The TAVI Dilemma: Balloon-Expandable or Self-Expanding Transcatheter Heart Valve–Interpreting Current Evidence for Personalized Valve Selection
Abstract
1. Introduction
2. Self-Expanding Valves: Flexibility and Durability
3. Balloon-Expandable Valve: Precision and Control
4. Beyond the First Implant: Valve-in-Valve and the Importance of Planning Ahead
5. Ongoing Trials
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef]
- Mahtta, D.; Elgendy, I.Y.; Bavry, A.A. From CoreValve to Evolut PRO: Reviewing the Journey of Self-Expanding Transcatheter Aortic Valves. Cardiol. Ther. 2017, 6, 183–192. [Google Scholar] [CrossRef]
- Hioki, H.; Yamamoto, M.; Shirai, S.; Ohno, Y.; Yashima, F.; Naganuma, T.; Yamawaki, M.; Watanabe, Y.; Yamanaka, F.; Mizutani, K.; et al. Valve Performance Between Latest-Generation Balloon-Expandable and Self-Expandable Transcatheter Heart Valves in a Small Aortic Annulus. JACC Cardiovasc. Interv. 2024, 17, 2612–2622. [Google Scholar] [CrossRef]
- Chieffo, A.; Buchanan, G.L.; Van Mieghem, N.M.; Tchetche, D.; Dumonteil, N.; Latib, A.; van der Boon, R.M.; Vahdat, O.; Marcheix, B.; Farah, B.; et al. Transcatheter aortic valve implantation with the Edwards SAPIEN versus the Medtronic CoreValve Revalving system devices: A multicenter collaborative study: The PRAGMATIC Plus Initiative (Pooled-RotterdAm-Milano-Toulouse in Collaboration). J. Am. Coll. Cardiol. 2013, 61, 830–836. [Google Scholar] [CrossRef]
- Barbanti, M.; Yang, T.H.; Rodes Cabau, J.; Tamburino, C.; Wood, D.A.; Jilaihawi, H.; Blanke, P.; Makkar, R.R.; Latib, A.; Colombo, A.; et al. Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation 2013, 128, 244–253. [Google Scholar] [CrossRef]
- Claessen, B.E.; Tang, G.H.L.; Kini, A.S.; Sharma, S.K. Considerations for Optimal Device Selection in Transcatheter Aortic Valve Replacement: A Review. JAMA Cardiol. 2021, 6, 102–112. [Google Scholar] [CrossRef]
- Leone, P.P.; Regazzoli, D.; Pagnesi, M.; Sanz-Sanchez, J.; Chiarito, M.; Cannata, F.; Van Mieghem, N.M.; Barbanti, M.; Tamburino, C.; Teles, R.; et al. Predictors and Clinical Impact of Prosthesis-Patient Mismatch After Self-Expandable TAVR in Small Annuli. JACC Cardiovasc. Interv. 2021, 14, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Leone, P.P.; Regazzoli, D.; Pagnesi, M.; Costa, G.; Teles, R.; Adamo, M.; Taramasso, M.; De Marco, F.; Mangieri, A.; Kargoli, F.; et al. Prosthesis-patient mismatch after transcatheter implantation of contemporary balloon-expandable and self-expandable valves in small aortic annuli. Catheter. Cardiovasc. Interv. 2023, 102, 931–943. [Google Scholar] [CrossRef]
- Rogers, T.; Steinvil, A.; Gai, J.; Torguson, R.; Koifman, E.; Kiramijyan, S.; Negi, S.; Lee, S.Y.; Okubagzi, P.; Satler, L.F.; et al. Choice of Balloon-Expandable Versus Self-Expanding Transcatheter Aortic Valve Impacts Hemodynamics Differently According to Aortic Annular Size. Am. J. Cardiol. 2017, 119, 900–904. [Google Scholar] [CrossRef]
- Kornyeva, A.; Burri, M.; Lange, R.; Ruge, H. Self-expanding vs. balloon-expandable transcatheter heart valves in small aortic annuli. Front. Cardiovasc. Med. 2023, 10, 1175246. [Google Scholar] [CrossRef] [PubMed]
- Okuno, T.; Tomii, D.; Lanz, J.; Heg, D.; Praz, F.; Stortecky, S.; Reineke, D.; Windecker, S.; Pilgrim, T. 5-Year Outcomes with Self-Expanding vs Balloon-Expandable Transcatheter Aortic Valve Replacement in Patients with Small Annuli. JACC Cardiovasc. Interv. 2023, 16, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Shirai, S.; Yamamoto, M.; Yashima, F.; Hioki, H.; Ryuzaki, T.; Morofuji, T.; Naganuma, T.; Yamanaka, F.; Mizutani, K.; Noguchi, M.; et al. Initial Results of Intra-Annular Self-Expandable Valves: Insights From the OCEAN-TAVI Registry. JACC Asia. 2024, 4, 536–544. [Google Scholar] [CrossRef]
- Herrmann, H.C.; Mehran, R.; Blackman, D.J.; Bailey, S.; Mollmann, H.; Abdel-Wahab, M.; Ben Ali, W.; Mahoney, P.D.; Ruge, H.; Wood, D.A.; et al. Self-Expanding or Balloon-Expandable TAVR in Patients with a Small Aortic Annulus. N. Engl. J. Med. 2024, 390, 1959–1971. [Google Scholar] [CrossRef]
- Skalidis, I.; Sayah, N.; Unterseeh, T.; Hovasse, T.; Sanguineti, F.; Garot, P.; Lounes, Y.; Neylon, A.; Akodad, M. Complex Transfemoral Access During Transcatheter Aortic Valve Replacement: A Narrative Review of Management, Complexity Scores, and Alternative Access. Life 2025, 15, 810. [Google Scholar] [CrossRef]
- Scotti, A.; Baggio, S.; Pagnesi, M.; Barbanti, M.; Adamo, M.; Eitan, A.; Estevez-Loureiro, R.; Veulemans, V.; Toggweiler, S.; Mylotte, D.; et al. Temporal Trends and Contemporary Outcomes After Transcatheter Aortic Valve Replacement with Evolut PRO/PRO+ Self-Expanding Valves: Insights From the NEOPRO/NEOPRO-2 Registries. Circ. Cardiovasc. Interv. 2023, 16, e012538. [Google Scholar] [CrossRef]
- Vlastra, W.; Chandrasekhar, J.; Munoz-Garcia, A.J.; Tchetche, D.; de Brito, F.S., Jr.; Barbanti, M.; Kornowski, R.; Latib, A.; D’Onofrio, A.; Ribichini, F.; et al. Comparison of balloon-expandable vs. self-expandable valves in patients undergoing transfemoral transcatheter aortic valve implantation: From the CENTER-collaboration. Eur. Heart J. 2019, 40, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Reardon, M.J.; Chehab, B.; Smith, D.; Walton, A.S.; Worthley, S.G.; Manoharan, G.; Sultan, I.; Yong, G.; Harrington, K.; Mahoney, P.; et al. 30-Day Clinical Outcomes of a Self-Expanding Transcatheter Aortic Valve: The International PORTICO NG Study. JACC Cardiovasc. Interv. 2023, 16, 681–689. [Google Scholar] [CrossRef]
- Ueyama, H.; Kuno, T.; Takagi, H.; Kobayashi, A.; Misumida, N.; Pinto, D.S.; Laham, R.J.; Baeza, C.; Kini, A.; Lerakis, S.; et al. Meta-Analysis Comparing Valve Durability Among Different Transcatheter and Surgical Aortic Valve Bioprosthesis. Am. J. Cardiol. 2021, 158, 104–111. [Google Scholar] [CrossRef]
- Brankovic, M.; Sharma, A. Transcatheter Aortic Valve Implantation and Replacement: The Latest Advances and Prospects. J. Clin. Med. 2025, 14, 1844. [Google Scholar] [CrossRef]
- Vahl, T.P.; Thourani, V.H.; Makkar, R.R.; Hamid, N.; Khalique, O.K.; Daniels, D.; McCabe, J.M.; Satler, L.; Russo, M.; Cheng, W.; et al. Transcatheter aortic valve implantation in patients with high-risk symptomatic native aortic regurgitation (ALIGN-AR): A prospective, multicentre, single-arm study. Lancet 2024, 403, 1451–1459. [Google Scholar] [CrossRef]
- Istrate, M.; Dregoesc, M.I.; Bolboaca, S.D.; Solomonean, A.G.; Botis, C.; Stef, A.; Hagiu, R.; Mot, S.D.C.; Bindea, D.I.; Oprea, A.; et al. The Influence of the Learning Curve on Clinical Outcomes in Balloon-Expandable versus Self-Expandable Transfemoral Transcatheter Aortic Valve Implantation. Cardiology 2023, 148, 335–346. [Google Scholar] [CrossRef]
- Reddy, P.; Merdler, I.; Ben-Dor, I.; Satler, L.F.; Rogers, T.; Waksman, R. Cerebrovascular events after transcatheter aortic valve implantation. EuroIntervention 2024, 20, e793–e805. [Google Scholar] [CrossRef]
- Abdelghani, M.; Mankerious, N.; Allali, A.; Landt, M.; Kaur, J.; Sulimov, D.S.; Merten, C.; Sachse, S.; Mehilli, J.; Neumann, F.J.; et al. Bioprosthetic Valve Performance After Transcatheter Aortic Valve Replacement with Self-Expanding Versus Balloon-Expandable Valves in Large Versus Small Aortic Valve Annuli: Insights From the CHOICE Trial and the CHOICE-Extend Registry. JACC Cardiovasc. Interv. 2018, 11, 2507–2518. [Google Scholar] [CrossRef] [PubMed]
- Beaver, T.; Bavaria, J.E.; Griffith, B.; Svensson, L.G.; Pibarot, P.; Borger, M.A.; Sharaf, O.M.; Heimansohn, D.A.; Thourani, V.H.; Blackstone, E.H.; et al. Seven-year outcomes following aortic valve replacement with a novel tissue bioprosthesis. J. Thorac. Cardiovasc. Surg. 2024, 168, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Valvo, R.; Costa, G.; Tamburino, C.; Barbanti, M. Coronary artery cannulation after transcatheter aortic valve implantation. EuroIntervention 2021, 17, 835–847. [Google Scholar] [CrossRef]
- Yerasi, C.; Rogers, T.; Forrestal, B.J.; Case, B.C.; Khan, J.M.; Ben-Dor, I.; Satler, L.F.; Garcia-Garcia, H.M.; Cohen, J.E.; Kitahara, H.; et al. Transcatheter Versus Surgical Aortic Valve Replacement in Young, Low-Risk Patients with Severe Aortic Stenosis. JACC Cardiovasc. Interv. 2021, 14, 1169–1180. [Google Scholar] [CrossRef]
- Ribeiro, H.B.; Rodes-Cabau, J.; Blanke, P.; Leipsic, J.; Kwan Park, J.; Bapat, V.; Makkar, R.; Simonato, M.; Barbanti, M.; Schofer, J.; et al. Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: Insights from the VIVID registry. Eur. Heart J. 2018, 39, 687–695. [Google Scholar] [CrossRef]
- Nikas, D.N.; Lakkas, L.; Naka, K.K.; Michalis, L.K. Transcatheter Aortic Valve Implantation (TAVI) in Bicuspid Anatomy. J. Clin. Med. 2025, 14, 772. [Google Scholar] [CrossRef] [PubMed]
- Katsaros, O.; Ktenopoulos, N.; Korovesis, T.; Benetos, G.; Apostolos, A.; Koliastasis, L.; Sagris, M.; Milaras, N.; Latsios, G.; Synetos, A.; et al. Bicuspid Aortic Valve Disease: From Pathophysiology to Treatment. J. Clin. Med. 2024, 13, 4970. [Google Scholar] [CrossRef]
- Buono, A.; Zito, A.; Kim, W.K.; Fabris, T.; De Biase, C.; Bellamoli, M.; Montarello, N.; Costa, G.; Alfadhel, M.; Koren, O.; et al. Balloon-Expandable vs Self-Expanding Valves for Transcatheter Treatment of Sievers Type 1 Bicuspid Aortic Stenosis. JACC Cardiovasc. Interv. 2024, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Mangieri, A.; Tchetche, D.; Kim, W.K.; Pagnesi, M.; Sinning, J.M.; Landes, U.; Kornowski, R.; De Backer, O.; Nickenig, G.; Ielasi, A.; et al. Balloon Versus Self-Expandable Valve for the Treatment of Bicuspid Aortic Valve Stenosis: Insights From the BEAT International Collaborative Registrys. Circ. Cardiovasc. Interv. 2020, 13, e008714. [Google Scholar] [CrossRef] [PubMed]
- Ueshima, D.; Nai Fovino, L.; Brener, S.J.; Fabris, T.; Scotti, A.; Barioli, A.; Giacoppo, D.; Pavei, A.; Fraccaro, C.; Napodano, M.; et al. Transcatheter aortic valve replacement for bicuspid aortic valve stenosis with first- and new-generation bioprostheses: A systematic review and meta-analysis. Int. J. Cardiol. 2020, 298, 76–82. [Google Scholar] [CrossRef]
- Yoon, S.H.; Kim, W.K.; Dhoble, A.; Milhorini Pio, S.; Babaliaros, V.; Jilaihawi, H.; Pilgrim, T.; De Backer, O.; Bleiziffer, S.; Vincent, F.; et al. Bicuspid Aortic Valve Morphology and Outcomes After Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2020, 76, 1018–1030. [Google Scholar] [CrossRef]
- Forrest, J.K.; Ramlawi, B.; Deeb, G.M.; Zahr, F.; Song, H.K.; Kleiman, N.S.; Chetcuti, S.J.; Michelena, H.I.; Mangi, A.A.; Skiles, J.A.; et al. Transcatheter Aortic Valve Replacement in Low-risk Patients with Bicuspid Aortic Valve Stenosis. JAMA Cardiol. 2021, 6, 50–57. [Google Scholar] [CrossRef]
- Phichaphop, A.; Okada, A.; Fukui, M.; Koike, H.; Wang, C.; Margonato, D.; Walser-Kuntz, E.; Stanberry, L.I.; Hamid, N.; Cavalcante, J.L.; et al. Incidence, Predictors, and Outcomes of Unplanned Coronary Angiography After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2025, 18, 217–225. [Google Scholar] [CrossRef]
- Dvir, D.; Webb, J.G.; Bleiziffer, S.; Pasic, M.; Waksman, R.; Kodali, S.; Barbanti, M.; Latib, A.; Schaefer, U.; Rodes-Cabau, J.; et al. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA 2014, 312, 162–170. [Google Scholar] [CrossRef]
- Nuche, J.; Abbas, A.E.; Serra, V.; Vilalta, V.; Nombela-Franco, L.; Regueiro, A.; Al-Azizi, K.M.; Iskander, A.; Conradi, L.; Forcillo, J.; et al. Balloon- vs Self-Expanding Transcatheter Valves for Failed Small Surgical Aortic Bioprostheses: 1-Year Results of the LYTEN Trial. JACC Cardiovasc. Interv. 2023, 16, 2999–3012. [Google Scholar] [CrossRef]
- Rodes-Cabau, J.; Abbas, A.E.; Serra, V.; Vilalta, V.; Nombela-Franco, L.; Regueiro, A.; Al-Azizi, K.M.; Iskander, A.; Conradi, L.; Forcillo, J.; et al. Balloon- vs Self-Expanding Valve Systems for Failed Small Surgical Aortic Valve Bioprostheses. J. Am. Coll. Cardiol. 2022, 80, 681–693. [Google Scholar] [CrossRef]
- Takahashi, T.; Kobayashi, Y.; Bruoha, S.; Chau, M.L.; Granada, J.F.; Latib, A. Risk Assessment of Coronary Artery Obstruction Following Valve-in-Valve TAVR Using Dual IVUS Ostial Evaluation Technique. JACC Cardiovasc. Interv. 2021, 14, 2527–2529. [Google Scholar] [CrossRef]
- Dvir, D. Treatment of Small Surgical Valves: Clinical Considerations for Achieving Optimal Results in Valve-in-Valve Procedures. JACC Cardiovasc. Interv. 2015, 8, 2034–2036. [Google Scholar] [CrossRef] [PubMed]
- Tzimas, G.; Akodad, M.; Meier, D.; Duchscherer, J.; Kalk, K.; Everett, R.J.; Haidari, O.; Chuang, M.A.; Sellers, S.L.; Dvir, D.; et al. Predicted vs Observed Valve to Coronary Distance in Valve-in-Valve TAVR: A Computed Tomography Study. JACC Cardiovasc. Interv. 2023, 16, 2021–2030. [Google Scholar] [CrossRef]
- Khan, J.M.; Dvir, D.; Greenbaum, A.B.; Babaliaros, V.C.; Rogers, T.; Aldea, G.; Reisman, M.; Mackensen, G.B.; Eng, M.H.K.; Paone, G.; et al. Transcatheter Laceration of Aortic Leaflets to Prevent Coronary Obstruction During Transcatheter Aortic Valve Replacement: Concept to First-in-Human. JACC Cardiovasc. Interv. 2018, 11, 677–689. [Google Scholar] [CrossRef]
- Khan, J.M.; Greenbaum, A.B.; Babaliaros, V.C.; Dvir, D.; Reisman, M.; McCabe, J.M.; Satler, L.; Waksman, R.; Eng, M.H.; Paone, G.; et al. BASILICA Trial: One-Year Outcomes of Transcatheter Electrosurgical Leaflet Laceration to Prevent TAVR Coronary Obstruction. Circ. Cardiovasc. Interv. 2021, 14, e010238. [Google Scholar] [CrossRef]
- Van Praet, K.M.; Klein, C.; Kukucka, M.; Kempfert, J.; Kofler, M.; Gerckens, U.; Dvir, D.; Falk, V.; Unbehaun, A. Leaflet-splitting device to prevent coronary artery obstruction in valve-in-valve transcatheter aortic valve implantation. Multimed. Man. Cardiothorac. Surg. 2022, 2022. [Google Scholar] [CrossRef]
- Dvir, D.; Leon, M.B.; Abdel-Wahab, M.; Unbehaun, A.; Kodali, S.; Tchetche, D.; Pibarot, P.; Leipsic, J.; Blanke, P.; Gerckens, U.; et al. First-in-Human Dedicated Leaflet Splitting Device for Prevention of Coronary Obstruction in Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2023, 16, 94–102. [Google Scholar] [CrossRef]
- Alperi, A.; Rodes-Cabau, J.; Simonato, M.; Tchetche, D.; Charbonnier, G.; Ribeiro, H.B.; Latib, A.; Montorfano, M.; Barbanti, M.; Bleiziffer, S.; et al. Permanent Pacemaker Implantation Following Valve-in-Valve Transcatheter Aortic Valve Replacement: VIVID Registry. J. Am. Coll. Cardiol. 2021, 77, 2263–2273. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef]
- Hahn, R.T.; Webb, J.; Pibarot, P.; Ternacle, J.; Herrmann, H.C.; Suri, R.M.; Dvir, D.; Leipsic, J.; Blanke, P.; Jaber, W.A.; et al. 5-Year Follow-Up From the PARTNER 2 Aortic Valve-in-Valve Registry for Degenerated Aortic Surgical Bioprostheses. JACC Cardiovasc. Interv. 2022, 15, 698–708. [Google Scholar] [CrossRef]
- Bleiziffer, S.; Simonato, M.; Webb, J.G.; Rodes-Cabau, J.; Pibarot, P.; Kornowski, R.; Windecker, S.; Erlebach, M.; Duncan, A.; Seiffert, M.; et al. Long-term outcomes after transcatheter aortic valve implantation in failed bioprosthetic valves. Eur. Heart J. 2020, 41, 2731–2742. [Google Scholar] [CrossRef]
- Malaisrie, S.C.; Zajarias, A.; Leon, M.B.; Mack, M.J.; Pibarot, P.; Hahn, R.T.; Brown, D.; Wong, S.C.; Oldemeyer, J.B.; Shang, K.; et al. Transcatheter Aortic Valve Implantation for Bioprosthetic Valve Failure: Placement of Aortic Transcatheter Valves 3 Aortic Valve-in-Valve Study. Struct. Heart 2022, 6, 100077. [Google Scholar] [CrossRef]
- Sa, M.P.; Jacquemyn, X.; Simonato, M.; Brown, J.A.; Ahmad, D.; Serna-Gallegos, D.; Clavel, M.A.; Pibarot, P.; Dvir, D.; Sultan, I. Late Survival After Valve-in-Valve Transcatheter Aortic Valve Implantation with Balloon- Versus Self-Expandable Valves: Meta-Analysis of Reconstructed Time-to-Event Data. Am. J. Cardiol. 2023, 209, 120–127. [Google Scholar] [CrossRef]
- Sa, M.; Van den Eynde, J.; Simonato, M.; Cavalcanti, L.R.P.; Doulamis, I.P.; Weixler, V.; Kampaktsis, P.N.; Gallo, M.; Laforgia, P.L.; Zhigalov, K.; et al. Valve-in-Valve Transcatheter Aortic Valve Replacement Versus Redo Surgical Aortic Valve Replacement: An Updated Meta-Analysis. JACC Cardiovasc. Interv. 2021, 14, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Formica, F.; Gallingani, A.; Tuttolomondo, D.; Hernandez-Vaquero, D.; D’Alessandro, S.; Pattuzzi, C.; Celik, M.; Singh, G.; Ceccato, E.; Niccoli, G.; et al. Redo Surgical Aortic Valve Replacement versus Valve-In-Valve Transcatheter Aortic Valve Implantation: A Systematic Review and Reconstructed Time-To-Event Meta-Analysis. J. Clin. Med. 2023, 12, 541. [Google Scholar] [CrossRef]
- Nuis, R.J.; van Belle, E.; Teles, R.; Blackman, D.; Veulemans, V.; Santos, I.A.; Pilgrim, T.; Tarantini, G.; Saia, F.; Iakovou, I.; et al. BAlloon expandable vs. SElf expanding transcatheter vaLve for degenerated bioprosthesIs: Design and rationale of the BASELINE trial. Am. Heart J. 2023, 256, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Yashima, F.; Shirai, S.; Tada, N.; Naganuma, T.; Yamawaki, M.; Yamanaka, F.; Mizutani, K.; Noguchi, M.; Ueno, H.; et al. Performance and outcomes of the SAPIEN 3 Ultra RESILIA transcatheter heart valve in the OCEAN-TAVI registry. EuroIntervention 2024, 20, 579–590. [Google Scholar] [CrossRef] [PubMed]
Pre-Procedural Comparison | ||
---|---|---|
Category | Self-Expandable Valve (SEVs) | Balloon-Expandable Valves (BEVs) |
Sheath size/Access Compatibility | Smaller delivery systems in patients with small or diseased femoral/iliac arteries (e.g., females) | Slightly larger sheath requirements; may be more challenging in small vessel anatomy |
Annular and Anatomical Flexibility | Greater adaptability to irregular or calcified annuli due to flexible frame and consistent radial force | Less forgiving in asymmetric or heavily calcified anatomies; higher reliance on perfect alignment and sizing |
Aortic Annulus Size (Small Annuli) | Supra-annular leaflet position allows better flow in small annuli, reducing PPM risk | Intra-annular design may result in higher gradients in small annuli |
Native AR | Some SEVs (e.g., JenaValve) specifically designed for pure AR with no calcification for anchoring | Not suitable for non-calcified AR; anchoring is insufficient |
Coaxiality/Horizontal Aorta | Navigation may be more difficult in horizontal aortas | Balloon system allows better coaxial alignment in angulated aortic anatomies |
Future Coronary Access | High gram height may impede coronary reaccess in ViV or future PCI | Shorter frame height enables easier coronary access post-TAVI (ideal for young or CAD patients) |
Bicuspid AV | Less radial strength; potentially higher PVL | Higher radial force improves annular apposition and lowers PVL |
Stroke Prevention | Longer manipulation may increase embolic risk (more common in early-generation SEVs) | Shorter deployment reduces risk of embolization |
Learning Curve/Operator Experience | Slightly steeper learning curve due to repositioning/retrieval capability | Shorter learning curve, favored for newer centers or less experienced operators |
Intra-Procedural Comparison | ||
Category | Self-Expandable Valve (SEVs) | Balloon-Expandable Valves (BEVs) |
Repositioning During Deployment | Allows partial deployment, repositioning and recapture if positioning is suboptimal—particularly helpful in complex anatomies | One-shot deployment with NO option of repositioning; accurate initial placement is critical |
Need for Rapid Pacing | Rapid pacing not always required, which may reduce hemodynamic stress, particularly in patients with low ejection fraction | Requires rapid ventricular pacing to stabilize the valve and minimize motion during balloon inflation, increasing risk in frail patients |
Hemodynamic Stability During Implantation | Maintains better stability throughout the procedure due to self-expanding nature and gradual positioning | Rapid pacing and balloon inflation can lead to transient hypotension or bradycardia |
Risk of Annular Rupture | Still present, especially in oversizing scenarios, but lower than BEVs due to less forceful expansion | Higher risk when valve is oversized, especially in heavily calcified annuli |
Visualization and Implantation Feedback | Stepwise deployment allows real-time assessment of valve position and function before full release | Limited time for feedback; results are seen only after full deployment |
Procedure Time | Slightly longer due to stepwise deployment and need for careful manipulation | Generally shorter due to one-step, balloon-assisted delivery |
Coronary Obstruction Mitigation (Real-Time assessment) | Valve can be partially deployed, coronary flow assessed, and recaptured if obstruction is noted before full release | Cannot assess for coronary obstruction before final deployment |
Post-Procedural Comparison | ||
Category | Self-Expandable Valve (SEVs) | Balloon-Expandable Valves (BEVs) |
Hemodynamic Performance (EOA, Gradient) | Larger EOA, lower mean gradient, and improved flow—especially beneficial in small annuli | Slightly higher residual gradients due to intra-annular leaflet position; often not clinically significant |
Durability and Structural Valve Deterioration | Lower gradient rise over time and reduced risk of SVD vs. BEVs over 5 years | RESILIA tissue in newer SAPIEN (Edwards Lifesciences) platforms improves resistance to calcification, enhancing long-term durability in younger patients |
Paravalvular Leak | Early-generation SEVs had higher PVL; newer SEVs (e.g., Evolut PRO+—Medtronic Inc., Minneapolis, MN, USA) feature skirts/wraps to reduce moderate/severe PVL | Lower rates of moderate/severe PVL in SAPIEN 3 (Edwards Lifesciences) due to external sealing skirt |
Conduction Disturbance/Pacemaker Need | Higher rates of conduction abnormalities and permanent pacemaker implantation due to deeper frame and proximity to conduction system | Three- to four-fold lower risk of pacemaker requirement—less impact of membranous septum and better for patients prone to conduction issues |
Bleeding and Vascular Complications | Lower major/life-threatening bleeding due to smaller sheath sizes and reduced access site trauma | Slightly higher bleeding risk due to larger delivery systems, particularly in patients with small vasculature |
Mortality (Short- and Mid-term) | Some observational data suggest slightly higher short-term mortality; no significant difference in long-term survival vs. BEVs (CHOICE trial, FRANCE-TAVI) | Lower in-hospital and 2-year mortality shown in large registries like FRANCE-TAVI; possibly related to lower PVL, stroke, and pacemaker rates |
Study | Population | Sample Size | Comparison | Primary Outcome | Main Secondary Outcomes | Completion Date |
---|---|---|---|---|---|---|
BASELINE (NCT04843072) | Failing surgical aortic bioprosthesis requiring valve replacement and eligible for transfemoral TAVI | 400 | Evolut R/PRO (Medtronic Inc., Minneapolis, MN, USA) vs. Sapien S3/Ultra (Edwards Lifesciences) | Device success according to modified VARC-2 (30 d) | All-cause death, disabling stroke, rehospitalization for heart failure or valve related problems (1 y) | 1 May 2026 |
BEST (NCT05454150) | Severe, calcific, symptomatic AS | 1862 | Evolut R/PRO (Medtronic Inc., Minneapolis, MN, USA) vs. Sapien S3/Ultra (Edwards Lifesciences) | ACM (90 d) | Technical success (post-TAVI) Device success (90 d) Early safety (90 d) ACM (1 y) Stroke/TIA (1 y) HHF (90 d, 1 y) | 19 July 2025 |
CENTER (NCT03588247) | Transfemoral TAVI | 12000 | NR | ACM (30 d) Stroke (30 d) | PM implantation (30 d) Bleeding (30 d) New-onset AF (30 d) MI (30 d) | 1 January 2023 |
All Women Comparing Self-expanding ALLEGRA Valve to Any Other Balloon-Expandable Valve (NCT05989074) | Female patients with symptomatic severe AS | 130 | ALLEGRA TAVI System TF vs. any kind of CE-marked BEV system | Trans-aortic MG measure by TTE (30 d) | Technical success (exit the procedure room) Device success (30 d) Early safety (30 d) Clinical efficacy (1 y) | 31 August 2025 |
AAD-CHOICE (NCT06009588) | Severe AS with ascending aorta 45–55mm | 100 | NR | ACM (30 d) Adverse aortic events (aortic death, aortic dissection, or aortic rupture, 30 d) Device success (30 d) | ACM (1 y) CVM (1 y) Ascending aortic diameter expansion rate ≥ 3 mm/year (1 y) Hospitalization (1 y) | 30 August 2026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachakis, P.K.; Theofilis, P.; Kachrimanidis, I.; Soulaidopoulos, S.; Apostolos, A.; Skalidis, I.; Karakasis, P.; Ktenopoulos, N.; Drakopoulou, M.; Synetos, A.; et al. The TAVI Dilemma: Balloon-Expandable or Self-Expanding Transcatheter Heart Valve–Interpreting Current Evidence for Personalized Valve Selection. J. Clin. Med. 2025, 14, 5651. https://doi.org/10.3390/jcm14165651
Vlachakis PK, Theofilis P, Kachrimanidis I, Soulaidopoulos S, Apostolos A, Skalidis I, Karakasis P, Ktenopoulos N, Drakopoulou M, Synetos A, et al. The TAVI Dilemma: Balloon-Expandable or Self-Expanding Transcatheter Heart Valve–Interpreting Current Evidence for Personalized Valve Selection. Journal of Clinical Medicine. 2025; 14(16):5651. https://doi.org/10.3390/jcm14165651
Chicago/Turabian StyleVlachakis, Panayotis K., Panagiotis Theofilis, Ioannis Kachrimanidis, Stergios Soulaidopoulos, Anastasios Apostolos, Ioannis Skalidis, Paschalis Karakasis, Nikolaos Ktenopoulos, Maria Drakopoulou, Andreas Synetos, and et al. 2025. "The TAVI Dilemma: Balloon-Expandable or Self-Expanding Transcatheter Heart Valve–Interpreting Current Evidence for Personalized Valve Selection" Journal of Clinical Medicine 14, no. 16: 5651. https://doi.org/10.3390/jcm14165651
APA StyleVlachakis, P. K., Theofilis, P., Kachrimanidis, I., Soulaidopoulos, S., Apostolos, A., Skalidis, I., Karakasis, P., Ktenopoulos, N., Drakopoulou, M., Synetos, A., Tsioufis, C., & Toutouzas, K. (2025). The TAVI Dilemma: Balloon-Expandable or Self-Expanding Transcatheter Heart Valve–Interpreting Current Evidence for Personalized Valve Selection. Journal of Clinical Medicine, 14(16), 5651. https://doi.org/10.3390/jcm14165651