Host–Microbiome Interactions in Chronic Itch
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Eligibility and Selection Criteria
2.3. Data Extraction and Synthesis
2.4. Ethics Statement
2.5. Data and Material Availability
3. Results
3.1. Microbial Dysbiosis in Non-Atopic Itch
3.2. Host–Microbiome Interaction in Chronic Itch: Molecular Pathways
3.2.1. Epidermal Barrier Function and Microbial Interactions
3.2.2. Itch-Related Cytokines as Pruritogens
3.2.3. Protease-Activated Receptors and Microbial Dysbiosis
3.2.4. Transient Receptor Potential Channels and Microbiome
3.2.5. Neuropeptides
3.2.6. Microbial Metabolites and Sensory–Neuroimmune Crosstalk
3.2.7. Convergent Pathways and Feedback Loops in Chronic Itch
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Atopic dermatitis |
AMCi | Atrial Natriuretic Peptide-Modulating Cytotoxicity Inhibitor |
AMP | Antimicrobial peptide |
BNP | Brain natriuretic peptide |
CGRP | Calcitonin gene-related peptide |
CKD | Chronic kidney disease |
CoNS | Coagulase-negative staphylococci |
CTCL | Cutaneous T-cell lymphoma |
DRG | Dorsal root ganglia |
FDA | U.S. Food and Drug Administration |
FFA | Free fatty acid |
FLG | Filaggrin |
IL | Interleukin |
JAK | Janus kinase |
KLK | Kallikrein |
LSC | Lichen simplex chronicus |
MRGPR | Mas-related G protein-coupled receptor |
NMF | Natural moisturizing factor |
PAR | Protease-activated receptor |
PN | Prurigo nodularis |
SCFA | Short chain fatty acid |
SIR | Standardized incidence ratio |
STAT | Signal transducer and activator of transcription |
TEWL | Transepidermal water loss |
TLR | Toll-like receptor |
TRP | Transient receptor potential |
TRPV1/3/4 | Transient receptor potential vanilloid channels 1, 3, and 4 |
TSLP | Thymic stromal lymphopoietin |
VIP | Vasoactive intestinal peptide |
References
- Golpanian, R.S.; Lipman, Z.; Fourzali, K.; Fowler, E.; Nattkemper, L.A.; Chan, Y.H.; Yosipovitch, G. Psychiatric Comorbidities in Non-psychogenic Chronic Itch, a US-based Study. Acta Derm. Venereol. 2020, 100, adv00169. [Google Scholar] [CrossRef]
- Dalgard, F.J.; Svensson, Å.; Halvorsen, J.A.; Gieler, U.; Schut, C.; Tomas-Aragones, L.; Lien, L.; Poot, F.; Jemec, G.B.E.; Misery, L.; et al. Itch and Mental Health in Dermatological Patients across Europe: A Cross-Sectional Study in 13 Countries. J. Investig. Dermatol. 2020, 140, 568–573. [Google Scholar] [CrossRef]
- Ständer, S.; Yosipovitch, G.; Lacour, J.P.; Legat, F.J.; Paul, C.; Reich, A.; Chaouche, K.; Ahmad, F.; Piketty, C. Nemolizumab efficacy in prurigo nodularis: Onset of action on itch and sleep disturbances. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1820–1825. [Google Scholar] [CrossRef]
- Choragudi, S.; Biazus Soares, G.; Yosipovitch, G. Predictive factors of quality of life in chronic pruritus patients: A cross-sectional study. JAAD Int. 2023, 11, 65–71. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Gooderham, M.J.; Ständer, S.; Fonacier, L.; Szepietowski, J.C.; Deleuran, M.; Girolomoni, G.; Su, J.C.; Bushmakin, A.G.; Cappelleri, J.C. Interpreting the Relationship Among Itch, Sleep, and Work Productivity in Patients with Moderate-to-Severe Atopic Dermatitis: A Post Hoc Analysis of JADE MONO-2. Am. J. Clin. Dermatol. 2024, 25, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Ingrasci, G.; El-Kashlan, N.; Alexis, A.; Yosipovitch, G. Chronic itch in African Americans: An unmet need. Arch. Dermatol. Res. 2022, 314, 405–415. [Google Scholar] [CrossRef]
- Mahmoud, O.; Choragudi, S.; Nwaopara, A.; Yosipovitch, G. Prevalence of Chronic Pruritus in Elderly Black and White Inpatients: A Comparative Population Study. J. Clin. Med. 2023, 12, 5025. [Google Scholar] [CrossRef] [PubMed]
- McColl, M.; Boozalis, E.; Aguh, C.; Eseonu, A.C.; Okoye, G.A.; Kwatra, S.G. Pruritus in Black Skin: Unique Molecular Characteristics and Clinical Features. J. Natl. Med. Assoc. 2021, 113, 30–38. [Google Scholar] [CrossRef]
- Whang, K.A.; Khanna, R.; Thomas, J.; Aguh, C.; Kwatra, S.G. Racial and Gender Differences in the Presentation of Pruritus. Medicines 2019, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Won, P.; Stoycos, S.A.; Ding, L.; McMullen, K.A.; Kowalske, K.; Stewart, B.T.; Yenikomshian, H.A. Worse Itch and Fatigue in Racial and Ethnic Minorities: A Burn Model System Study. J. Burn. Care Res. 2023, 44, 1445–1451. [Google Scholar] [CrossRef]
- Beck, L.A.; Cork, M.J.; Amagai, M.; De Benedetto, A.; Kabashima, K.; Hamilton, J.D.; Rossi, A.B. Type 2 Inflammation Contributes to Skin Barrier Dysfunction in Atopic Dermatitis. JID Innov. 2022, 2, 100131. [Google Scholar] [CrossRef]
- Goleva, E.; Berdyshev, E.; Leung, D.Y. Epithelial barrier repair and prevention of allergy. J. Clin. Investig. 2019, 129, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yosipovitch, G. The Role of the Microbiome and Microbiome-Derived Metabolites in Atopic Dermatitis and Non-Histaminergic Itch. Am. J. Clin. Dermatol. 2020, 21 (Suppl. 1), 44–50. [Google Scholar] [CrossRef]
- Sidbury, R.; Alikhan, A.; Bercovitch, L.; Cohen, D.E.; Darr, J.M.; Drucker, A.M.; Eichenfield, L.F.; Frazer-Green, L.; Paller, A.S.; Schwarzenberger, K.; et al. Guidelines of care for the management of atopic dermatitis in adults with topical therapies. J. Am. Acad. Dermatol. 2023, 89, e1–e20. [Google Scholar] [CrossRef]
- Alkhaleefa, A.; Woo, T.E.; Parsons, L. Dupilumab for the Treatment of Prurigo Nodularis. Skin. Therapy Lett. 2023, 28, 7–9. [Google Scholar]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Harkins, C.P.; Kong, H.H.; Segre, J.A. Manipulating the Human Microbiome to Manage Disease. JAMA 2020, 323, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Zeeuwen, P.L.; Grice, E.A. Skin microbiome and antimicrobial peptides. Exp. Dermatol. 2021, 30, 1362–1365. [Google Scholar] [CrossRef] [PubMed]
- Dorrestein, P.C.; Gallo, R.L.; Knight, R. Microbial Skin Inhabitants: Friends Forever. Cell 2016, 165, 771–772. [Google Scholar] [CrossRef]
- Kim, H.S.; Keum, H.L.; Chung, I.Y.; Nattkemper, L.; Head, C.R.; Koh, A.; Sul, W.J.; Pastar, I.; Yosipovitch, G. Characterization of a Perturbed Skin Microbiome in Prurigo Nodularis and Lichen Simplex Chronicus. J. Investig. Dermatol. 2023, 143, 2082.e5–2085.e5. [Google Scholar] [CrossRef]
- Tutka, K.; Żychowska, M.; Żaczek, A.; Maternia-Dudzik, K.; Pawełczyk, J.; Strapagiel, D.; Lach, J.; Reich, A. Skin Microbiome in Prurigo Nodularis. Int. J. Mol. Sci. 2023, 24, 7675. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Keum, H.L.; Chung, I.Y.; Nattkemper, L.; Head, C.R.; Koh, A.; Sul, W.J.; Pastar, I.; Yosipovitch, G. Modulation of Neuroimmune and Epithelial Dysregulation in Patients with Moderate to Severe Prurigo Nodularis Treated with Nemolizumab. JAMA Dermatol. 2023, 159, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, B.E.; Berdyshev, E.; Bronova, I.; Bin, L.; Bae, J.; Kim, S.; Kim, H.Y.; Lee, U.H.; Kim, M.S.; et al. Staphylococcus aureus causes aberrant epidermal lipid composition and skin barrier dysfunction. Allergy 2023, 78, 1292–1306. [Google Scholar] [CrossRef]
- Clayton, K.; Holbrook, D.J.; Vallejo, A.; Porter, G.; Sirvent, S.; Davies, J.; Pople, J.; Lim, F.L.; Christodoulides, M.; Polak, M.E.; et al. Skin programming of inflammatory responses to Staphylococcus aureus is compartmentalized according to epidermal keratinocyte differentiation status. Br. J. Dermatol. 2023, 188, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Yosipovitch, G. The Skin Microbiota and Itch: Is There a Link? J. Clin. Med. 2020, 9, 1190. [Google Scholar] [CrossRef]
- Deng, L.; Costa, F.; Blake, K.J.; Choi, S.; Chandrabalan, A.; Yousuf, M.S.; Shiers, S.; Dubreuil, D.; Vega-Mendoza, D.; Rolland, C.; et al. S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis. Cell 2023, 186, 5375–5393.e25. [Google Scholar] [CrossRef]
- Mattila, J.O.; Vornanen, M.; Katila, M.L. Histopathological and bacteriological findings in prurigo nodularis. Acta Derm. Venereol. 1997, 77, 49–51. [Google Scholar] [CrossRef]
- Sharma, A.D. Oral ketotifen and topical antibiotic therapy in the management of pruritus in prurigo nodularis: A randomized, controlled, single-blind, parallel study. Indian J. Dermatol. 2013, 58, 355–359. [Google Scholar] [CrossRef]
- Demessant-Flavigny, A.L.; Connétable, S.; Kerob, D.; Moreau, M.; Aguilar, L.; Wollenberg, A. Skin microbiome dysbiosis and the role of Staphylococcus aureus in atopic dermatitis in adults and children: A narrative review. J. Eur. Acad. Dermatol. Venereol. 2023, 37 (Suppl. 5), 3–17. [Google Scholar] [CrossRef]
- Hülpüsch, C.; Rohayem, R.; Reiger, M.; Traidl-Hoffmann, C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J. Allergy Clin. Immunol. 2024, 154, 31–41. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, H.S. Prurigo nodularis and the microbiome. Clin. Dermatol. 2025. [CrossRef] [PubMed]
- Paller, A.S.; Kong, H.H.; Seed, P.; Naik, S.; Scharschmidt, T.C.; Gallo, R.L.; Luger, T.; Irvine, A.D. The microbiome in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 143, 26–35. [Google Scholar] [CrossRef]
- Çetinarslan, T.; Kümper, L.; Fölster-Holst, R. The immunological and structural epidermal barrier dysfunction and skin microbiome in atopic dermatitis-an update. Front. Mol. Biosci. 2023, 10, 1159404. [Google Scholar] [CrossRef]
- Liao, V.; Cornman, H.L.; Ma, E.; Kwatra, S.G. Prurigo nodularis: New insights into pathogenesis and novel therapeutics. Br. J. Dermatol. 2024, 190, 798–810. [Google Scholar] [CrossRef]
- Uberoi, A.; Bartow-McKenney, C.; Zheng, Q.; Flowers, L.; Campbell, A.; Knight, S.A.B.; Chan, N.; Wei, M.; Lovins, V.; Bugayev, J.; et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 2021, 29, 1235.e8–1248.e8. [Google Scholar] [CrossRef]
- Brown, S.J.; Relton, C.L.; Liao, H.; Zhao, Y.; Sandilands, A.; McLean, W.H.; Cordell, H.J.; Reynolds, N.J. Filaggrin haploinsufficiency is highly penetrant and is associated with increased severity of eczema: Further delineation of the skin phenotype in a prospective epidemiological study of 792 school children. Br. J. Dermatol. 2009, 161, 884–889. [Google Scholar] [CrossRef]
- Gonzalez, J.R.; Celli, A.; Weckel, A.; Dhariwala, M.O.; Merana, G.R.; Ojewumi, O.T.; Okoro, J.; Dwyer, L.R.; Tran, V.M.; Meyer, J.M.; et al. FLG Deficiency in Mice Alters the Early-Life CD4(+) T-Cell Response to Skin Commensal Bacteria. J. Investig. Dermatol. 2023, 143, 790–800.e712. [Google Scholar] [CrossRef]
- Kengmo Tchoupa, A.; Kretschmer, D.; Schittek, B.; Peschel, A. The epidermal lipid barrier in microbiome-skin interaction. Trends Microbiol. 2023, 31, 723–734. [Google Scholar] [CrossRef]
- Zheng, Y.; Hunt, R.L.; Villaruz, A.E.; Fisher, E.L.; Liu, R.; Liu, Q.; Cheung, G.Y.C.; Li, M.; Otto, M. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe 2022, 30, 301–313.e309. [Google Scholar] [CrossRef] [PubMed]
- Almoughrabie, S.; Cau, L.; Cavagnero, K.; O’Neill, A.M.; Li, F.; Roso-Mares, A.; Mainzer, C.; Closs, B.; Kolar, M.J.; Williams, K.J.; et al. Commensal Cutibacterium acnes induce epidermal lipid synthesis important for skin barrier function. Sci. Adv. 2023, 9, eadg6262. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Matsuda, A.; Jung, K.; Karasawa, K.; Matsuda, K.; Oida, K.; Ishizaka, S.; Ahn, G.; Amagai, Y.; Moon, C.; et al. Skin pH Is the Master Switch of Kallikrein 5-Mediated Skin Barrier Destruction in a Murine Atopic Dermatitis Model. J. Investig. Dermatol. 2016, 136, 127–135. [Google Scholar] [CrossRef]
- Simmons, J.; Gallo, R.L. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J. Investig. Dermatol. 2024, 144, 2377–2398. [Google Scholar] [CrossRef]
- Nakamura, K.; O’Neill, A.M.; Williams, M.R.; Cau, L.; Nakatsuji, T.; Horswill, A.R.; Gallo, R.L. Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis. Sci. Rep. 2020, 10, 21237. [Google Scholar] [CrossRef] [PubMed]
- Lunjani, N.; Ahearn-Ford, S.; Dube, F.S.; Hlela, C.; O’Mahony, L. Mechanisms of microbe-immune system dialogue within the skin. Genes. Immun. 2021, 22, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Bomar, L.; Brugger, S.D.; Yost, B.H.; Davies, S.S.; Lemon, K.P. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols. mBio 2016, 7, e01725-15. [Google Scholar] [CrossRef]
- Tseng, P.Y.; Hoon, M.A. Specific β-Defensins Stimulate Pruritus through Activation of Sensory Neurons. J. Investig. Dermatol. 2022, 142, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Dhariwala, M.O.; Scharschmidt, T.C. The best offense is a good beta-defensin. Immunity 2022, 55, 1586–1588. [Google Scholar] [CrossRef]
- Mack, M.R.; Miron, Y.; Chen, F.; Miller, P.E.; Zhang, A.; Korotzer, A.; Richman, D.; Bryce, P.J. Type 2 cytokines sensitize human sensory neurons to itch-associated stimuli. Front. Mol. Neurosci. 2023, 16, 1258823. [Google Scholar] [CrossRef]
- Kim, J.H.; Bae, H.C.; Ko, N.Y.; Lee, S.H.; Jeong, S.H.; Lee, H.; Ryu, W.I.; Kye, Y.C.; Son, S.W. Thymic stromal lymphopoietin downregulates filaggrin expression by signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) phosphorylation in keratinocytes. J. Allergy Clin. Immunol. 2015, 136, 205–208.e209. [Google Scholar] [CrossRef]
- Oetjen, L.K.; Mack, M.R.; Feng, J.; Whelan, T.M.; Niu, H.; Guo, C.J.; Chen, S.; Trier, A.M.; Xu, A.Z.; Tripathi, S.V.; et al. Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell 2017, 171, 217–228.e213. [Google Scholar] [CrossRef]
- Ju, T.; Labib, A.; Nattkemper, L.; Engle, S.; Auxier, A.; Hahn, N.; Sissons, S.; Sims, J.T.; Sun, Z.; Okragly, A.J.; et al. Serum Interleukin-13 and Caspase 8 are Elevated in Prurigo Nodularis. Acta Derm. Venereol. 2023, 103, adv00861. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Brinton, S.L.; Cavagnero, K.J.; O’Neill, A.M.; Chen, Y.; Dokoshi, T.; Butcher, A.M.; Osuoji, O.C.; Shafiq, F.; Espinoza, J.L.; et al. Competition between skin antimicrobial peptides and commensal bacteria in type 2 inflammation enables survival of S. aureus. Cell Rep. 2023, 42, 112494. [Google Scholar] [CrossRef] [PubMed]
- Stingeni, L.; Ferrucci, S.; Amerio, P.; Foti, C.; Patruno, C.; Girolomoni, G. Lebrikizumab: A new anti-IL-13 agent for treating moderate-to-severe atopic dermatitis. Expert. Opin. Biol. Ther. 2025, 25, 15–20. [Google Scholar] [CrossRef]
- Montero-Vilchez, T.; Sanabria-de-la-Torre, R.; Sanchez-Diaz, M.; Ureña-Paniego, C.; Molina-Leyva, A.; Arias-Santiago, S. The impact of dupilumab on skin barrier function: A systematic review. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 1284–1292. [Google Scholar] [CrossRef]
- Gael, M.; Adam, T.; Mariano-Bourin, M.; Bursztejn, A.C. Efficacy of dupilumab in chronic prurigo and chronic idiopathic pruritus: A systematic review of current evidence and analysis of response predictors. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1541–1551. [Google Scholar] [CrossRef]
- Nakajima, S.; Yonekura, S.; Nakamizo, S.; Egawa, G.; Kabashima, K. Dupilumab as a novel treatment option for prurigo nodularis. J. Allergy Clin. Immunol. 2023, 152, 870–872. [Google Scholar] [CrossRef] [PubMed]
- Yosipovitch, G.; Mollanazar, N.; Ständer, S.; Kwatra, S.G.; Kim, B.S.; Laws, E.; Mannent, L.P.; Amin, N.; Akinlade, B.; Staudinger, H.W.; et al. Dupilumab in patients with prurigo nodularis: Two randomized, double-blind, placebo-controlled phase 3 trials. Nat. Med. 2023, 29, 1180–1190. [Google Scholar] [CrossRef]
- Callewaert, C.; Nakatsuji, T.; Knight, R.; Kosciolek, T.; Vrbanac, A.; Kotol, P.; Ardeleanu, M.; Hultsch, T.; Guttman-Yassky, E.; Bissonnette, R.; et al. IL-4Rα Blockade by Dupilumab Decreases Staphylococcus aureus Colonization and Increases Microbial Diversity in Atopic Dermatitis. J. Investig. Dermatol. 2020, 140, 191–202.e197. [Google Scholar] [CrossRef]
- Simpson, E.L.; Schlievert, P.M.; Yoshida, T.; Lussier, S.; Boguniewicz, M.; Hata, T.; Fuxench, Z.; De Benedetto, A.; Ong, P.Y.; Ko, J.; et al. Rapid reduction in Staphylococcus aureus in atopic dermatitis subjects following dupilumab treatment. J. Allergy Clin. Immunol. 2023, 152, 1179–1195. [Google Scholar] [CrossRef]
- Mima, Y.; Yamamoto, M.; Iozumi, K. Cutaneous Adverse Events Following Nemolizumab Administration: A Review. J. Clin. Med. 2025, 14, 3026. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, J.; He, Y.; Lv, Z.; Liang, Z.; Chen, J.; Li, P.; Liu, J.; Yang, H.; Tao, A.; et al. Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins 2022, 14, 464. [Google Scholar] [CrossRef]
- Ständer, S.; Kwatra, S.G.; Silverberg, J.I.; Simpson, E.L.; Thyssen, J.P.; Yosipovitch, G.; Zhang, F.; Cameron, M.C.; Cella, R.R.; Valdez, H.; et al. Early Itch Response with Abrocitinib Is Associated with Later Efficacy Outcomes in Patients with Moderate-to-Severe Atopic Dermatitis: Subgroup Analysis of the Randomized Phase III JADE COMPARE Trial. Am. J. Clin. Dermatol. 2023, 24, 97–107. [Google Scholar] [CrossRef]
- Heuberger, D.M.; Schuepbach, R.A. Protease-activated receptors (PARs): Mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb. J. 2019, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Fan, X.; Lai, Y.; Chen, J.; Peng, Y.; Peng, Y.; Xiang, L.; Ma, Y. Protease-Activated Receptor 2 in inflammatory skin disease: Current evidence and future perspectives. Front. Immunol. 2024, 15, 1448952. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, P.; Henehan, M.; De Benedetto, A. Activation of protease-activated receptor 2 leads to impairment of keratinocyte tight junction integrity. J. Allergy Clin. Immunol. 2018, 142, 281–284.e287. [Google Scholar] [CrossRef]
- Paharik, A.E.; Salgado-Pabon, W.; Meyerholz, D.K.; White, M.J.; Schlievert, P.M.; Horswill, A.R. The Spl Serine Proteases Modulate Staphylococcus aureus Protein Production and Virulence in a Rabbit Model of Pneumonia. mSphere 2016, 1, 10–1128. [Google Scholar] [CrossRef]
- Gonzalez, T.; Stevens, M.L.; Baatyrbek Kyzy, A.; Alarcon, R.; He, H.; Kroner, J.W.; Spagna, D.; Grashel, B.; Sidler, E.; Martin, L.J.; et al. Biofilm propensity of Staphylococcus aureus skin isolates is associated with increased atopic dermatitis severity and barrier dysfunction in the MPAACH pediatric cohort. Allergy 2021, 76, 302–313. [Google Scholar] [CrossRef]
- Piipponen, M.; Li, D.; Landén, N.X. The Immune Functions of Keratinocytes in Skin Wound Healing. Int. J. Mol. Sci. 2020, 21, 8790. [Google Scholar] [CrossRef]
- Morizane, S.; Sunagawa, K.; Nomura, H.; Ouchida, M. Aberrant serine protease activities in atopic dermatitis. J. Dermatol. Sci. 2022, 107, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.R.; Nakatsuji, T.; Sanford, J.A.; Vrbanac, A.F.; Gallo, R.L. Staphylococcus aureus Induces Increased Serine Protease Activity in Keratinocytes. J. Investig. Dermatol. 2017, 137, 377–384. [Google Scholar] [CrossRef]
- Nattkemper, L.A.; Tey, H.L.; Valdes-Rodriguez, R.; Lee, H.; Mollanazar, N.K.; Albornoz, C.; Sanders, K.M.; Yosipovitch, G. The Genetics of Chronic Itch: Gene Expression in the Skin of Patients with Atopic Dermatitis and Psoriasis with Severe Itch. J. Investig. Dermatol. 2018, 138, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, O.; Soares, G.B.; Yosipovitch, G. Transient Receptor Potential Channels and Itch. Int. J. Mol. Sci. 2022, 24, 420. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Edwards, T.N.; Liu, A.W.; Hirai, T.; Jones, M.R.; Wu, J.; Li, Y.; Zhang, S.; Ho, J.; Davis, B.M.; et al. Cutaneous TRPV1(+) Neurons Trigger Protective Innate Type 17 Anticipatory Immunity. Cell 2019, 178, 919–932.e914. [Google Scholar] [CrossRef]
- Blake, K.J.; Baral, P.; Voisin, T.; Lubkin, A.; Pinho-Ribeiro, F.A.; Adams, K.L.; Roberson, D.P.; Ma, Y.C.; Otto, M.; Woolf, C.J.; et al. Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nat. Commun. 2018, 9, 37. [Google Scholar] [CrossRef]
- Gibbs, B.F.; Patsinakidis, N.; Raap, U. Role of the Pruritic Cytokine IL-31 in Autoimmune Skin Diseases. Front. Immunol. 2019, 10, 1383. [Google Scholar] [CrossRef]
- N’Diaye, A.; Gannesen, A.; Borrel, V.; Maillot, O.; Enault, J.; Racine, P.J.; Plakunov, V.; Chevalier, S.; Lesouhaitier, O.; Feuilloley, M.G. Substance P and Calcitonin Gene-Related Peptide: Key Regulators of Cutaneous Microbiota Homeostasis. Front. Endocrinol 2017, 8, 15. [Google Scholar] [CrossRef]
- Song, I.S.; Bunnett, N.W.; Olerud, J.E.; Harten, B.; Steinhoff, M.; Brown, J.R.; Sung, K.J.; Armstrong, C.A.; Ansel, J.C. Substance P induction of murine keratinocyte PAM 212 interleukin 1 production is mediated by the neurokinin 2 receptor (NK-2R). Exp. Dermatol. 2000, 9, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.R.; Nelson, A.M.; Batia, L.; Morita, T.; Estandian, D.; Owens, D.M.; Lumpkin, E.A.; Bautista, D.M. The ion channel TRPA1 is required for chronic itch. J. Neurosci. 2013, 33, 9283–9294. [Google Scholar] [CrossRef] [PubMed]
- Schmid, B.; Künstner, A.; Fähnrich, A.; Bersuch, E.; Schmid-Grendelmeier, P.; Busch, H.; Glatz, M.; Bosshard, P.P. Dysbiosis of skin microbiota with increased fungal diversity is associated with severity of disease in atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1811–1819. [Google Scholar] [CrossRef]
- N’Diaye, A.; Mijouin, L.; Hillion, M.; Diaz, S.; Konto-Ghiorghi, Y.; Percoco, G.; Chevalier, S.; Lefeuvre, L.; Harmer, N.J.; Lesouhaitier, O.; et al. Effect of Substance P in Staphylococcus aureus and Staphylococcus epidermidis Virulence: Implication for Skin Homeostasis. Front. Microbiol. 2016, 7, 506. [Google Scholar] [CrossRef]
- Pinho-Ribeiro, F.A.; Baddal, B.; Haarsma, R.; O’Seaghdha, M.; Yang, N.J.; Blake, K.J.; Portley, M.; Verri, W.A.; Dale, J.B.; Wessels, M.R.; et al. Blocking Neuronal Signaling to Immune Cells Treats Streptococcal Invasive Infection. Cell 2018, 173, 1083–1097.e1022. [Google Scholar] [CrossRef]
- Tsoi, L.C.; Hacini-Rachinel, F.; Fogel, P.; Rousseau, F.; Xing, X.; Patrick, M.T.; Billi, A.C.; Berthier, C.C.; Kahlenberg, J.M.; Lazzari, A.; et al. Transcriptomic characterization of prurigo nodularis and the therapeutic response to nemolizumab. J. Allergy Clin. Immunol. 2022, 149, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Yosipovitch, G.; Rosen, J.D.; Hashimoto, T. Itch: From mechanism to (novel) therapeutic approaches. J. Allergy Clin. Immunol. 2018, 142, 1375–1390. [Google Scholar] [CrossRef] [PubMed]
- Spigelman, I.; Puil, E. Substance P actions on sensory neurons. Ann. N. Y Acad. Sci. 1991, 632, 220–228. [Google Scholar] [CrossRef]
- Severini, C.; Improta, G.; Falconieri-Erspamer, G.; Salvadori, S.; Erspamer, V. The tachykinin peptide family. Pharmacol. Rev. 2002, 54, 285–322. [Google Scholar] [CrossRef]
- Perner, C.; Flayer, C.H.; Zhu, X.; Aderhold, P.A.; Dewan, Z.N.A.; Voisin, T.; Camire, R.B.; Chow, O.A.; Chiu, I.M.; Sokol, C.L. Substance P Release by Sensory Neurons Triggers Dendritic Cell Migration and Initiates the Type-2 Immune Response to Allergens. Immunity 2020, 53, 1063–1077.e1067. [Google Scholar] [CrossRef]
- Maciag, J.J.; Chantraine, C.; Mills, K.B.; Yadav, R.; Yarawsky, A.E.; Chaton, C.T.; Vinod, D.; Fitzkee, N.C.; Mathelié-Guinlet, M.; Dufrêne, Y.F.; et al. Mechanistic basis of staphylococcal interspecies competition for skin colonization. bioRxiv 2023. preprint. [Google Scholar]
- Larsson, L.I.; Fahrenkrug, J.; Schaffalitzky De Muckadell, O.; Sundler, F.; Håkanson, R.; Rehfeld, J.R. Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc. Natl. Acad. Sci. USA 1976, 73, 3197–3200. [Google Scholar] [CrossRef]
- Fyhrquist, N.; Muirhead, G.; Prast-Nielsen, S.; Jeanmougin, M.; Olah, P.; Skoog, T.; Jules-Clement, G.; Feld, M.; Barrientos-Somarribas, M.; Sinkko, H.; et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef]
- Gabriel, R.S.; Kerr, A.J.; Sharma, V.; Zeng, I.S.; Stewart, R.A. B-type natriuretic peptide and left ventricular dysfunction on exercise echocardiography in patients with chronic aortic regurgitation. Heart 2008, 94, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Rosay, T.; Bazire, A.; Diaz, S.; Clamens, T.; Blier, A.S.; Mijouin, L.; Hoffmann, B.; Sergent, J.A.; Bouffartigues, E.; Boireau, W.; et al. Pseudomonas aeruginosa Expresses a Functional Human Natriuretic Peptide Receptor Ortholog: Involvement in Biofilm Formation. mBio 2015, 6, 10–1128. [Google Scholar] [CrossRef]
- Yu, J.; Luo, Y.; Zhu, Z.; Zhou, Y.; Sun, L.; Gao, J.; Sun, J.; Wang, G.; Yao, X.; Li, W. A tryptophan metabolite of the skin microbiota attenuates inflammation in patients with atopic dermatitis through the aryl hydrocarbon receptor. J. Allergy Clin. Immunol. 2019, 143, 2108–2119.e2112. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.M.; Yosipovitch, G. Skin pH: From basic science to basic skin care. Acta Derm. Venereol. 2013, 93, 261–267. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Berger, T.; Fassett, M.S. Neuroimmune interactions in chronic itch of atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 239–250. [Google Scholar] [CrossRef]
- Cevikbas, F.; Wang, X.; Akiyama, T.; Kempkes, C.; Savinko, T.; Antal, A.; Kukova, G.; Buhl, T.; Ikoma, A.; Buddenkotte, J.; et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J. Allergy Clin. Immunol. 2014, 133, 448–460. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, X.; Yao, J.; Cao, W.; Zou, Z.; Wang, L.; Qin, H.; Zhong, D.; Li, Y.; Xue, P.; et al. The role of short-chain fatty acids in inflammatory skin diseases. Front. Microbiol. 2022, 13, 1083432. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Sun, T.; Liu, B.; Manyande, A.; Xu, W.; Xiang, H.B. The Role of Gut Microbiota in Chronic Itch-Evoked Novel Object Recognition-Related Cognitive Dysfunction in Mice. Front. Med. 2021, 8, 616489. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, L.; Liu, F.; Xiong, X.; Ouyang, Y.; Deng, Y. Tryptophan, an important link in regulating the complex network of skin immunology response in atopic dermatitis. Front. Immunol. 2023, 14, 1300378. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.W.; Zhang, Y.R.; Chen, C.S.; Edwards, T.N.; Ozyaman, S.; Ramcke, T.; McKendrick, L.M.; Weiss, E.S.; Gillis, J.E.; Laughlin, C.R.; et al. Scratching promotes allergic inflammation and host defense via neurogenic mast cell activation. Science 2025, 387, eadn9390. [Google Scholar] [CrossRef]
- Saunte, D.M.L.; Gaitanis, G.; Hay, R.J. Malassezia-Associated Skin Diseases, the Use of Diagnostics and Treatment. Front. Cell Infect. Microbiol. 2020, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Sparber, F.; De Gregorio, C.; Steckholzer, S.; Ferreira, F.M.; Dolowschiak, T.; Ruchti, F.; Kirchner, F.R.; Mertens, S.; Prinz, I.; Joller, N.; et al. The Skin Commensal Yeast Malassezia Triggers a Type 17 Response that Coordinates Anti-fungal Immunity and Exacerbates Skin Inflammation. Cell Host Microbe 2019, 25, 389–403.e386. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.I. Herpesvirus latency. J. Clin. Investig. 2020, 130, 3361–3369. [Google Scholar] [CrossRef] [PubMed]
- Dreyfus, D.H. Herpesviruses and the microbiome. J. Allergy Clin. Immunol. 2013, 132, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- White, D.W.; Suzanne Beard, R.; Barton, E.S. Immune modulation during latent herpesvirus infection. Immunol. Rev. 2012, 245, 189–208. [Google Scholar] [CrossRef]
- Tsagareli, M.G.; Follansbee, T.; Iodi Carstens, M.; Carstens, E. Targeting Transient Receptor Potential (TRP) Channels, Mas-Related G-Protein-Coupled Receptors (Mrgprs), and Protease-Activated Receptors (PARs) to Relieve Itch. Pharmaceuticals 2023, 16, 1707. [Google Scholar] [CrossRef] [PubMed]
- Gouin, O.; L’Herondelle, K.; Buscaglia, P.; Le Gall-Ianotto, C.; Philippe, R.; Legoux, N.; Mignen, O.; Buhé, V.; Leschiera, R.; Sakka, M.; et al. Major Role for TRPV1 and InsP3R in PAR2-Elicited Inflammatory Mediator Production in Differentiated Human Keratinocytes. J. Investig. Dermatol. 2018, 138, 1564–1572. [Google Scholar] [CrossRef]
- Jha, M.K.; Han, Y.; Liu, Z.; Hara, Y.; Langohr, I.M.; Morel, C.; Maloney, C.L.; Piepenhagen, P.; Xing, H.; Bodea, C.A.; et al. Type 2 cytokines pleiotropically modulate sensory nerve architecture and neuroimmune interactions to mediate itch. J. Allergy Clin. Immunol. 2025, 25, 00577–00579. [Google Scholar] [CrossRef]
- Choi, J.E.; Di Nardo, A. Skin neurogenic inflammation. Semin. Immunopathol. 2018, 40, 249–259. [Google Scholar] [CrossRef]
- Simpson, E.L.; Bieber, T.; Guttman-Yassky, E.; Beck, L.A.; Blauvelt, A.; Cork, M.J.; Silverberg, J.I.; Deleuran, M.; Kataoka, Y.; Lacour, J.P.; et al. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N. Engl. J. Med. 2016, 375, 2335–2348. [Google Scholar] [CrossRef]
- Beck, L.A.; Thaçi, D.; Hamilton, J.D.; Graham, N.M.; Bieber, T.; Rocklin, R.; Ming, J.E.; Ren, H.; Kao, R.; Simpson, E.; et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N. Engl. J. Med. 2014, 371, 130–139. [Google Scholar] [CrossRef]
MeSH Terms | Pruritus; Skin Microbiome; Dysbiosis; Neuroimmunomodulation; TRPV Cation Channels; Interleukin-31; Filaggrin; Host–Pathogen Interactions; Chronic Skin Diseases; Non-Atopic Dermatitis; Signal Transduction; T-Lymphocytes |
Keywords | Chronic itch; prurigo nodularis; lichen simplex chronicus; skin dysbiosis; microbiota imbalance; neuroimmune signaling; protease-activated receptors; TRP channels; IL-31; filaggrin mutation; biologics AND pruritus; immune-microbiome crosstalk; skin barrier dysfunction; inflammatory mediators; cutaneous nerves; Staphylococcus aureus; cytokine signaling; epithelial-immune interactions |
Databases Searched | PubMed, Scopus, Web of Science |
Date Range | January 1991–June 2025 |
Language and Filters | English language only; humans (where applicable); article types limited to primary research articles, systematic reviews, and narrative reviews |
Inclusion Criteria |
|
Exclusion Criteria |
|
Additional Sources | Reference lists of eligible articles and relevant reviews were manually screened. |
Final Studies Included in Review | 111 |
Atopic Dermatitis (AD) | Lichen Simplex Chronicus (LSC) | Prurigo Nodularis (PN) | |
---|---|---|---|
Dominant Pathogen(s) | Staphylococcus aureus [29,30] | No dominant pathogen | Staphylococcus aureus [21,31] |
Commensal Depletion | Cutibacterium, Streptococcus, Acinetobacter, Corynebacterium, and Prevotella [29,32,33] | Not well characterized | Marked increase in the abundance of Staphylococcus aureus in lesional skin [21,31,34] |
Microbial Diversity | Reduced alpha diversity [29,32,33] | Not well characterized | Reduced alpha diversity at lesional sites [21,31,34] |
Bacterial Species | Proposed Mechanism of Itch | Potential Therapeutic Strategies |
---|---|---|
Staphylococcus aureus | Releases proteases (e.g., SplD, V8/SspA) activating PAR1/2 [24,25,36,76]; α-hemolysin forms pores via ADAM10 [77]; induces IL-31 and IL-33 [63,70] | IL-4/IL-13 blockade (e.g., Dupilumab); IL-31RA antagonism (e.g., Nemolizumab); PAR1 inhibitors; ADAM10 inhibition [19,36,64] |
Cutibacterium acnes | Produces short-chain fatty acids (SCFAs) that regulate TRPV4 and enhance lipid barrier function [34,38] | Lipid barrier repair; probiotic-derived SCFA supplementation; keratinocyte lipid modulation [34,38] |
Corynebacterium spp. | Secretes bioactive lipids that stimulate AMP release and interact with neuropeptides (Substance P, CGRP) [39,40,78] | Topical AMP inducers; bioactive lipid therapy; support commensal colonization [39,40] |
Staphylococcus epidermidis | Promotes ceramide synthesis via sphingomyelinase; secretes AMPs; suppresses S. aureus biofilm [33,38] | Enhance barrier commensals; prebiotic support for ceramide pathways [33,38] |
Gram-negative bacteria (e.g., Pseudomonas spp.) | Lipopolysaccharide (LPS) activates neuronal TLR4 → sensitizes TRPV1 and activates TRPA1, inducing itch [21,79] | TLR4 or TRPA1 antagonists; anti-inflammatory biologics to reduce cytokine-mediated sensitization [21,79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, T.; Bilik, S.M.; Burke, O.M.; Pastar, I.; Yosipovitch, G. Host–Microbiome Interactions in Chronic Itch. J. Clin. Med. 2025, 14, 5633. https://doi.org/10.3390/jcm14165633
Gonzalez T, Bilik SM, Burke OM, Pastar I, Yosipovitch G. Host–Microbiome Interactions in Chronic Itch. Journal of Clinical Medicine. 2025; 14(16):5633. https://doi.org/10.3390/jcm14165633
Chicago/Turabian StyleGonzalez, Tammy, Sophie M. Bilik, Olivia M. Burke, Irena Pastar, and Gil Yosipovitch. 2025. "Host–Microbiome Interactions in Chronic Itch" Journal of Clinical Medicine 14, no. 16: 5633. https://doi.org/10.3390/jcm14165633
APA StyleGonzalez, T., Bilik, S. M., Burke, O. M., Pastar, I., & Yosipovitch, G. (2025). Host–Microbiome Interactions in Chronic Itch. Journal of Clinical Medicine, 14(16), 5633. https://doi.org/10.3390/jcm14165633