys, B.; Guo, L.; Cornelissen, A.; Mori, M.; et al. Pathological Evidence for SARS-CoV-2 as a Cause of Myocarditis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2021, 77, 314–325. [Google Scholar] [CrossRef]
- Andréoletti, L.; Bourlet, T.; Moukassa, D.; Rey, L.; Hot, D.; Li, Y.; Lambert, V.; Gosselin, B.; Mosnier, J.F.; Stankowiak, C.; et al. Enteroviruses can persist with or without active viral replication in cardiac tissue of patients with end-stage ischemic or dilated cardiomyopathy. J. Infect. Dis. 2000, 182, 1222–1227. [Google Scholar] [CrossRef]
- Mitrofanova, L.; Makarov, I.; Gorshkov, A.; Vorobeva, O.; Simonenko, M.; Starshinova, A.; Kudlay, D.; Karonova, T. New Scenarios in Heart Transplantation and Persistency of SARS-CoV-2 (Case Report). Life 2023, 13, 1551. [Google Scholar] [CrossRef]
- Gao, Y.-P.; Zhou, W.; Huang, P.-N.; Liu, H.-Y.; Bi, X.-J.; Zhu, Y.; Sun, J.; Tang, Q.-Y.; Li, L.; Zhang, J.; et al. Persistent Endothelial Dysfunction in Coronavirus Disease-2019 Survivors Late After Recovery. Front. Med. 2022, 9, 809033. [Google Scholar] [CrossRef]
- Cruz-Lemini, M.; Ferriols Perez, E.; de la Cruz Conty, M.L.; Caño Aguilar, A.; Encinas Pardilla, M.B.; Prats Rodríguez, P.; Muner Hernando, M.; Forcen Acebal, L.; Pintado Recarte, P.; Medina Mallen, M.d.C.; et al. Obstetric Outcomes of SARS-CoV-2 Infection in Asymptomatic Pregnant Women. Viruses 2021, 13, 112. [Google Scholar] [CrossRef]
- Altamimi, H.; Abid, A.R.; Othman, F.; Patel, A. Cardiovascular Manifes-tations of COVID-19. Heart Views 2020, 21, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, A.C.M.; Avvad-Portari, E.; Meuser-Batista, M.; Conde, T.C.; de Sá, R.A.M.; Salomao, N.; Rabelo, K.; Ciasca, E.S.; Brendolin, M.d.O.; Vasconcelos, Z.; et al. Histopathological and clinical analysis of COVID-19-infected placentas. Surg. Exp. Pathol. 2024, 7, 4. [Google Scholar] [CrossRef]
- Ozer, E.; Cagliyan, E.; Yuzuguldu, R.I.; Cevizci, M.C.; Duman, N. Villitis of Unknown Etiology in the Placenta of a Pregnancy Complicated by COVID-19. Villitis of Unknown Etiology in the Placenta of a Pregnancy Complicated by COVID-19. Turk. Patoloji. Derg. 2021, 37, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, R.; Schwartz, D.A.; Karimi-Zarchi, M.; Javaheri, A.; Dastgheib, S.A.; Ferdosian, F.; Noorishadkam, M.; Mirjalili, S.R.; Neamatzadeh, H. Meta-analysis of the frequency of intrauterine growth restriction and preterm premature rupture of the membranes in pregnant women with COVID-19. Turk. J. Obstet. Gynecol. 2021, 18, 236–244. [Google Scholar] [CrossRef]
- Lipatov, I.S.; Tezikov, Y.V.; Kalinkina, O.B.; Tyutyunnik, V.L.; Kan, N.E.; Majorova, M.O.; Yakovleva, M.A. Association between new coronavirus infection and fetal growth restriction. Akusherstvo I Ginekol./Obstet. Gynecol. 2023, 2, 53–62. (In Russian) [Google Scholar] [CrossRef]
- Valdoshova, S.S.h. Morfofunktsional’nye osobennosti platsenty pri tuberkulyoze vo vremya beremennosti [Morphofunctional features of the placenta in pregnant women with tuberculosis]. Vestn. Avitsenny [Avicenna Bull.] 2023, 25, 314–324. [Google Scholar] [CrossRef]
- Hunter, S.; Robson, S.C. Adaptation of the maternal heart in pregnancy. Heart J. 1992, 68, 540–543. [Google Scholar] [CrossRef]
- Libby, P.; Lüscher, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 2020, 41, 3038–3044. [Google Scholar] [CrossRef]
- Llau, J.V.; Ferrandis, R.; Sierra, P.; Hidalgo, F.; Cassinello, C.; Gómez-Luque, A.; Quintana, M.; Amezaga, R.; Gero, M.; Serrano, A.; et al. SEDAR-SEMICYUC consensus recommendations on the management of haemostasis disorders in severely ill patients with COVID-19 infection. Rev. Esp. Anestesiol. Reanim. (Engl. Ed.) 2020, 7, 391–399. [Google Scholar] [CrossRef]
- Leentjens, J.; van Haaps, T.F.; Wessels, P.F.; Schutgens, R.E.G.; Middeldorp, S. COVID-19-associated coagulopathy and antithrombotic agents—Lessons after 1 year. Lancet Haematol. 2021, 8, e524–e533. [Google Scholar] [CrossRef]
- Mir, N.; D’Amico, A.; Dasher, J.; Tolwani, A.; Valentine, V. Understanding the andromeda strain—The role of cytokine release, coagulopathy and antithrombin III in SARS-CoV2 critical illness. Blood Rev. 2021, 45, 100731. [Google Scholar] [CrossRef]
- Knight, M.; Bunch, K.; Vousden, N.; Morris, E.; Simpson, N.; Gale, C.; O’bRien, P.; Quigley, M.; Brocklehurst, P.; Kurinczuk, J.J. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: National population based cohort study. Br. Med. J. 2020, 369, m2107. [Google Scholar] [CrossRef]
- Pierce-Williams, R.A.; Burd, J.; Felder, L.; Khoury, R.; Bernstein, P.S.; Avila, K.; Penfield, C.A.; Roman, A.S.; DeBolt, C.A.; Stone, J.L.; et al. Clinical course of severe and critical coronavirus disease 2019 in hospitalized pregnancies: A United States cohort study. Am. J. Obstet. Gynecol. MFM 2020, 2, 100134. [Google Scholar] [CrossRef]
- Zahid, S.; Agrawal, A.; Rai, D.; Khan, M.Z.; Michos, E.D. Cardiovascular complications associated with COVID-19 during delivery hospitalizations in pandemic year 2020. JACC Adv. 2023, 2, 100386. [Google Scholar] [CrossRef] [PubMed]
- Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; Der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J. Am. Coll. Cardiol. 2020, 75, 2352–2371. [Google Scholar] [CrossRef] [PubMed]
- Cenko, E.; Badimon, L.; Bugiardini, R.; Claeys, M.J.; De Luca, G.; de Wit, C.; Derumeaux, G.; Dorobantu, M.; Duncker, D.J.; Eringa, E.C.; et al. Cardiovascular disease and COVID-19: A consensus paper from the ESC working group on coronary pathophysiology & microcirculation, ESC working group on thrombosis and the association for acute CardioVascular care (ACVC), in collaboration with the European heart rhythm association (EHRA). Cardiovasc. Res. 2021, 117, 2705–2729. [Google Scholar] [CrossRef]
- Connors, J.M.; Brooks, M.M.; Sciurba, F.C.; Krishnan, J.A.; Bledsoe, J.R.; Kindzelski, A.; Baucom, A.L.; Kirwan, B.-A.; Eng, H.; Martin, D.; et al. Effect of antithrombotic therapy on clinical outcomes in outpatients with clinically stable symptomatic COVID-19: The ACTIV-4B randomized clinical trial. J. Am. Med. Assoc. 2021, 326, 1703–1712. [Google Scholar] [CrossRef]
- Piazza, G.; Campia, U.; Hurwitz, S.; Snyder, J.E.; Rizzo, S.M.; Pfeferman, M.B.; Morrison, R.B.; Leiva, O.; Fanikos, J.; Nauffal, V.; et al. Registry of arterial and venous thromboembolic complications in patients with COVID-19. J. Am. Coll. Cardiol. 2020, 76, 2060–2072. [Google Scholar] [CrossRef]
- Roubinian, N.H.; Dusendang, J.R.; Mark, D.G.; Vinson, D.R.; Liu, V.X.; Schmittdiel, J.A.; Pai, A.P. Incidence of 30-day venous thromboembolism in adults tested for SARS-CoV-2 infection in an integrated health care system in Northern California. JAMA Intern. Med. 2021, 181, 997–999. [Google Scholar] [CrossRef]
- Bikdeli, B.; Krishnathasan, D.; Khairani, C.D.; Bejjani, A.; Davies, J.; Porio, N.; Tristani, A.; Armero, A.; Assi, A.A.; Nauffal, V.; et al. Low absolute risk of thrombotic and cardiovascular events in outpatient pregnant women with COVID-19. Thromb. Res. 2024, 237, 209–215. [Google Scholar] [CrossRef]
- Jering, K.S.; Claggett, B.L.; Cunningham, J.W.; Rosenthal, N.; Vardeny, O.; Greene, M.F.; Solomon, S.D. Clinical characteristics and outcomes of hospitalized women giving birth with and without COVID-19. JAMA Intern. Med. 2021, 181, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Zahid, S.; Mohamed, M.S.; Wassif, H.; Nazir, N.T.; Khan, S.S.; Michos, E.D. Analysis of cardiovascular complications during delivery admissions among patients with systemic lupus erythematosus, 2004–2019. JAMA Netw. Open 2022, 5, e2243388. [Google Scholar] [CrossRef] [PubMed]
- Metz, T.D.; Clifton, R.G.; Hughes, B.L.; Sandoval, G.M.; Saade, G.R.; Grobman, W.A.M.; Manuck, T.A.; Miodovnik, M.; Sowles, A.B.; Clark, K.B.; et al. Disease severity and perinatal outcomes of pregnant patients with coronavirus disease 2019 (COVID-19). Obstet. Gynecol. 2021, 137, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.-C.; You, C.-Y.; Lu, S.-W.; Fu, Y.-Q. Characteristics of coagulation alteration in patients with COVID-19. Ann. Hematol. 2021, 100, 45–52. [Google Scholar] [CrossRef]
- Cuñarro-López, Y.; Pintado-Recarte, P.; Cueto-Hernández, I.; Hernández-Martín, C.; Payá-Martínez, M.P.; Muñóz-Chápuli, M.d.M.; Cano-Valderrama, Ó.; Bravo, C.; Bujan, J.; Álvarez-Mon, M.; et al. The profile of the obstetric patients with SARS-CoV-2 infection according to country of origin of the publication: A systematic review of the literature. J. Clin. Med. 2021, 10, 360. [Google Scholar] [CrossRef]
- Guasch, E.; Brogly, N.; Manrique, S. Practical Recommendations in the Obstetrical Patient with a COVID-19 Infection. Rev. Esp. Anestesiol. Reanim. 2020, 67, 438–445. [Google Scholar] [CrossRef]
- Kakkos, S.K.; Gohel, M.; Baekgaard, N.; Bauersachs, R.; Bellmunt-Montoya, S.; Black, S.A.; Cate-Hoek, A.J.T.; Elalamy, I.; Enzmann, F.K.; Geroulakos, G.; et al. Editor’s Choice–European Society for Vascular Surgery (ESVS) 2021 clinical practice guidelines on the management of venous thrombosis. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 9–82. [Google Scholar] [CrossRef]
- Denas, G.; Gennaro, N.; Ferroni, E.; Fedeli, U.; Lorenzoni, G.; Gregori, D.; Iliceto, S.; Pengo, V. Reduction in All-Cause Mortality in COVID-19 Patients on Chronic Oral Anticoagulation: A Population-Based Propensity Score Matched Study. Int. J. Cardiol. 2021, 329, 266–269. [Google Scholar] [CrossRef]
- Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant Treatment Is Associated with Decreased Mortality in Severe Coronavirus Disease 2019 Patients with Coagulopathy. J. Thromb. Haemost. 2020, 18, 1094–1099. [Google Scholar] [CrossRef]
- Sholzberg, M.; Tang, G.H.; Negri, E.; Rahhal, H.; Kreuziger, L.B.; Pompilio, C.E.; James, P.; Fralick, M.; AlHamzah, M.; Alomran, F.; et al. Coagulopathy of hospitalised COVID-19: A Pragmatic Randomised Controlled Trial of Therapeutic Anticoagulation versus Standard Care as a Rapid Response to the COVID-19 Pandemic (RAPID COVID COAG–RAPID Trial): A structured summary of a study protocol for a randomised controlled trial. Trials 2021, 22, 202. [Google Scholar] [CrossRef]
- Tremblay, D.; van Gerwen, M.; Alsen, M.; Thibaud, S.; Kessler, A.; Venugopal, S.; Makki, I.; Qin, Q.; Dharmapuri, S.; Jun, T.; et al. Impact of Anticoagulation Prior to COVID-19 Infection: A Propensity Score-Matched Cohort Study. Blood 2020, 136, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Omidi, N.; Forouzannia, S.K.; Poorhosseini, H.; Tafti, S.H.A.; Salehbeigi, S.; Lotfi-Tokaldany, M. Prosthetic heart valves and the COVID-19 pandemic era: What should we be concerned about? J. Card. Surg. 2020, 35, 2500–2505. [Google Scholar] [CrossRef] [PubMed]
- Lawley, C.M.; Lain, S.J.; Algert, C.S.; Ford, J.B.; Figtree, G.A.; Roberts, C.L. Prosthetic heart valves in pregnancy, outcomes for women and their babies: A systematic review and meta-analysis. Br. J. Obstet. Gynaecol. 2015, 122, 1446–1455. [Google Scholar] [CrossRef] [PubMed]
- Comella-del-Barrioa, P.; De Souza-Galvãob, M.L.; Prat-Aymericha, C.; Domínguez, J. Impact of COVID-19 on Tuberculosis Control. Arch. Bronconeumol. 2021, 57 (Suppl. 2), 5–6. [Google Scholar] [CrossRef]
- Starshinova, A.; Belyaeva, E.; Doktorova, N.; Korotkevich, I.; Kudlay, D. Tuberculosis in the Russian Federation: Prognosis and Epidemiological models Situation after the COVID-19 Pandemic. J. Epidemiol. Glob. Health 2023, 13, 11–22. [Google Scholar] [CrossRef]
- Abramowsky, C.R.; Gutman, J.; Hilinski, J.A. Mycobacterium tuberculosis Infection of the placenta: A study of the early (innate) inflammatory response in two cases. Pediatr. Dev. Pathol. 2012, 15, 132–136. [Google Scholar] [CrossRef]
- Varlas, V.N.; Borș, R.G.; Plotogea, M.; Iordache, M.; Mehedințu, C.; Cîrstoiu, M.M. Thromboprophylaxis in Pregnant Women with COVID-19: An Unsolved Issue. Int. J. Environ. Res. Public Health 2023, 20, 1949. [Google Scholar] [CrossRef]
- Dennis, E.M.; Hao, Y.; Tamambang, M.; Roshan, T.N.; Gatlin, K.J.; Bghigh, H.; Ogunyemi, O.T.; Diallo, F.; Spooner, K.K.; Salemi, J.L.; et al. Tuberculosis during pregnancy in the United States: Racial/ethnic disparities in pregnancy complications and in-hospital death. PLoS ONE 2018, 13, e0194836. [Google Scholar] [CrossRef]
- Wu, D.; Li, X.; Wan, H.; Shami, A.; Alhassan, H.H.; Al-Enazi, M.M.; Mir Najib Ullah, S.N.; Nashwan, A.J.; Khan, S. Analysis of prevalence of adverse events connected with anti-tuberculosis drugs during pregnancy: A meta-analysis. Heliyon 2023, 9, e22786. [Google Scholar] [CrossRef]
- Mutyambizi, C.; Dunlop, J.; Maluleke, C.; Ranoto, L.; Chetty, T.; Ndou, R.; Struthers, H.; McIntyre, J.A.; Rees, K. Effect of COVID-19 on HI.V.; tuberculosis, and prevention of mother-to-child transmission of HIV indicators in Mopani district, South Africa. S. Afr. Med. J. 2021, 111, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Malhamé, I.; Cormier, M.; Sugarman, J.; Schwartzman, K. Latent Tuberculosis in Pregnancy: A Systematic Review. PLoS ONE 2016, 11, e0154825. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 3: Diagnosis. Tests for Tuberculosis Infection; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Takasaki, J.; Manabe, T.; Morino, E.; Muto, Y.; Hashimoto, M.; Iikura, M.; Izumi, S.; Sugiyama, H.; Kudo, K. Sensitivity and specificity of QuantiFERON-TB Gold Plus compared with QuantiFERON-TB Gold In-Tube and T-SPOT.TB on active tuberculosis in Japan. J. Infect. Chemother. 2018, 24, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Starshinova, A.A.; Dovgalyk, I.; Malkova, A.M.; Zinchenko, Y.S.; Pavlova, M.V.; Belyaeva, E.; Basantsova, N.Y.; Nazarenko, M.; Kudlai, D.A.; Yablonskiy, P. Recombinant tuberculosis allergen (Diaskintest®) in tuberculosis diagnostic in Russia (meta-analysis). Int. J. Mycobacteriol. 2020, 9, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Slogotskaya, L.; Bogorodskaya, E.; Ivanova, D.; Sevostyanova, T. Sevostyanova Comparative sensitivity of the test with tuberculosis recombinant allergen, containing ESAT6-CFP10 protein, and Mantoux test with 2 TU PPD-L in newly diagnosed tuberculosis children and adolescents in Moscow. PLoS ONE 2018, 13, e0208705. [Google Scholar] [CrossRef]
- Hoff, S.T.; Peter, J.G.; Theron, G.; Pascoe, M.; Tingskov, P.N.; Aggerbeck, H.; Kolbus, D.; Ruhwald, M.; Andersen, P.; Dheda, K. Sensitivity of C-Tb: A novel RD-1-specific skin test for the diagnosis of tuberculosis infection. Eur. Respir. J. 2016, 47, 919–928. [Google Scholar] [CrossRef]
- Ortiz-Brizuela, E.; Apriani, L.; Mukherjee, T.; Lachapelle-Chisholm, S.; Miedy, M.; Lan, Z.; Korobitsyn, A.; Ismail, N.; Menzies, D. Assessing the Diagnostic Performance of New Commercial Interferon-γ Release Assays for Mycobacterium tuberculosis Infection: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2023, 76, 1989–1999. [Google Scholar] [CrossRef]
- Lu, X.; Li, C.; Li, W.; Long, X.; Fang, Y.; Sun, R.; Jin, F.; Fu, E.; Xie, Y. Use of Interferon-γ release assay for the diagnosis of female genital tuberculosis in Northwest China. J. Clin. Lab. Anal. 2019, 33, e22621. [Google Scholar] [CrossRef]
- Haustein, T.; Ridout, D.A.; Hartley, J.C.; Thaker, U.; Shingadia, D.; Klein, N.J.; Novelli, V.; Dixon, G.L.J. The likelihood of an indeterminate test result from a whole-blood interferon-gamma release assay for the diagnosis of Mycobacterium tuberculosis infection in children correlates with age and immune status. Pediatr. Infect. Dis. J. 2009, 28, 669–673. [Google Scholar] [CrossRef]
- Tal, R.; Lawal, T.; Granger, E.; Simoni, M.; Hui, P.; Buza, N.; Pal, L. Genital tuberculosis screening at an academic fertility center in the United States. Am. J. Obstet. Gynecol. 2020, 223, e1–e737. [Google Scholar] [CrossRef]
- Worjoloh, A.; Kato-Maeda, M.; Osmond, D.; Freyre, R.; Aziz, N.; Cohan, D. Interferon gamma release assay compared with the tuberculin skin test for latent tuberculosis detection in pregnancy. Obstet. Gynecol. 2011, 118, 1363–1370. [Google Scholar] [CrossRef]
- Lighter-Fisher, J. Performance of an interferon-gamma release assay to diagnose latent tuberculosis infection during pregnancy. Obstet. Gynecol. 2012, 120 Pt 1, 398. [Google Scholar] [CrossRef]
- Chehab, B.M.; Kallail, K.J.; El Fakih, R.O.; Zackula, R.E.; Minns, G.O. Use of the QuantiFERON®-TB Gold Assay in Pregnant Patients. Kans. J. Med. 2010, 3, 24–30. [Google Scholar] [CrossRef]
- Mathad, J.S.; Bhosale, R.; Sangar, V.; Mave, V.; Gupte, N.; Kanade, S.; Nangude, A.; Chopade, K.; Suryavanshi, N.; Deshpande, P.; et al. Pregnancy differentially impacts performance of latent tuberculosis diagnostics in a high-burden setting. PLoS ONE 2014, 9, e92308. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, V.I.; Baranovsky, P.M.; Pupyshev, S.A. New skin test for the diagnosis of tuberculosis based on recombinant protein ESAT-CFP. Like Honey 2008, 4, 28–34. [Google Scholar]
- Kiselev, V.I.; Baranovskiĭ, P.M.; Rudykh, I.V.; Shuster, A.M.; Mart, V.A.; Mednikov, B.L.; Demin, A.V.; Aleksandrov, A.N.; Mushkin, A.I.; Levi, D.T.; et al. Clinical studies of the new skin test “DIASKINTEST®” for the diagnosis of tuberculosis. Probl. Tube. Lung Dis. 2009, 2, 11–16. [Google Scholar]
- Borisova, M.I.; Grabarnik, A.E.; Suleymanova, T.R. Experience of using skin test with recombinant tuberculosis allergen in pregnant women. Tuberc. Soc. Signif. Dis. 2017, 4, 24–27. (In Russian) [Google Scholar]
- Centers for Disease Control and Prevention. Latent Tuberculosis Treatment Guidelines: 2020 Update; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. Available online: https://www.cdc.gov/mmwr/volumes/69/rr/rr6901a1.htm (accessed on 13 February 2020).
- WHO. Guidelines for the Management of Latent Tuberculosis Infection; WHO: Geneva, Switzerland, 2014; Available online: http://apps.who.int/medicinedocs/documents/s21682ru/s21682ru.pdf (accessed on 1 January 2015).
- Getahun, H.; Sculier, D.; Sismanidis, C.; Grzemska, M.; Raviglione, M. Prevention, diagnosis, and treatment of tuberculosis in children and mothers: Evidence for action for maternal, neonatal, and child health services. J. Infect. Dis. 2012, 205 (Suppl. 2), S216–S227. [Google Scholar] [CrossRef]
- Management of Tuberculosis in Pregnant Women and Newborn Infants—Guideline, Version 3.2. Available online: https://www.health.qld.gov.au/__data/assets/pdf_file/0030/444558/tb-guideline-pregnancy.pdf (accessed on 5 November 2021).
- Madan, A.; Graham, R.A.; Carroll, K.M.; Mudra, D.R.; Burton, L.A.; Krueger, L.A.; Downey, A.D.; Czerwinski, M.; Forster, J.; Ribadeneira, M.D.; et al. Parkinson A: Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab. Dispos. 2003, 31, 421–431. [Google Scholar] [CrossRef]
- Zand, R.; Nelson, S.D.; Slattery, J.T.; Thummel, K.E.; Kalhorn, T.F.; Adams, S.P.; Wright, J.M. Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin. Pharmacol. Ther. 1993, 54, 142–149. [Google Scholar] [CrossRef]
- Leclercq, I.; Desager, J.P.; Horsmans, Y. Inhibition of chlorzoxazone metabolism, a clinical probe for CYP2E1, by a single ingestion of watercress. Clin. Pharmacol. Ther. 1998, 64, 144–149. [Google Scholar] [CrossRef]
- Riccardi, N.; Canetti, D.; Rodari, P.; Besozzi, G.; Saderi, L.; Dettori, M.; Codecasa, L.R.; Sotgiu, G. Tuberculosis and pharmacological interactions: A narrative review. Curr. Res. Pharmacol. Drug Discov. 2020, 15, 100007. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Self, T.H.; Chrisman, C.R.; Baciewicz, A.M.; Bronze, M.S. Isoniazid drug and food interactions. Am. J. Med. Sci. 1999, 317, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Abulfathi, A.A.; Decloedt, E.H.; Svensson, E.M.; Diacon, A.H.; Donald, P.; Reuter, H. Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis. Clin. Pharmacokinet. 2019, 58, 1103–1129. [Google Scholar] [CrossRef]
- Saima, S.; Furuie, K.; Yoshimoto, H.; Fukuda, J.; Hayashi, T.; Echizen, H. The effects of rifampicin on the pharmacokinetics and pharmacodynamics of orally administered nilvadipine to healthy subjects. Br. J. Clin. Pharmacol. 2002, 53, 203–206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cordeanu, E.M.; Gaertner, S.; Faller, A.; Mirea, C.; Lessinger, J.M.; Kemmel, V.; Stephan, D. Rifampicin reverses nicardipine effect inducing uncontrolled essential hypertension. Fundam. Clin. Pharmacol. 2017, 31, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Easterling, T.; Mundle, S.; Bracken, H.; Parvekar, S.; Mool, S.; Magee, L.A.; von Dadelszen, P.; Shochet, T.; Winikoff, B. Oral antihypertensive regimens (nifedipine retard, labetalol, and methyldopa) for management of severe hypertension in pregnancy: An open-label, randomised controlled trial. Lancet 2019, 394, 1011–1021. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grin, L.; Laish-Farkash, A.; Shenhav, S.; Piltz, X.; Ganelin, L.; Rabinovich, M.; Anteby, E.Y.; Yosefy, C. Safety of nifedipine in threatened preterm labor: Investigation by three-dimensional echocardiography. Echocardiography 2018, 35, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.; Pozniak, A.; Boffito, M. Pharmacokinetics and pharmacodynamics of drug interactions involving rifampicin, rifabutin and antimalarial drugs. J. Antimicrob. Chemother. 2008, 62, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Baciewicz, A.M.; Chrisman, C.R.; Finch, C.K.; Self, T.H. Update on rifampin, rifabutin, and rifapentine drug interactions. Curr. Med. Res. Opin. 2013, 29, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cramer, D.W. Acetaminophen Use During Pregnancy. J. Am. Med. Assoc. 2024, 332, 338–339. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jang, H.; Lee, J.Y.; Kwon, K.I.; Oh, S.J.; Kim, S.K. Inhibition of cytochrome P450 by ethambutol in human liver microsomes. Toxicol. Lett. 2014, 229, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Meléndez Camargo, M.E.; Lozano Cortés, M. Renal and hepatic interactions of acetaminophen and amikacin in the infant rat. Proc. West Pharmacol. Soc. 1998, 41, 61–63. [Google Scholar] [PubMed]
- Strydom, N.; Gupta, S.V.; Fox, W.S.; Via, L.E.; Bang, H.; Lee, M.; Eum, S.; Shim, T.; Barry, C.E.; Zimmerman, M.; et al. Tuberculosis drugs’ distribution and emergence of resistance in patient’s lung lesions: A mechanistic model and tool for regimen and dose optimization. PLoS Med. 2019, 16, e1002773. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, D.; Alffenaar, J.C.; Köser, C.U.; Dheda, K.; Chapagain, M.L.; Simbar, N.; Schön, T.; Sturkenboom, M.G.G.; McIlleron, H.; Lee, P.S.; et al. d-Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal. Clin. Infect. Dis. 2018, 67 (Suppl. 3), S308–S316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Lei, G.; Dong, W.; Lan, T.; Fan, J.; Qin, S. Differential distribution of linezolid in diseased and nondiseased bones in patients with spinal tuberculosis. BMC Infect Dis. 2024, 24, 50. [Google Scholar] [CrossRef]
- Chen, I.L.; Lee, C.H.; Hsiao, S.C.; Shih, F.Y. Interactions between carbapenems and valproic acid among the patients in the intensive care units. J. Crit. Care 2021, 62, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Takahashi, K.; Mizutani, T. Interaction between valproic acid and carbapenem antibiotics. Drug Metab. Rev. 2007, 39, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Hodel, E.M.; Marzolini, C.; Waitt, C.; Rakhmanina, N. Pharmacokinetics, Placental and Breast Milk Transfer of Antiretroviral Drugs in Pregnant and Lactating Women Living with HIV. Curr Pharm Des. 2019, 25, 556–576. [Google Scholar] [CrossRef]
- WHO. The Use of Bedaquiline in the Treatment of Multidrug-Resistant Tuberculosis: Interim Policy Guidance; WHO: Geneva, Switzerland, 2013; p. 57. [Google Scholar]
- Kudlay, D.A. Development and introduction into clinical practice of a new pharmacological substance from the class of diarylquinolines. Exp. Clin. Pharmacol. 2021, 84, 41–47. [Google Scholar] [CrossRef]
- Stadler, J.A.M.; Maartens, G.; Meintjes, G.; Wasserman, S. Clofazimine for the treatment of tuberculosis. Front. Pharmacol. 2023, 14, 1100488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Castro, R.R.; Carmo, F.A.D.; Martins, C.; Simon, A.; de Sousa, V.P.; Rodrigues, C.R.; Cabral, L.M.; Sarmento, B. Clofazimine functionalized polymeric nanoparticles for brain delivery in the tuberculosis treatment. Int. J. Pharm. 2021, 602, 120655. [Google Scholar] [CrossRef] [PubMed]
- Zimina, V.N.; Viktorova, I.B. Delamanid—A new anti-tuberculosis drug: Application, limitations, prospects. Tuberc. Lung Dis. 2021, 99, 58–66. [Google Scholar] [CrossRef]
- Lewis, J.M.; Sloan, D.J. The role of delamanid in the treatment of drug-resistant tuberculosis. Ther. Clin. Risk. Manag. 2015, 11, 779–791. [Google Scholar] [PubMed]
- Diacon, A.H.; von Groote-Bidlingmaier, F.; Donald, P.R. Delamanid, a new 6-nitro-2, 3-23 dihydroimidazo [2, 1-b] oxazole for the management of tuberculosis resistant to at least isoniazid 24 and rifampicin. Expert. Opin. Drug Discov. 2014, 2, 87–94. [Google Scholar]
- Karonova, T.L.; Mikhaylova, A.A.; Golovatyuk, K.A.; Chernikova, A.T.; Korobova, Z.R.; Liubimova, N.E.; Starshinova, A.A.; Kudlay, D.A.; Totolian, A.A.; Shlyakhto, E.V. Vitamin D Metabolism Parameters and Cytokine Profile in COVID-19 Patients with Bolus Cholecalciferol Supplementation. Diagnostics 2024, 14, 1408. [Google Scholar] [CrossRef]
- Ciapponi, A.; Berrueta, M.P.K.; Parker, E.; Bardach, A.; Mazzoni, A.; Anderson, S.A.; Argento, F.J.; Ballivian, J.; Bok, K.; Comandé, D.; et al. Safety of COVID-19 vaccines during pregnancy: A systematic review and meta-analysis. Vaccine 2023, 41, 3688–3700. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Artymuk, N.V.; Belokrinitskaya, T.E.; Parfenova, Y.A.; Frolova, N.I. Monitoring of COVID-19 vaccination in pregnant women of Siberia and the Russian Far East. Akusherstvo I Ginekol./Obstet. Gynecol. 2022, 5, 53–58. (In Russian) [Google Scholar] [CrossRef]
- Starshinova, A.; Borozinets, A.; Kulpina, A.; Sereda, V.; Rubinstein, A.; Kudryavtsev, I.; Kudlay, D. Bronchial Asthma and COVID-19: Etiology, Pathological Triggers, and Therapeutic Considerations. Pathophysiology 2024, 31, 269–287. [Google Scholar] [CrossRef]
- Sefiyeva, G.; Shadrina, U.; Vavilova, T.; Sirotkina, O.; Bautin, A.; Chynybekova, A.; Pozhidaeva, A.; Stepanovykh, E.; Starshinova, A.; Kudlay, D.; et al. Pregnant Woman in Outcomes with Prosthetic Heart Valves. J. Cardiovasc. Dev. Dis. 2024, 11, 353. [Google Scholar] [CrossRef]
- Vasichkina, E.; Alekseeva, D.; Karev, V.; Podyacheva, E.; Kudryavtsev, I.; Glushkova, A.; Starshinova, A.Y.; Kudlay, D.; Starshinova, A. Cardiac Involvement in Children Affected by COVID-19: Clinical Features and Diagnosis. Diagnostics 2023, 13, 120. [Google Scholar] [CrossRef]
- Mitrofanova, L.; Makarov, I.; Goncharova, E.; Makarova, T.; Starshinova, A.; Kudlay, D.; Shlaykhto, E. High Risk of Heart Tumors after COVID-19. Life 2023, 13, 2087. [Google Scholar] [CrossRef]
- Semnani, K.; Esmaeili, S. Nuances in the global impact of COVID-19 on tuberculosis control efforts: An updated review. Medicine 2025, 104, e42195. [Google Scholar] [CrossRef]
- Dlangalala, T.; Musekiwa, A.; Mashamba-Thompson, T. Impact of COVID-19 on TB diagnostic services at primary healthcare clinics in eThekwini district, South Africa. Sci. Rep. 2023, 13, 16645. [Google Scholar] [CrossRef]
- Geng, Y.; Li, G.; Zhang, L. The Impact of COVID-19 interventions on influenza and mycobacterium tuberculosis infection. Front. Public Health 2021, 9, 672568. [Google Scholar] [CrossRef]
TB Drug | Pregnancy Category | Mechanism of Action/ Metabolism | Pathogenesis | Interaction with Drugs | Risk of Adverse Reactions |
---|---|---|---|---|---|
Isoniazid | C | Antibacterial; inhibits mycolic acid synthesis | Inhibits then induces CYP2E1; inhibits CYP2C9; weak MAO inhibitor | Increases warfarin levels; interactions with rifampicin | Hepatotoxicity risk; monthly liver enzyme monitoring; supplement with vitamins B6 and K |
Rifampicin | C | Bacterial RNA polymerase inhibitor | Potent inducer of CYP3A4, CYP2C9 | Decreases plasma levels of calcium channel blockers, warfarin, some antibiotics | Contraindicated in 1st trimester; risk of bleeding in mother and fetus; vitamin K prophylaxis recommended |
Pyrazinamide | C | Hydrolyzed to pyrazinoic acid | Metabolism involving CYP1A2, CYP2E1 (minor role) | Possible reduced clearance with aspirin, paracetamol | Limited data; use if benefits outweigh risks |
Ethambutol | C | Antibacterial | Inhibits CYP1A2, CYP2E1; moderate inhibition of CYP2C19, CYP2D6; weak inhibition of CYP3A4 and others | Possible interactions with warfarin, beta-blockers | Risk of optic neuropathy; contraindicated in 1st trimester |
Rifabutin | C | CYP3A4 and CYP2C9 inducer | Similar to rifampicin | Alters warfarin and other CYP3A4 substrate levels | Insufficient data; potential risks |
Levofloxacin | C | Inhibits bacterial DNA gyrase | Partially metabolized via glucuronidation | Reduced levels with rifampicin; interacts with warfarin | Used in MDR-TB; risk of QT prolongation |
Moxifloxacin | C | Inhibits bacterial DNA gyrase | Similar to levofloxacin | Same as levofloxacin | Same as levofloxacin |
Bedaquiline | B | Inhibits mycobacterial ATP synthase | Metabolized by CYP3A4 | Interaction with azoles (increased levels), rifampicin (decreased levels) | Requires QT monitoring; passes into breast milk |
Capreomycin | C | Aminoglycoside antibiotic | Not metabolized by CYP | Increased nephro- and ototoxicity with other drugs | High toxicity; caution in pregnancy |
Cycloserine | C | Cell wall synthesis inhibitor | No CYP interactions | Interactions with isoniazid, CNS drugs | Risk of neurotoxicity; use with caution |
Para-aminosalicylic acid | C | Antibiotic | May reduce rifampicin levels | May decrease rifampicin efficacy | Use only if no alternatives |
Linezolid | C | Protein synthesis inhibitor | Unknown CYP effects | Interacts with serotonergic drugs, rifampicin | Not recommended during breastfeeding |
Amikacin/Kanamycin | D | Aminoglycosides | Not metabolized by CYP | Increased nephro- and ototoxicity | Contraindicated due to fetal hearing loss risk |
Meropenem | C | Carbapenem; cell wall synthesis inhibitor | No direct CYP effects | Lowers valproic acid levels; risk of seizures | Use cautiously, especially with CNS pathology |
Delamanid | C | Inhibits mycobacterial respiration | Metabolized by CYP3A4 | Reduced efficacy with rifampicin; increases QT interval | Contraindicated in pregnancy and breastfeeding |
Clofazimine | C | Membrane stabilizer; antibacterial | Inhibits CYP3A4, CYP2C8, CYP2D6 | Risk of QT prolongation; interactions with antiarrhythmics | Use only if strictly indicated |
Thioacetazone | D | Cycloserine derivative | Unknown CYP effects | Toxic | Contraindicated in pregnancy |
Anti-Tuberculosis Drugs | Experimental Data | The General Clinical Symptoms |
---|---|---|
Isoniazid | It has no teratogenic effect on animals. | Hepatitis: Nausea, vomiting, right upper quadrant abdominal pain, jaundice, elevated ALT/AST/bilirubin. Risk increases with age, chronic liver disease, and alcohol abuse. Peripheral neuropathy: Paresthesia (numbness, tingling), pain in hands/feet. CNS: Dizziness, headache, rarely seizures or psychosis. Neuropathy is associated with vitamin B6 (pyridoxine) deficiency. Prevented by B6 supplementation. |
Rifampicin | In animal experiments, a dose-dependent increase in the incidence of malformed offspring has been found. Some cases of intrauterine fetal malformations in humans have been reported, but their incidence has not been determined. | Hepatitis: See Isoniazid. Frequently occurs in combination with H. Colors bodily fluids (urine, saliva, tears) orange-red. May stain contact lenses. GI tract: Nausea, vomiting, diarrhea, abdominal pain. Immune system: Flu-like syndrome with fever, chills, headache, myalgia, arthralgia (more common with intermittent dosing). Thrombocytopenia, hemolytic anemia. |
Rifabutin | No teratogenic effect was detected in animal experiments. | |
Pyrazinamide | No teratogenic effect was revealed in animal experiments (conducted on mice and rats); however, the data on its use in pregnant women are limited. | Hepatitis: See Isoniazid. Frequently increases uric acid levels. Jhyperuricemia, gouty arthritis: Joint pain, swelling, redness (often first metatarsophalangeal joint). GI tract: Nausea, vomiting, anorexia. Metabolism: Asymptomatic ↑ uric acid. |
Ethambutol | Teratogenic effects have been identified in animal experiments; reports of side effects in pregnant women include a risk of optic neuritis development in the child. | Retrobulbar neuritis: ↓ visual acuity, ↓ red-green color discrimination, scotomas, eye pain. Key toxicity! Dose-dependent (risk ↑ at >15 mg/kg/day). Requires ophthalmologic monitoring. Nervous system: Peripheral neuropathy (less common than with H). |
Anti-Tuberculosis Drugs | Experimental Data | Risks of Using the Drug | The General Clinical Symptoms |
---|---|---|---|
Bedaquiline | Animal studies have found no evidence of fetal harm. | There are no early indications of its risk to pregnant women. | QT prolongation: Risk of ventricular arrhythmias. ECG monitoring is mandatory. Liver: ↑ ALT/AST (rarely severe hepatitis). GI tract: Nausea, abdominal pain |
Capreomycin | Teratogenicity and nephro- and ototoxicity have been detected in animals at high doses. | It can only be used when indicated. | Vestibular: Dizziness, imbalance, nystagmus. Risk ↑ with high doses, prolonged use, renal impairment, and advanced age. Requires audiometry. Nephrotoxicity: ↑ creatinine/urea, proteinuria, rarely acute renal failure. Neuromuscular blockade (especially with rapid IV administration or in myasthenia): muscle weakness, respiratory depression. |
Levofloxacin and moxifloxacin | Against the background of high doses of levofloxacin, delayed bone development in the fetus was noted in preclinical studies. An increased incidence of spontaneous abortions and increased postnatal mortality were also observed. | The use of fluoroquinolones is not approved for young pregnant women (under 18 years of age). Clinical studies of fluoroquinolones in pregnant women of active and late reproductive age have not shown a risk of fetal anomalies. | Nausea, vomiting, diarrhea, abdominal pain. QT interval: Mfx > Lfx. Risk ↑ with hypokalemia, QT-prolonging drugs, heart disease. CNS: Headache, dizziness, insomnia, rarely seizures or psychosis. QT prolongation: Risk of ventricular arrhythmias (torsades de pointes). Tendinitis, tendon rupture (especially Achilles). Risk ↑ with age, corticosteroids, renal impairment. |
Cycloserine | There are not enough data on the effect of this drug on pregnancy and fetal condition. | This drug should be administered with caution during pregnancy and infant feeding | Depression, anxiety, psychosis, suicidal ideation, confusion, headache, seizures, tremor. Dose adjustment or discontinuation often necessary. |
Para-aminosalicylic acid | No teratogenic effect has been revealed in animal experiments (mice and rats); however, reports of its administration to pregnant women are limited. | It should be administered to pregnant women with caution, only for vital indications and in the absence of alternatives in patients with multidrug-resistant tuberculosis. | Nausea, vomiting, diarrhea, abdominal pain. Hepatitis: See Isoniazid. Hypothyroidism: (with prolonged use), goiter. Allergic reactions: Rash, fever, rarely Stevens–Johnson syndrome. |
Linezolid | No teratogenic effect has been observed in animal experiments (mice and rats); however, there are few reports of its administration to pregnant women. | This drug is administered to pregnant women in cases when the expected benefit of therapy for the mother outweighs the potential risk for the fetus. | Optic neuropathy: ↓ vision. Neuropathy more common with prolonged use. GI tract: Nausea, diarrhea. Serotonin syndrome: (especially with SSRIs): Agitation, hallucinations, hyperthermia, tachycardia, hyperreflexia, myoclonus. Thrombocytopenia: Bleeding, petechiae. Anemia: Fatigue, pallor. Leukopenia/neutropenia: Infection risk. Dose- and duration-dependent. Requires CBC monitoring. Risk ↑ if used >28 days. Peripheral neuropathy: Paresthesia, pain (often irreversible). |
Clofazimine | Animal studies have shown some adverse effects. No human clinical trials have been conducted. | The drug should be avoided in the first trimester of pregnancy. It can be used during pregnancy according to strict indications. | Reddish-brown pigmentation (especially exposed areas). Dry skin, ichthyosis, itching. Pigmentation usually reversible after discontinuation, but fades slowly. GI tract: Abdominal pain, nausea, diarrhea. Corneal crystal deposition (usually asymptomatic), dry eyes. |
Delamanid | No obvious teratogenic effect has been identified, but fetal delay has been noted with high doses of the drug. | This drug is contraindicated in the first trimester of pregnancy. | QT interval prolongation. Increases the risk of ventricular arrhythmias, especially when combined with other QT-prolonging agents (e.g., bedaquiline, fluoroquinolones). Regular ECG monitoring is required. Nausea, vomiting, dyspepsia, abdominal pain. Usually mild and transient. Rarely progresses to clinical hepatitis. Hypokalemia, hypomagnesemia, hypoalbuminemia. Electrolyte disturbances may increase the risk of QT prolongation. |
Prothionamide and Ethionamide | Animal studies have revealed teratogenicity (CNS and skeletal malformations). | Its use is contraindicated during pregnancy. | Nausea, vomiting, anorexia, metallic taste, abdominal pain. Taking with food or at bedtime may reduce side effects. Hepatitis: See Isoniazid. Hypothyroidism: (with prolonged use), goiter. Peripheral neuropathy, depression, rarely psychosis. |
Pretomanid | This drug has proven teratogenic effects and embryotoxicity (namely, the development of skeletal development anomalies and fetal growth retardation). | It should be used during pregnancy only if the benefit to the patient outweighs the potential risk to the fetus. | Gastrointestinal (GI): Nausea, vomiting, diarrhea, anorexia. Common. May contribute to weight loss. Hepatotoxicity is a significant concern, particularly when combined with bedaquiline and linezolid (e.g., BPaL regimen). Central Nervous System (CNS): Headache, dizziness, insomnia. Peripheral neuropathy: Risk increases in combination with linezolid. Myelosuppression (especially when used with linezolid). Requires regular complete blood count (CBC) monitoring. Rash, pruritus. Rarely severe (e.g., Stevens–Johnson syndrome). |
Measures | Pregnant Women with Tuberculosis | Pregnant Women with Tuberculosis and COVID-19 |
---|---|---|
Assessment of clinical symptoms | There are usually no clinical manifestations. | Appearance of a fever and cough. |
The radiological complex of the examination and | X-ray. | CT of the chest is preferred. |
Immunodiagnostics of tuberculosis infection | Immunodiagnostics of tuberculosis infection (IGRA tests, Diaskintest) are safe. | The sensitivity of skin tests may be reduced against the background of immunosuppression in COVID-19. |
Laboratory tests | Microscopy and sputum culture for Mycobacterium tuberculosis (Mtb). | Microscopy, sputum culture for Mycobacterium tuberculosis (Mtb); PCR for SARS-CoV-2; Leucocytosis and thrombocytopenia are presented, which should be monitored. |
Treatment | Treatment of tuberculosis based on drug susceptibility. | TB treatment and treatment of COVID-19 (remdesivir, dexamethasone, and anticoagulans). Monoclonal antibodies and molnupiravir are being studied, but safety data for pregnant women are insufficient. |
Delivery and postnatal period | No premature delivery is indicated. | Caesarean section is indicated in cases of severe TB combined with COVID-19 when respiratory failure develops. |
Prevention | Vaccination against COVID-19 (mRNA vaccine) from the second trimester onwards. | Co-administration by a phthisiatrician, obstetrician–gynecologist, and infectious-disease specialist. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starshinova, A.; Belyaeva, E.; Irtyuga, O.; Sefiyeva, G.; Mitrofanova, L.; Makarov, I.; Makarova, T.; Kulpina, A.; Kudlay, D. Tuberculosis in Pregnant Women After COVID-19: Features of Prevention, Diagnosis, and Treatment (Narrative Review). J. Clin. Med. 2025, 14, 5681. https://doi.org/10.3390/jcm14165681
Starshinova A, Belyaeva E, Irtyuga O, Sefiyeva G, Mitrofanova L, Makarov I, Makarova T, Kulpina A, Kudlay D. Tuberculosis in Pregnant Women After COVID-19: Features of Prevention, Diagnosis, and Treatment (Narrative Review). Journal of Clinical Medicine. 2025; 14(16):5681. https://doi.org/10.3390/jcm14165681
Chicago/Turabian StyleStarshinova, Anna, Ekaterina Belyaeva, Olga Irtyuga, Giunai Sefiyeva, Lubov Mitrofanova, Igor Makarov, Tatiana Makarova, Anastasia Kulpina, and Dmitry Kudlay. 2025. "Tuberculosis in Pregnant Women After COVID-19: Features of Prevention, Diagnosis, and Treatment (Narrative Review)" Journal of Clinical Medicine 14, no. 16: 5681. https://doi.org/10.3390/jcm14165681
APA StyleStarshinova, A., Belyaeva, E., Irtyuga, O., Sefiyeva, G., Mitrofanova, L., Makarov, I., Makarova, T., Kulpina, A., & Kudlay, D. (2025). Tuberculosis in Pregnant Women After COVID-19: Features of Prevention, Diagnosis, and Treatment (Narrative Review). Journal of Clinical Medicine, 14(16), 5681. https://doi.org/10.3390/jcm14165681