Obstructive Sleep Apnea and Type 2 Diabetes: An Update
Abstract
1. Introduction
2. Insulin Resistance and β-Cell Dysfunction in OSA
3. Epidemiology
4. OSA and Metabolic Disease
5. Hormonal Involvement
6. OSA and Inflammation
7. Effects of OSA on Type 2 Diabetes
7.1. Metabolic Control
7.2. Organ System Dysfunction Associated with T2DM
7.3. Effects of OSA Treatment on Diabetes
8. Effects of Diabetes Treatment on OSA
8.1. Glucagon-like Peptide-1 (GLP-1) Receptor Agonists (GLP-1ras)
8.2. Dipeptidyl Peptidase-4 Inhibitors (DPP-4is) or “Gliptins”
8.3. Sodium–Glucose Co-Transporter 2 Inhibitors (SGLT2-Is) of “Gliflozins”
9. Surgery
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowie, M.R.; Linz, D.; Redline, S.; Somers, V.K.; Simonds, A.K. Sleep Disordered Breathing and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 608–624. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.L.; Larkin, E.K.; Kirchner, H.L.; Emancipator, J.L.; Bivins, S.F.; Surovec, S.A.; Martin, R.J.; Redline, S. Prevalence and risk factors for sleep-disordered breathing in 8- to 11-year-old children: Association with race and prematurity. J. Pediatr. 2003, 142, 383–389. [Google Scholar] [CrossRef]
- Young, T.; Palta, M.; Dempsey, J.; Skatrud, J.; Weber, S.; Badr, S. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 1993, 328, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, M.; Wang, J.; Beatty, N.; Batemarco, T.; Sica, A.A.L.; Greenberg, H. Obstructive sleep apnea: An unexpected cause of insulin resistance and diabetes. Endocrinol. Metab. Clin. N. Am. 2014, 43, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Finn, L.; Peppard, P.E.; Szklo-Coxe, M.; Austin, D.; Nieto, F.J.; Stubbs, R.; Hla, K.M. Sleep disordered breathing and mortality: Eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 2008, 31, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Perfect, M.M.; Patel, P.G.; Scott, R.E.; Wheeler, M.D.; Patel, C.; Griffin, K.; Sorensen, S.T.; Goodwin, J.; Quan, S.F. Sleep, glucose, and daytime functioning in youth with type 1 diabetes. Sleep 2012, 35, 81–88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koren, D.; O’Sullivan, K.L.; Mokhlesi, B. Metabolic and glycemic sequelae of sleep disturbances in children and adults. Curr. Diabetes Rep. 2015, 15, 562. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ip, M.S.; Lam, B.; Ng, M.M.; Lam, W.K.; Tsang, K.W.; Lam, K.S. Obstructive sleep apnea is independently associated with insulin resistance. Am. J. Respir. Crit. Care Med. 2002, 165, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, N.M.; Sorkin, J.D.; Katzel, L.I.; Goldberg, A.P.; Schwartz, A.R.; Smith, P.L. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am. J. Respir. Crit. Care Med. 2002, 165, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, N.M.; Shahar, E.; Redline, S.; Gottlieb, D.J.; Givelber, R.; Resnick, H.E. Sleep Heart Health Study Investigators. Sleep-disordered breathing, glucose intolerance, and insulin resistance: The Sleep Heart Health Study. Am. J. Epidemiol. 2004, 160, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, N.M.; Polotsky, V.Y. Disorders of glucose metabolism in sleep apnea. J. Appl. Physiol. 2005, 99, 1998–2007. [Google Scholar] [CrossRef] [PubMed]
- Foster, G.D.; Sanders, M.H.; Millman, R.; Zammit, G.; Borradaile, K.E.; Newman, A.B.; Wadden, T.A.; Kelley, D.; Wing, R.R.; Sunyer, F.X. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care 2009, 32, 1017–1019. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharp, J.T.; Barrocas, M.; Chokroverty, S. The cardiorespiratory effects of obesity. Clin. Chest Med. 1980, 1, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Ayas, N.T.; White, D.P.; Manson, J.E.; Stampfer, M.J.; Speizer, F.E.; Malhotra, A.; Hu, F.B. A prospective study of sleep duration and coronary heart disease in women. Arch. Intern. Med. 2003, 163, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Ayas, N.T.; White, D.P.; Al-Delaimy, W.K.; Manson, J.E.; Stampfer, M.J.; Speizer, F.E.; Patel, S.; Hu, F.B. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care 2003, 26, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, D.J.; Punjabi, N.M.; Newman, A.B.; Resnick, H.E.; Redline, S.; Baldwin, C.M.; Nieto, F.J. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch. Intern. Med. 2005, 165, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Polotsky, V.Y.; Li, J.; Punjabi, N.M.; Rubin, A.E.; Smith, P.L.; Schwartz, A.R.; O’Donnell, C.P. Intermittent hypoxia increases insulin resistance in genetically obese mice. J. Physiol. 2003, 552 Pt 1, 253–264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drager, L.F.; Li, J.; Reinke, C.; Bevans-Fonti, S.; Jun, J.C.; Polotsky, V.Y. Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity. Obes. (Silver Spring) 2011, 19, 2167–2174. [Google Scholar] [CrossRef]
- Polak, J.; Shimoda, L.A.; Drager, L.F.; Undem, C.; McHugh, H.; Polotsky, V.Y.; Punjabi, N.M. Intermittent hypoxia impairs glucose homeostasis in C57BL6/J mice: Partial improvement with cessation of the exposure. Sleep 2013, 36, 1483–1490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yokoe, T.; Alonso, L.C.; Romano, L.C.; Rosa, T.C.; O’Doherty, R.M.; Garcia-Ocana, A.; Minoguchi, K.; O’Donnell, C.P. Intermittent hypoxia reverses the diurnal glucose rhythm and causes pancreatic beta-cell replication in mice. J. Physiol. 2008, 586, 899–911. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, J.; Long, Y.S.; Gozal, D.; Epstein, P.N. Beta-cell death and proliferation after intermittent hypoxia: Role of oxidative stress. Free Radic. Biol. Med. 2009, 46, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Khan, S.A.; Prabhakar, N.R.; Nanduri, J. Impairment of pancreatic beta-cell function by chronic intermittent hypoxia. Exp. Physiol. 2013, 98, 1376–1385. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savransky, V.; Bevans, S.; Nanayakkara, A.; Li, J.; Smith, P.L.; Torbenson, M.S.; Polotsky, V.Y. Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G871–G877. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Jiang, L.; Zhu, F.; Liu, Z.; Li, W.; Jiang, H.; Ye, H.; Kushida, C.A.; Li, S. Chronic intermittent hypoxia leads to insulin resistance and impaired glucose tolerance through dysregulation of adipokines in non-obese rats. Sleep Breath. 2015, 19, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Magalang, U.J.; Cruff, J.P.; Rajappan, R.; Hunter, M.G.; Patel, T.; Marsh, C.B.; Raman, S.V.; Parinandi, N.L. Intermittent hypoxia suppresses adiponectin secretion by adipocytes. Exp. Clin. Endocrinol. Diabetes 2009, 117, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Tamisier, R.; Pépin, J.L.; Rémy, J.; Baguet, J.P.; Taylor, J.A.; Weiss, J.W.; Lévy, P. 14 nights of intermittent hypoxia elevate daytime blood pressure and sympathetic activity in healthy humans. Eur. Respir. J. 2011, 37, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, N.R.; Kumar, G.K.; Peng, Y.J. Sympatho-adrenal activation by chronic intermittent hypoxia. J. Appl. Physiol. 2012, 113, 1304–1310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Louis, M.; Punjabi, N.M. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J. Appl. Physiol. 2009, 106, 1538–1544. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stamatakis, K.A.; Punjabi, N.M. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest 2010, 137, 95–101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tasali, E.; Leproult, R.; Ehrmann, D.A.; Van Cauter, E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 1044–1049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lesser, D.J.; Bhatia, R.; Tran, W.H.; Oliveira, F.; Ortega, R.; Keens, T.G.; Mittelman, S.D.; Khoo, M.C.; Davidson-Ward, S.L. Sleep fragmentation and intermittent hypoxemia are associated with decreased insulin sensitivity in obese adolescent Latino males. Pediatr. Res. 2012, 72, 293–298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pogach, M.S.; Punjabi, N.M.; Thomas, N.; Thomas, R.J. Electrocardiogram-based sleep spectrogram measures of sleep stability and glucose disposal in sleep disordered breathing. Sleep 2012, 35, 139–148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Knutson, K.L.; Van Cauter, E.; Zee, P.; Liu, K.; Lauderdale, D.S. Cross-sectional associations between measures of sleep and markers of glucose metabolism among subjects with and without diabetes: The Coronary Artery Risk Development in Young Adults (CARDIA) Sleep Study. Diabetes Care 2011, 34, 1171–1176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Resnick, H.E.; Redline, S.; Shahar, E.; Gilpin, A.; Newman, A.; Walter, R.; Ewy, G.A.; Howard, B.V.; Punjabi, N.M.; Sleep Heart Health Study. Diabetes and sleep disturbances: Findings from the Sleep Heart Health Study. Diabetes Care 2003, 26, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Heffner, J.E.; Rozenfeld, Y.; Kai, M.; Stephens, E.A.; Brown, L.K. Prevalence of diagnosed sleep apnea among patients with type 2 diabetes in primary care. Chest 2012, 141, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Fornadi, K.; Lindner, A.; Czira, M.E.; Szentkiralyi, A.; Lazar, A.S.; Zoller, R.; Turanyi, C.Z.; Veber, O.; Novak, M.; Mucsi, I.; et al. Lack of association between objectively assessed sleep disorders and inflammatory markers among kidney transplant recipients. Int. Urol. Nephrol. 2012, 44, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Seicean, S.; Kirchner, H.L.; Gottlieb, D.J.; Punjabi, N.M.; Resnick, H.; Sanders, M.; Budhiraja, R.; Singer, M.; Redline, S. Sleep-disordered breathing and impaired glucose metabolism in normal-weight and overweight/obese individuals: The Sleep Heart Health Study. Diabetes Care 2008, 31, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Framnes, S.N.; Arble, D.M. The Bidirectional Relationship Between Obstructive Sleep Apnea and Metabolic Disease. Front. Endocrinol. 2018, 9, 440. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, T.; Kang, J. Relationship between obstructive sleep apnea, insulin resistance, and metabolic syndrome: A nationwide population-based survey. Endocr. J. 2023, 70, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Borel, A.L.; Monneret, D.; Tamisier, R.; Baguet, J.P.; Faure, P.; Levy, P.; Halimi, S.; Pépin, J.L. The severity of nocturnal hypoxia but not abdominal adiposity is associated with insulin resistance in non-obese men with sleep apnea. PLoS ONE 2013, 8, e71000. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lindberg, E.; Theorell-Haglöw, J.; Svensson, M.; Gislason, T.; Berne, C.; Janson, C. Sleep apnea and glucose metabolism: A long-term follow-up in a community-based sample. Chest 2012, 142, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Reichmuth, K.J.; Austin, D.; Skatrud, J.B.; Young, T. Association of sleep apnea and type II diabetes: A population-based study. Am. J. Respir. Crit. Care Med. 2005, 172, 1590–1595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marshall, N.S.; Wong, K.K.; Phillips, C.L.; Liu, P.Y.; Knuiman, M.W.; Grunstein, R.R. Is sleep apnea an independent risk factor for prevalent and incident diabetes in the Busselton Health Study? J. Clin. Sleep Med. 2009, 5, 15–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Botros, N.; Concato, J.; Mohsenin, V.; Selim, B.; Doctor, K.; Yaggi, H.K. Obstructive sleep apnea as a risk factor for type 2 diabetes. Am. J. Med. 2009, 122, 1122–1127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Celen, Y.T.; Hedner, J.; Carlson, J.; Peker, Y. Impact of gender on incident diabetes mellitus in obstructive sleep apnea: A 16-year follow-up. J. Clin. Sleep. Med. 2010, 6, 244–250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Bi, Y.; Zhang, Q.; Pan, F. Obstructive sleep apnoea and the risk of type 2 diabetes: A meta-analysis of prospective cohort studies. Respirology 2013, 18, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Chami, H.A.; Gottlieb, D.J.; Redline, S.; Punjabi, N.M. Association between glucose metabolism and sleep-disordered breathing during REM sleep. Am. J. Respir. Crit. Care Med, 2015; electronically published ahead of print. [Google Scholar] [CrossRef]
- Grimaldi, D.; Beccuti, G.; Touma, C.; Van Cauter, E.; Mokhlesi, B. Association of obstructive sleep apnea in rapid eye movement sleep with reduced glycemic control in type 2 diabetes: Therapeutic implications. Diabetes Care 2014, 37, 355–363. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cummings, D.E.; Purnell, J.Q.; Frayo, R.S.; Schmidova, K.; Wisse, B.E.; Weigle, D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001, 50, 1714–1719. [Google Scholar] [CrossRef]
- Alam, I.; Lewis, K.; Stephens, J.W.; Baxter, J.N. Obesity, metabolic syndrome and sleep apnoea: All pro-inflammatory states. Obes. Rev. 2007, 8, 119–127. [Google Scholar] [CrossRef]
- Auwerx, J.; Staels, B. Leptin. Lancet 1998, 351, 737–742. [Google Scholar] [CrossRef]
- Masaki, T.; Chiba, S.; Tatsukawa, H.; Yasuda, T.; Noguchi, H.; Seike, M.; Yoshimatsu, H. Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology 2004, 40, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Lebovitz, H.E. The relationship of obesity to the metabolic syndrome. Int. J. Clin. Pract. Suppl. 2003, 134, 118–127. [Google Scholar] [PubMed]
- Ronti, T.; Lupattelli, G.; Mannarino, E. The endocrine function of adipose tissue: An update. Clin. Endocrinol. 2006, 64, 355–365. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, C.P.; Tankersley, C.G.; Polotsky, V.P.; Schwartz, A.R.; Smith, P.L. Leptin, obesity, and respiratory function. Respir. Physiol. 2000, 119, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Chandran, M.; Phillips, S.A.; Ciaraldi, T.; Henry, R.R. Adiponectin: More than just another fat cell hormone? Diabetes Care 2003, 26, 2442–2450. [Google Scholar] [CrossRef]
- Ursavas, A.; Ilcol, Y.O.; Nalci, N.; Karadag, M.; Ege, E. Ghrelin, leptin, adiponectin, and resistin levels in sleep apnea syndrome: Role of obesity. Ann. Thorac. Med. 2010, 5, 161–165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kritikou, I.; Basta, M.; Vgontzas, A.N.; Pejovic, S.; Fernandez-Mendoza, J.; Liao, D.; Bixler, E.O.; Gaines, J.; Chrousos, G.P. Sleep apnoea and the hypothalamic-pituitary-adrenal axis in men and women: Effects of continuous positive airway pressure. Eur. Respir. J. 2016, 47, 531–540. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, Y.; Ji, J.; Zhan, X.; Yan, W.; Liu, F.; Ye, P.; Wang, S.; Tai, J. Acetylome Analyses Provide New Insights into the Effect of Chronic Intermittent Hypoxia on Hypothalamus-Dependent Endocrine Metabolism Impairment. Biology 2024, 13, 559. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruchała, M.; Bromińska, B.; Cyrańska-Chyrek, E.; Kuźnar-Kamińska, B.; Kostrzewska, M.; Batura-Gabryel, H. Obstructive sleep apnea and hormones—A novel insight. Arch. Med. Sci. 2017, 13, 875–884. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Punjabi, N.M. Diagnosis and Management of Obstructive Sleep Apnea: A Review. JAMA 2020, 323, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, D.; Jun, J.; Polotsky, V. Inflammation in sleep apnea: An update. Rev. Endocr. Metab. Disord. 2015, 16, 25–34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wali, S.O.; Abaalkhail, B.; AlQassas, I.; Alhejaili, F.; Spence, D.W.; Pandi-Perumal, S.R. The correlation between oxygen saturation indices and the standard obstructive sleep apnea severity. Ann. Thorac. Med. 2020, 15, 70–75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, S.; Yoon, I.Y.; Shin, Y.K.; Lee, C.H.; Kim, J.W.; Lee, T.; Choi, D.J.; Ahn, H.J. Endothelial dysfunction and C-reactive protein in relation with the severity of obstructive sleep apnea syndrome. Sleep 2007, 30, 997–1001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, X.; Ma, Y.; Ouyang, R.; Zeng, Z.; Zhan, Z.; Lu, H.; Cui, Y.; Dai, Z.; Luo, L.; He, C.; et al. The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome. J. Neuroinflammation 2020, 17, 229. [Google Scholar] [CrossRef]
- Tam, C.S.; Wong, M.; McBain, R.; Bailey, S.; Waters, K.A. Inflammatory measures in children with obstructive sleep apnoea. J. Paediatr. Child. Health 2006, 42, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Shamsuzzaman, A.S.; Winnicki, M.; Lanfranchi, P.; Wolk, R.; Kara, T.; Accurso, V.; Somers, V.K. Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 2002, 105, 2462–2464. [Google Scholar] [CrossRef] [PubMed]
- Minoguchi, K.; Yokoe, T.; Tazaki, T.; Minoguchi, H.; Tanaka, A.; Oda, N.; Okada, S.; Ohta, S.; Naito, H.; Adachi, M. Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2005, 172, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Minoguchi, K.; Tazaki, T.; Yokoe, T.; Minoguchi, H.; Watanabe, Y.; Yamamoto, M.; Adachi, M. Elevated production of tumor necrosis factor-alpha by monocytes in patients with obstructive sleep apnea syndrome. Chest 2004, 126, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Zhao, W.; Tan, Y.; Fei, Q.; Liu, K.; Chen, Z.; Zhang, Y. The causal relationships between obstructive sleep apnea and elevated CRP and TNF-α protein levels. Ann. Med. 2022, 54, 1578–1589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryan, S.; Taylor, C.T.; McNicholas, W.T. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 2005, 112, 2660–2667. [Google Scholar] [CrossRef] [PubMed]
- Friberg, D.; Ansved, T.; Borg, K.; Carlsson-Nordlander, B.; Larsson, H.; Svanborg, E. Histological indications of a progressive snorers disease in an upper airway muscle. Am. J. Respir. Crit. Care Med. 1998, 157, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.; Nolan, G.M.; Hannigan, E.; Cunningham, S.; Taylor, C.; McNicholas, W.T. Cardiovascular risk markers in obstructive sleep apnoea syndrome and correlation with obesity. Thorax 2007, 62, 509–514. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, H.; Yang, F.; Guo, Y.; Wang, L.; Fang, F.; Wu, H.; Nie, S.; Wang, Y.; Fung, M.L.; Huang, Y.; et al. The contribution of chronic intermittent hypoxia to OSAHS: From the perspective of serum extracellular microvesicle proteins. Metabolism 2018, 85, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yue, Z.; Liu, Z.; Han, J.; Li, J.; Zhao, Y.; Wang, F.; Tang, M.; Zhao, G. Continuous positive airway pressure effectively ameliorates arrhythmias in patients with obstructive sleep apnea-hypopnea via counteracting the inflammation. Am. J. Otolaryngol. 2020, 41, 102655. [Google Scholar] [CrossRef] [PubMed]
- Campos-Rodriguez, F.; Asensio-Cruz, M.I.; Cordero-Guevara, J.; Jurado-Gamez, B.; Carmona-Bernal, C.; Gonzalez-Martinez, M.; Troncoso, M.F.; Sanchez-Lopez, V.; Arellano-Orden, E.; Garcia-Sanchez, M.I.; et al. Effect of continuous positive airway pressure on inflammatory, antioxidant, and depression biomarkers in women with obstructive sleep apnea: A randomized controlled trial. Sleep 2019, 42, zsz145. [Google Scholar] [CrossRef] [PubMed]
- Barceló, A.; Barbé, F.; Llompart, E.; Mayoralas, L.R.; Ladaria, A.; Bosch, M.; Agustí, A.G. Effects of obesity on C-reactive protein level and metabolic disturbances in male patients with obstructive sleep apnea. Am. J. Med. 2004, 117, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Kato, M.; Kato, Y.; Yanagihara, K.; Kinugasa, Y.; Kotani, K.; Igawa, O.; Hisatome, I.; Shigemasa, C.; Somers, V.K. Appropriate use of nasal continuous positive airway pressure decreases elevated C-reactive protein in patients with obstructive sleep apnea. Chest 2009, 136, 125–129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malhotra, A.; White, D.P. Obstructive sleep apnoea. Lancet 2002, 360, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, G. Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol. 2005, 115, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Drager, L.F.; Bortolotto, L.A.; Figueiredo, A.C.; Krieger, E.M.; Lorenzi, G.F. Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2007, 176, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Gaines, J.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Calhoun, S.L.; He, F.; Liao, D.; Sawyer, M.D.; Bixler, E.O. Inflammation mediates the association between visceral adiposity and obstructive sleep apnea in adolescents. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E851–E858. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pillai, A.; Warren, G.; Gunathilake, W.; Idris, I. Effects of sleep apnea severity on glycemic control in patients with type 2 diabetes prior to continuous positive airway pressure treatment. Diabetes Technol. Ther. 2011, 13, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Aronsohn, R.S.; Whitmore, H.; Van Cauter, E.; Tasali, E. Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes. Am. J. Respir. Crit. Care Med. 2010, 181, 507–513. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Priou, P.; Le Vaillant, M.; Meslier, N.; Chollet, S.; Pigeanne, T.; Masson, P.; Bizieux-Thaminy, A.; Humeau, M.P.; Goupil, F.; Ducluzeau, P.H.; et al. Association between obstructive sleep apnea severity and glucose control in patients with untreated versus treated diabetes. J. Sleep Res. 2015, 24, 425–431. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Zammit, G.; Reboussin, D.M.; Kuna, S.T.; Sanders, M.H.; Millman, R.; Newman, A.B.; Wadden, T.A.; Wing, R.R.; Pi-Sunyer, F.X.; et al. Associations of sleep disturbance and duration with metabolic risk factors in obese persons with type 2 diabetes: Data from the Sleep AHEAD Study. Nat. Sci. Sleep 2012, 4, 143–150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tamura, A.; Kawano, Y.; Watanabe, T.; Kadota, J. Relationship between the severity of obstructive sleep apnea and impaired glucose metabolism in patients with obstructive sleep apnea. Respir. Med. 2008, 102, 1412–1416. [Google Scholar] [CrossRef] [PubMed]
- Eisele, H.J.; Markart, P.; Schulz, R. Obstructive Sleep Apnea, Oxidative Stress, and cardiovascular disease: Evidence from Human Studies. Oxidative Med. Cell. Longev. 2015, 2015, 608438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drager, L.F.; Polotsky, V.Y.; Lorenzi-Filho, G. Obstructive sleep apnea: An emerging risk factor for atherosclerosis. Chest 2011, 140, 534–542. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rice, T.B.; Foster, G.D.; Sanders, M.H.; Unruh, M.; Reboussin, D.; Kuna, S.T.; Millman, R.; Zammit, G.; Wing, R.R.; Wadden, T.A.; et al. The relationship between obstructive sleep apnea and self-reported stroke or coronary heart disease in overweight and obese adults with type 2 diabetes mellitus. Sleep 2012, 35, 1293–1298. [Google Scholar] [CrossRef]
- Adeseun, G.A.; Rosas, S.E. The impact of obstructive sleep apnea on chronic kidney disease. Curr. Hypertens. Rep. 2010, 12, 378–383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Furukawa, S.; Saito, I.; Yamamoto, S.; Miyake, T.; Ueda, T.; Niiya, T.; Torisu, M.; Kumagi, T.; Sakai, T.; Minami, H.; et al. Nocturnal intermittent hypoxia as an associated risk factor for microalbuminuria in Japanese patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 2013, 169, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Leong, W.B.; Nolen, M.; Thomas, G.N.; Adab, P.; Banerjee, D.; Taheri, S. The impact of hypoxemia on nephropathy in extremely obese patients with type 2 diabetes mellitus. J. Clin. Sleep Med. 2014, 10, 773–778. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leong, W.B.; Jadhakhan, F.; Taheri, S.; Thomas, G.N.; Adab, P. The Association between Obstructive Sleep Apnea on Diabetic Kidney Disease: A Systematic Review and Meta-Analysis. Sleep 2016, 39, 301–308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tahrani, A.A.; Ali, A.; Raymond, N.T.; Begum, S.; Dubb, K.; Mughal, S.; Jose, B.; Piya, M.K.; Barnett, A.H.; Stevens, M.J. Obstructive sleep apnea and diabetic neuropathy: A novel association in patients with type 2 diabetes. Am. J. Respir. Crit. Care Med. 2012, 186, 434–441. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shiba, T.; Maeno, T.; Saishin, Y.; Hori, Y.; Takahashi, M. Nocturnal intermittent serious hypoxia and reoxygenation in proliferative diabetic retinopathy cases. Am. J. Ophthalmol. 2010, 149, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Rudrappa, S.; Warren, G.; Idris, I. Obstructive sleep apnoea is associated with the development and progression of diabetic retinopathy, independent of conventional risk factors and novel biomarkers for diabetic retinopathy. Br. J. Ophthalmol. 2012, 96, 1535. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Leong, W.B.; Arora, T.; Nolen, M.; Punamiya, V.; Grunstein, R.; Taheri, S. The potential association between obstructive sleep apnea and diabetic retinopathy in severe obesity-the role of hypoxemia. PLoS ONE 2013, 8, e79521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kline, C.E.; Reboussin, D.M.; Foster, G.D.; Rice, T.B.; Strotmeyer, E.S.; Jakicic, J.M.; Millman, R.P.; Pi-Sunyer, F.X.; Newman, A.B.; Wadden, T.A.; et al. The Effect of Changes in Cardiorespiratory Fitness and Weight on Obstructive Sleep Apnea Severity in Overweight Adults with Type 2 Diabetes. Sleep 2016, 39, 317–325. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuna, S.T.; Reboussin, D.M.; Borradaile, K.E.; Sanders, M.H.; Millman, R.P.; Zammit, G.; Newman, A.B.; Wadden, T.A.; Jakicic, J.M.; Wing, R.R.; et al. Long-term effect of weight loss on obstructive sleep apnea severity in obese patients with type 2 diabetes. Sleep 2013, 36, 641–649A. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Oweidat, K.; Toubasi, A.A.; Tawileh, R.B.A.; Tawileh, H.B.A.; Hasuneh, M.M. Bariatric surgery and obstructive sleep apnea: A systematic review and meta-analysis. Sleep Breath. 2023, 27, 2283–2294. [Google Scholar] [CrossRef] [PubMed]
- Pamidi, S.; Wroblewski, K.; Stepien, M.; Sharif-Sidi, K.; Kilkus, J.; Whitmore, H.; Tasali, E. Eight Hours of Nightly Continuous Positive Airway Pressure Treatment of Obstructive Sleep Apnea Improves Glucose Metabolism in Patients with Prediabetes. A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2015, 192, 96–105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weinstock, T.G.; Wang, X.; Rueschman, M.; Ismail-Beigi, F.; Aylor, J.; Babineau, D.C.; Mehra, R.; Redline, S. A controlled trial of CPAP therapy on metabolic control in individuals with impaired glucose tolerance and sleep apnea. Sleep 2012, 35, 617–625B. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iftikhar, I.H.; Khan, M.F.; Das, A.; Magalang, U.J. Meta-analysis: Continuous positive airway pressure improves insulin resistance in patients with sleep apnea without diabetes. Ann. Am. Thorac. Soc. 2013, 10, 115–120, Erratum in: Ann. Am. Thorac. Soc. 2013, 10, 279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prasad, B.; Carley, D.W.; Krishnan, J.A.; Weaver, T.E.; Weaver, F.M. Effects of positive airway pressure treatment on clinical measures of hypertension and type 2 diabetes. J. Clin. Sleep Med. 2012, 8, 481–487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guest, J.F.; Panca, M.; Sladkevicius, E.; Taheri, S.; Stradling, J. Clinical outcomes and cost-effectiveness of continuous positive airway pressure to manage obstructive sleep apnea in patients with type 2 diabetes in the U.K. Diabetes Care 2014, 37, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Myhill, P.C.; Davis, W.A.; Peters, K.E.; Chubb, S.A.; Hillman, D.; Davis, T.M. Effect of continuous positive airway pressure therapy on cardiovascular risk factors in patients with type 2 diabetes and obstructive sleep apnea. J. Clin. Endocrinol. Metab. 2012, 97, 4212–4218. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.X.; Zhao, X.; Pan, Q.; Sun, X.; Li, H.; Wang, X.X.; Zhang, L.N.; Wang, Y. Effect of Continuous Positive Airway Pressure Therapy on Glycemic Excursions and Insulin Sensitivity in Patients with Obstructive Sleep Apnea-hypopnea Syndrome and Type 2 Diabetes. Chin. Med. J. 2015, 128, 2301–2306. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salord, N.; Fortuna, A.M.; Monasterio, C.; Gasa, M.; Pérez, A.; Bonsignore, M.R.; Vilarrasa, N.; Montserrat, J.M.; Mayos, M.A. Randomized Controlled Trial of Continuous Positive Airway Pressure on Glucose Tolerance in Obese Patients with Obstructive Sleep Apnea. Sleep 2016, 39, 35–41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gallegos, L.; Dharia, T.; Gadegbeku, A.B. Effect of continuous positive airway pressure on type 2 diabetes mellitus and glucose metabolism. Hosp. Pract. (1995) 2014, 42, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ceron, E.; Fernández-Navarro, I.; Garcia-Rio, F. Effects of continuous positive airway pressure treatment on glucose metabolism in patients with obstructive sleep apnea. Sleep Med. Rev. 2016, 25, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, Z.; Dong, Z.Z. Effects of continuous positive airway pressure therapy on glycaemic control, insulin sensitivity and body mass index in patients with obstructive sleep apnoea and type 2 diabetes: A systematic review and meta-analysis. npj Prim. Care Respir. Med. 2015, 25, 15005. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chirinos, J.A.; Gurubhagavatula, I.; Teff, K.; Rader, D.J.; Wadden, T.A.; Townsend, R.; Foster, G.D.; Maislin, G.; Saif, H.; Broderick, P.; et al. CPAP, weight loss, or both for obstructive sleep apnea. N. Engl. J. Med. 2014, 370, 2265–2275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Babu, A.R.; Herdegen, J.; Fogelfeld, L.; Shott, S.; Mazzone, T. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea. Arch. Intern. Med. 2005, 165, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Khaire, S.S.; Gada, J.V.; Utpat, K.V.; Shah, N.; Varthakavi, P.; Bhagwat, N.M. A study of glycemic variability in patients with type 2 diabetes mellitus with obstructive sleep apnea syndrome using a continuous glucose monitoring system. Clin Diabetes Endocrinol. 2020, 6, 10. [Google Scholar] [CrossRef]
- Mason, M.; Welsh, E.J.; Smith, I. Drug therapy for obstructive sleep apnoea in adults. Cochrane Database Syst. Rev. 2013, 2013, CD003002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Le, K.D.R.; Le, K.; Foo, F. The Impact of Glucagon-like Peptide 1 Receptor Agonists on Obstructive Sleep Apnoea: A Scoping Review. Pharmacy 2024, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, W.; Cheng, J.; Li, W.; Cheng, F. Efficacy and safety of liraglutide in patients with type 2 diabetes mellitus and severe obstructive sleep apnea. Sleep Breath. 2023, 27, 1687–1694. [Google Scholar] [CrossRef]
- Blackman, A.; Foster, G.D.; Zammit, G.; Rosenberg, R.; Aronne, L.; Wadden, T.; Claudius, B.; Jensen, C.B.; Mignot, E. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: The SCALE Sleep Apnea randomized clinical trial. Int. J. Obes. 2016, 40, 1310–1319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malhotra, A.; Grunstein, R.R.; Fietze, I.; Weaver, T.; Redline, S.; Azarbarzin, A.; Sands, S.A.; Schwab, R.J.; Dunn, J.P.; Chakladar, S.; et al. Tirzepatide for the Treatment of Obstructive Sleep Apnea and Obesity. N. Engl. J. Med. 2024, 391, 1193–1205, Erratum in: N. Engl. J. Med. 2024, 391, 1464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matsumoto, T.; Harada, N.; Azuma, M.; Chihara, Y.; Murase, K.; Tachikawa, R.; Minami, T.; Hamada, S.; Tanizawa, K.; Inouchi, M.; et al. Plasma Incretin Levels and Dipeptidyl Peptidase-4 Activity in Patients with Obstructive Sleep Apnea. Ann. Am. Thorac. Soc. 2016, 13, 1378–1387. [Google Scholar] [CrossRef] [PubMed]
- Monda, V.M.; Porcellati, F.; Strollo, F.; Fucili, A.; Monesi, M.; Satta, E.; Gentile, S. Possible Preventative/Rehabilitative Role of Gliflozins in OSA and T2DM. A Systematic Literature Review-Based Hypothesis. Adv. Ther. 2021, 38, 4195–4214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kosiborod, M.; Cavender, M.A.; Fu, A.Z.; Wilding, J.P.; Khunti, K.; Holl, R.W.; Norhammar, A.; Birkeland, K.I.; Jørgensen, M.E.; Thuresson, M.; et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017, 136, 249–259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spallone, V.; Valensi, P. SGLT2 inhibitors and the autonomic nervous system in diabetes: A promising challenge to better understand multiple target improvement. Diabetes Metab. 2021, 47, 101224. [Google Scholar] [CrossRef] [PubMed]
- Spallone, V. Update on the Impact, Diagnosis and Management of Cardiovascular Autonomic Neuropathy in Diabetes: What Is Defined, What Is New, and What Is Unmet. Diabetes Metab. J. 2019, 43, 3–30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Tahrani, A.A.; Dubb, K.; Raymond, N.T.; Begum, S.; Altaf, Q.A.; Sadiqi, H.; Piya, M.K.; Stevens, M.J. Cardiac autonomic neuropathy predicts renal function decline in patients with type 2 diabetes: A cohort study. Diabetologia 2014, 57, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Ahn, Y.B.; Song, K.H.; Yoo, K.D.; Kim, H.W.; Park, Y.M.; Ko, S.H. The association between abnormal heart rate variability and new onset of chronic kidney disease in patients with type 2 diabetes: A ten-year follow-up study. Diabetes Res. Clin. Pract. 2015, 108, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Abuyassin, B.; Sharma, K.; Ayas, N.T.; Laher, I. Obstructive sleep apnea and kidney disease: A potential bidirectional relationship? J. Clin. Sleep Med. 2015, 11, 915–924. [Google Scholar] [CrossRef]
- Li, N.; Li, H.P.; Wang, P.; Yan, Y.R.; Li, S.Q.; Li, Q.Y. Nocturnal mean oxygen saturation is associated with secondary polycythemia in young adults with obstructive sleep apnea, especially in men. Nat. Sci. Sleep 2019, 11, 377–386. [Google Scholar] [CrossRef]
- Grau, M.; Cremer, J.M.; Schmeichel, S.; Kunkel, M.; Bloch, W. Comparisons of blood parameters, red blood cell deformability and circulating nitric oxide between males and females considering hormonal contraception: A longitudinal gender study. Front. Physiol. 2018, 9, 1835. [Google Scholar] [CrossRef] [PubMed]
- Inzucchi, S.E.; Zinman, B.; Fitchett, D.; Wanner, C.; Ferrannini, E.; Schumacher, M.; Schmoor, C.; Ohneberg, K.; Johansen, O.; George, J.T.; et al. How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 2018, 41, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Sawada, K.; Karashima, S.; Kometani, M.; Oka, R.; Takeda, Y.; Sawamura, T.; Fujimoto, A.; Demura, M.; Wakayama, A.; Usukura, M.; et al. Effect of sodium glucose cotransporter 2 inhibitors on obstructive sleep apnea in patients with type 2 diabetes. Endocr. J. 2018, 65, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Sun, Q.; Bai, X.Y.; Zhou, Y.F.; Zhou, Q.L.; Zhang, M. Effect of dapagliflozin on obstructive sleep apnea in patients with type 2 diabetes: A preliminary study. Nutr. Diabetes 2019, 9, 32. [Google Scholar] [CrossRef]
- Neeland, I.J.; Eliasson, B.; Kasai, T.; Marx, N.; Zinman, B.; Inzucchi, S.E.; Wanner, C.; Zwiener, I.; Wojeck, B.S.; Yaggi, H.K.; et al. The Impact of Empagliflozin on Obstructive Sleep Apnea and Cardiovascular and Renal Outcomes: An Exploratory Analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 2020, 43, 3007–3015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Packer, M. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis. Diabetes Obes. Metab. 2018, 20, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wen, W.; Li, J.; Xu, J.; Zhao, M.; Chen, H.; Sun, J. Systematic Review and Meta-Analysis of Randomized Controlled Trials on the Effect of SGLT2 Inhibitor on Blood Leptin and Adiponectin Level in Patients with Type 2 Diabetes. Horm. Metab. Res. 2019, 51, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Monda, V.M.; Gentile, S.; Porcellati, F.; Satta, E.; Fucili, A.; Monesi, M.; Strollo, F. Heart Failure with Preserved Ejection Fraction and Obstructive Sleep Apnea: A Novel Paradigm for Additional Cardiovascular Benefit of SGLT2 Inhibitors in Subjects With or Without Type 2 Diabetes. Adv. Ther. 2022, 39, 4837–4846. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ishiwata, S.; Kasai, T.; Sato, A.; Suda, S.; Matsumoto, H.; Shitara, J.; Yatsu, S.; Murata, A.; Shimizu, M.; Kato, T.; et al. Tofogliflozin reduces sleep apnea severity in patients with type 2 diabetes mellitus and heart failure: A prospective study. Hypertens. Res, 2024; ahead of print. [Google Scholar] [CrossRef]
- Lee, Y.H. Implications of Obstructive Sleep-related Breathing Disorder in Dentistry: Focus on Snoring and Obstructive Sleep Apnea. Dent. Res. Oral Health 2022, 5, 74–82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carvalho, B.; Hsia, J.; Capasso, R. Surgical therapy of obstructive sleep apnea: A review. Neurotherapeutics 2012, 9, 710–716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berezin, L.; Nagappa, M.; Poorzargar, K.; Saripella, A.; Ariaratnam, J.; Butris, N.; Englesakis, M.; Chung, F. The effectiveness of positive airway pressure therapy in reducing postoperative adverse outcomes in surgical patients with obstructive sleep apnea: A systematic review and meta-analysis. J. Clin. Anesth. 2023, 84, 110993. [Google Scholar] [CrossRef] [PubMed]
- Obstructive Sleep Apnea Syndrome (OSAS). Ministry of Health. 2024. Available online: https://www.salute.gov.it/portale/news/p3_2_1_1_1.jsp?lingua=italiano&menu=notizie&p=null&id=2565 (accessed on 13 December 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentile, S.; Monda, V.M.; Guarino, G.; Satta, E.; Chiarello, M.; Caccavale, G.; Mattera, E.; Marfella, R.; Strollo, F. Obstructive Sleep Apnea and Type 2 Diabetes: An Update. J. Clin. Med. 2025, 14, 5574. https://doi.org/10.3390/jcm14155574
Gentile S, Monda VM, Guarino G, Satta E, Chiarello M, Caccavale G, Mattera E, Marfella R, Strollo F. Obstructive Sleep Apnea and Type 2 Diabetes: An Update. Journal of Clinical Medicine. 2025; 14(15):5574. https://doi.org/10.3390/jcm14155574
Chicago/Turabian StyleGentile, Sandro, Vincenzo Maria Monda, Giuseppina Guarino, Ersilia Satta, Maria Chiarello, Giuseppe Caccavale, Edi Mattera, Raffaele Marfella, and Felice Strollo. 2025. "Obstructive Sleep Apnea and Type 2 Diabetes: An Update" Journal of Clinical Medicine 14, no. 15: 5574. https://doi.org/10.3390/jcm14155574
APA StyleGentile, S., Monda, V. M., Guarino, G., Satta, E., Chiarello, M., Caccavale, G., Mattera, E., Marfella, R., & Strollo, F. (2025). Obstructive Sleep Apnea and Type 2 Diabetes: An Update. Journal of Clinical Medicine, 14(15), 5574. https://doi.org/10.3390/jcm14155574