Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Role of Glucocorticoids and Orbital Radiotherapy
3.2. Role of Steroid-Sparing Agents
3.3. Current Insights into the Pathogenesis of TED
3.4. Role of TSH-R and Its Inhibitors
3.4.1. K1-70
3.4.2. Small-Molecule TSH-R Antagonists
3.5. Role of IGF-1R and Its Inhibitors
3.5.1. Teprotumumab
3.5.2. IBI311
3.5.3. Veligrotug (VRDN-001) and VRDN-003
3.5.4. Lonigutamab
3.5.5. Linsitinib
3.5.6. KRIYA-586
3.6. Role of FcRn and Its Inhibitors
3.7. Role of Cytokines
3.7.1. IL-6
3.7.2. IL-11
3.7.3. IL-17
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TED | Thyroid Eye Disease |
TAO | Thyroid-Associated Orbitopathy |
GO | Graves’ Ophthalmopathy |
GD | Graves’ Disease |
DON | Dysthyroid Optic Neuropathy |
CAS | Clinical Activity Score |
GC | Glucocorticoid |
IV | Intravenous |
IVMP | Intravenous Methylprednisolone |
SC | Subcutaneous |
OR | Orbital Radiotherapy |
MMF | Mycophenolate Mofetil |
MTX | Methotrexate |
RTX | Rituximab |
TRAb | Thyrotropin Receptor Antibodies |
RCT | Randomized Controlled Trial |
ECM | Extracellular Matrix |
OF | Orbital Fibroblast |
THS-R | Thyroid-Stimulating Hormone Receptor |
HA | Hyaluronic Acid |
TSH | Thyroid-Stimulating Hormone |
AE | Adverse Event |
HEK | Human Embryonic Kidney |
IGF-1 | Insulin-like Growth Factor 1 |
IGF-1R | Insulin-like Growth Factor 1 Receptor |
RTK | Receptor Tyrosine Kinase |
FDA | Food and Drug Administration |
EMA | European Medicine Agency |
ATA | American Thyroid Association |
ETA | European Thyroid Association |
EUGOGO | European Group on Graves’ Orbitopathy |
mAB | Monoclonal Antibody |
NMPA | National Medical Products Administration |
IR | Insulin Receptor |
FcRn | Neonatal Fragment Crystallizable Receptor |
TGF-ß | Transforming Growth Factor Beta |
PRR | Proptosis Responder Rate |
References
- Smith, T.J.; Hegedüs, L. Graves’ Disease. N. Engl. J. Med. 2016, 375, 1552–1565. [Google Scholar] [CrossRef]
- Kahaly, G.J.; Grebe, S.K.G.; Lupo, M.A.; McDonald, N.; Sipos, J.A. Graves’ Disease: Diagnostic and Therapeutic Challenges (Multimedia Activity). Am. J. Med. 2011, 124, S2–S3. [Google Scholar] [CrossRef]
- Lazarus, J.H. Epidemiology of Graves’ orbitopathy (GO) and relationship with thyroid disease. Best. Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 273–279. [Google Scholar] [CrossRef]
- Burch, H.B.; Perros, P.; Bednarczuk, T.; Cooper, D.S.; Dolman, P.J.; Leung, A.M.; Mombaerts, I.; Salvi, M.; Stan, M.N. Management of thyroid eye disease: A Consensus Statement by the American Thyroid Association and the European Thyroid Association. Eur. Thyroid. J. 2022, 11, e220189. [Google Scholar] [CrossRef]
- Kossler, A.L.; Stan, M.; Kazim, M.; Dosiou, C. Innovate Thyroid Eye Disease 2024 Multidisciplinary Symposium—April 26–28, 2024, Napa, California. Ophthalmic Plast. Reconstr. Surg. 2024, 40, 714. [Google Scholar] [CrossRef] [PubMed]
- Bartalena, L.; Kahaly, G.J.; Baldeschi, L.; Dayan, C.M.; Eckstein, A.; Marcocci, C.; Marinò, M.; Vaidya, B.; Wiersinga, W.M.; EUGOGO. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol. 2021, 185, G43–G67. [Google Scholar] [CrossRef] [PubMed]
- Zang, S.; Ponto, K.A.; Kahaly, G.J. Intravenous Glucocorticoids for Graves’ Orbitopathy: Efficacy and Morbidity. J. Clin. Endocrinol. Metab. 2011, 96, 320–332. [Google Scholar] [CrossRef]
- Aktaran, S.; Akarsu, E.; Erbağci, I.; Araz, M.; Okumuş, S.; Kartal, M. Comparison of intravenous methylprednisolone therapy vs. oral methylprednisolone therapy in patients with Graves’ ophthalmopathy. Int. J. Clin. Pract. 2007, 61, 45–51. [Google Scholar] [CrossRef]
- Douglas, R.S.; Dailey, R.; Subramanian, P.S.; Barbesino, G.; Ugradar, S.; Batten, R.; Qadeer, R.A.; Cameron, C. Proptosis and Diplopia Response With Teprotumumab and Placebo vs the Recommended Treatment Regimen With Intravenous Methylprednisolone in Moderate to Severe Thyroid Eye Disease: A Meta-analysis and Matching-Adjusted Indirect Comparison. JAMA Ophthalmol. 2022, 140, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Currò, N.; Covelli, D.; Vannucchi, G.; Campi, I.; Pirola, G.; Simonetta, S.; Dazzi, D.; Guastella, C.; Pignataro, L.; Beck-Peccoz, P.; et al. Therapeutic Outcomes of High-Dose Intravenous Steroids in the Treatment of Dysthyroid Optic Neuropathy. Thyroid® 2014, 24, 897–905. [Google Scholar] [CrossRef]
- Marinó, M.; Morabito, E.; Brunetto, M.R.; Bartalena, L.; Pinchera, A.; Marocci, C. Acute and Severe Liver Damage Associated with Intravenous Glucocorticoid Pulse Therapy in Patients with Graves’ Ophthalmopathy. Thyroid® 2004, 14, 403–406. [Google Scholar] [CrossRef]
- Tanda, M.L.; Bartalena, L. Efficacy and Safety of Orbital Radiotherapy for Graves’ Orbitopathy. J. Clin. Endocrinol. Metab. 2012, 97, 3857–3865. [Google Scholar] [CrossRef]
- Rajendram, R.; Taylor, P.N.; Wilson, V.J.; Harris, N.; Morris, O.C.; Tomlinson, M.; Yarrow, S.; Garrott, H.; Herbert, H.M.; Dick, A.D.; et al. Combined immunosuppression and radiotherapy in thyroid eye disease (CIRTED): A multicentre, 2×2 factorial, double-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2018, 6, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Han, S.H.; Son, B.J.; Rim, T.H.; Keum, K.C.; Yoon, J.S. Efficacy of combined orbital radiation and systemic steroids in the management of Graves’ orbitopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Oeverhaus, M.; Witteler, T.; Lax, H.; Esser, J.; Führer, D.; Eckstein, A. Combination Therapy of Intravenous Steroids and Orbital Irradiation is More Effective Than Intravenous Steroids Alone in Patients with Graves’ Orbitopathy. Horm. Metab. Res. 2017, 49, 739–747. [Google Scholar] [CrossRef]
- Shams, P.N.; Ma, R.; Pickles, T.; Rootman, J.; Dolman, P.J. Reduced Risk of Compressive Optic Neuropathy Using Orbital Radiotherapy in Patients with Active Thyroid Eye Disease. Am. J. Ophthalmol. 2014, 157, 1299–1305. [Google Scholar] [CrossRef]
- Sobel, R.K.; Aakalu, V.K.; Vagefi, M.R.; Foster, J.A.; Tao, J.P.; Freitag, S.K.; Wladis, E.J.; McCulley, T.J.; Yen, M.T. Orbital Radiation for Thyroid Eye Disease: A Report by the American Academy of Ophthalmology. Ophthalmology 2022, 129, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Kahaly, G.J.; Riedl, M.; König, J.; Pitz, S.; Ponto, K.; Diana, T.; Kampmann, E.; Kolbe, E.; Eckstein, A.; Moeller, L.C.; et al. Mycophenolate plus methylprednisolone versus methylprednisolone alone in active, moderate-to-severe Graves’ orbitopathy (MINGO): A randomised, observer-masked, multicentre trial. Lancet Diabetes Endocrinol. 2018, 6, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Prummel, M.F.; Mourits, M.P.; Berghout, A.; Krenning, E.P.; van der Gaag, R.; Koornneef, L.; Wiersinga, W.M. Prednisone and Cyclosporine in the Treatment of Severe Graves’ Ophthalmopathy. N. Engl. J. Med. 1989, 321, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Strianese, D.; Iuliano, A.; Ferrara, M.; Comune, C.; Baronissi, I.; Napolitano, P.; D’Alessandro, A.; Grassi, P.; Bonavolontà, G.; Bonavolontà, P.; et al. Methotrexate for the Treatment of Thyroid Eye Disease. J. Ophthalmol. 2014, 2014, 128903. [Google Scholar] [CrossRef]
- Taylor, P.; Rajendram, R.; Hanna, S.; Wilson, V.; Pell, J.; Li, C.; Cook, A.; Gattamaneni, R.; Plowman, N.; Jackson, S.; et al. Factors Predicting Long-term Outcome and the Need for Surgery in Graves Orbitopathy: Extended Follow-up from the CIRTED Trial. J. Clin. Endocrinol. Metab. 2023, 108, 2615–2625. [Google Scholar] [CrossRef]
- Lanzolla, G.; Maglionico, M.N.; Comi, S.; Menconi, F.; Piaggi, P.; Posarelli, C.; Figus, M.; Marcocci, C.; Marinò, M. Sirolimus as a second-line treatment for Graves’ orbitopathy. J. Endocrinol. Invest. 2022, 45, 2171–2180. [Google Scholar] [CrossRef]
- Lai, K.K.H.; Wang, Y.; Pang, C.P.; Chong, K.K. Sirolimus versus mycophenolate mofetil for triple immunosuppression in thyroid eye disease patients with recent-onset intractable diplopia: A prospective comparative case series. Clin. Exp. Ophthalmol. 2023, 51, 878–881. [Google Scholar] [CrossRef]
- Marinò, M. Sirolimus for Graves’ Orbitopathy (SIRGO). 2022. Available online: https://clinicaltrials.gov/study/NCT04598815 (accessed on 13 June 2025).
- Kang, S.; Hamed Azzam, S.; Minakaran, N.; Ezra, D.G. Rituximab for thyroid-associated ophthalmopathy. Cochrane Database Syst. Rev. 2022, 2022, CD009226. [Google Scholar] [CrossRef] [PubMed]
- Lund University. Treatment of Graves’ Ophthalmopathy with Simvastatin (GO-S). 2017. Available online: https://clinicaltrials.gov/study/NCT03131726 (accessed on 13 June 2025).
- Malboosbaf, R.; Maghsoomi, Z.; Emami, Z.; Khamseh, M.E.; Azizi, F. Statins and thyroid eye disease (TED): A systematic review. Endocrine 2024, 85, 11–17. [Google Scholar] [CrossRef]
- Shu, X.; Shao, Y.; Chen, Y.; Zeng, C.; Huang, X.; Wei, R. Immune checkpoints: New insights into the pathogenesis of thyroid eye disease. Front. Immunol. 2024, 15, 1392956. [Google Scholar] [CrossRef]
- Smith, T.J. New advances in understanding thyroid-associated ophthalmopathy and the potential role for insulin-like growth factor-I receptor. F1000Research 2018, 7, 134. [Google Scholar] [CrossRef]
- Łacheta, D.; Miśkiewicz, P.; Głuszko, A.; Nowicka, G.; Struga, M.; Kantor, I.; Poślednik, K.B.; Mirza, S.; Szczepański, M.J. Immunological Aspects of Graves’ Ophthalmopathy. BioMed Res. Int. 2019, 2019, 7453260. [Google Scholar] [CrossRef] [PubMed]
- Basak, M.; Sanyal, T.; Kar, A.; Bhattacharjee, P.; Das, M.; Chowdhury, S. Peripheral blood mononuclear cells—Can they provide a clue to the pathogenesis of Graves’ Orbitopathy? Endocrine 2022, 75, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, G.M.; Feldon, S.E.; Smith, T.J.; Phipps, R.P. Immune Mechanisms in Thyroid Eye Disease. Thyroid® 2008, 18, 959–965. [Google Scholar] [CrossRef]
- Smith, T.J.; Janssen, J.A.M.J.L. Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy. Endocr. Rev. 2019, 40, 236–267. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Ye, X.; Hu, X.; Song, S.; Xu, H.; Niu, M.; Wang, H.; Wang, J. Simultaneous induction of Graves’ hyperthyroidism and Graves’ ophthalmopathy by TSHR genetic immunization in BALB/c mice. PLoS ONE 2017, 12, e0174260. [Google Scholar] [CrossRef]
- Woeller, C.F.; Roztocil, E.; Hammond, C.; Feldon, S.E. TSHR Signaling Stimulates Proliferation Through PI3K/Akt and Induction of miR-146a and miR-155 in Thyroid Eye Disease Orbital Fibroblasts. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4336–4345. [Google Scholar] [CrossRef]
- Furmaniak, J.; Sanders, J.; Sanders, P.; Li, Y.; Rees Smith, B. TSH receptor specific monoclonal autoantibody K1-70TM targeting of the TSH receptor in subjects with Graves’ disease and Graves’ orbitopathy—Results from a phase I clinical trial. Clin. Endocrinol. 2022, 96, 878–887. [Google Scholar] [CrossRef]
- KIKUCHIT A Phase II Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Multicenter Study to Evaluate K1-70 in Japanese Patients with Active Thyroid Eye Disease. 2024. Available online: https://rctportal.mhlw.go.jp/en/detail?trial_id=jRCT2031240330 (accessed on 13 June 2025).
- Turcu, A.F.; Kumar, S.; Neumann, S.; Coenen, M.; Iyer, S.; Chiriboga, P.; Gershengorn, M.C.; Bahn, R.S. A Small Molecule Antagonist Inhibits Thyrotropin Receptor Antibody-Induced Orbital Fibroblast Functions Involved in the Pathogenesis of Graves Ophthalmopathy. J. Clin. Endocrinol. Metab. 2013, 98, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Marcinkowski, P.; Hoyer, I.; Specker, E.; Furkert, J.; Rutz, C.; Neuenschwander, M.; Sobottka, S.; Sun, H.; Nazare, M.; Berchner-Pfannschmidt, U.; et al. A New Highly Thyrotropin Receptor-Selective Small-Molecule Antagonist with Potential for the Treatment of Graves’ Orbitopathy. Thyroid 2019, 29, 111–123. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Rui, Z.; Zheng, W.; Tan, J.; Li, N.; Yu, Y. Immunotherapy with a biologically active ICAM-1 mAb and an siRNA targeting TSHR in a BALB/c mouse model of Graves’ disease. Endokrynol. Pol. 2021, 72, 592–600. [Google Scholar] [CrossRef]
- Truong, T.; Silkiss, R.Z. The Role of Insulin-like Growth Factor-1 and Its Receptor in the Eye: A Review and Implications for IGF-1R Inhibition. Ophthalmic Plast. Reconstr. Surg. 2023, 39, 4. [Google Scholar] [CrossRef]
- Marinò, M.; Rotondo Dottore, G.; Ionni, I.; Lanzolla, G.; Sabini, E.; Ricci, D.; Sframeli, A.; Mazzi, B.; Menconi, F.; Latrofa, F.; et al. Serum antibodies against the insulin-like growth factor-1 receptor (IGF-1R) in Graves’ disease and Graves’ orbitopathy. J. Endocrinol. Investig. 2019, 42, 471–480. [Google Scholar] [CrossRef]
- Krieger, C.C.; Boutin, A.; Neumann, S.; Gershengorn, M.C. Proximity ligation assay to study TSH receptor homodimerization and crosstalk with IGF-1 receptors in human thyroid cells. Front. Endocrinol. 2022, 13, 989626. [Google Scholar] [CrossRef] [PubMed]
- Morshed, S.A.; Ma, R.; Latif, R.; Davies, T.F. Mechanisms in Graves Eye Disease: Apoptosis as the End Point of Insulin-Like Growth Factor 1 Receptor Inhibition. Thyroid® 2022, 32, 429–439. [Google Scholar] [CrossRef]
- Pappo, A.S.; Vassal, G.; Crowley, J.J.; Bolejack, V.; Hogendoorn, P.C.; Chugh, R.; Ladanyi, M.; Grippo, J.F.; Dall, G.; Staddon, A.P.; et al. A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: Results of a Sarcoma Alliance for Research Through Collaboration study. Cancer 2014, 120, 2448–2456. [Google Scholar] [CrossRef]
- Smith, T.J.; Kahaly, G.J.; Ezra, D.G.; Fleming, J.C.; Dailey, R.A.; Tang, R.A.; Harris, G.J.; Antonelli, A.; Salvi, M.; Goldberg, R.A.; et al. Teprotumumab for Thyroid-Associated Ophthalmopathy. N. Engl. J. Med. 2017, 376, 1748–1761. [Google Scholar] [CrossRef]
- Douglas, R.S.; Kahaly, G.J.; Patel, A.; Sile, S.; Thompson, E.H.Z.; Perdok, R.; Fleming, J.C.; Fowler, B.T.; Marcocci, C.; Marinò, M.; et al. Teprotumumab for the Treatment of Active Thyroid Eye Disease. N. Engl. J. Med. 2020, 382, 341–352. [Google Scholar] [CrossRef]
- Douglas, R.S.; Kahaly, G.J.; Ugradar, S.; Elflein, H.; Ponto, K.A.; Fowler, B.T.; Dailey, R.; Harris, G.J.; Schiffman, J.; Tang, R.; et al. Teprotumumab Efficacy, Safety, and Durability in Longer-Duration Thyroid Eye Disease and Re-treatment: OPTIC-X Study. Ophthalmology 2022, 129, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Douglas, R.S.; Couch, S.; Wester, S.T.; Fowler, B.T.; Liu, C.Y.; Subramanian, P.S.; Tang, R.; Nguyen, Q.T.; Maamari, R.N.; Ugradar, S.; et al. Efficacy and Safety of Teprotumumab in Patients with Thyroid Eye Disease of Long Duration and Low Disease Activity. J. Clin. Endocrinol. Metabolism. 2024, 109, 25–35. [Google Scholar] [CrossRef]
- Sears, C.M.; Wang, Y.; Bailey, L.A.; Turbin, R.; Subramanian, P.S.; Douglas, R.; Cockerham, K.; Kossler, A.L. Early efficacy of teprotumumab for the treatment of dysthyroid optic neuropathy: A multicenter study. Am. J. Ophthalmol. Case Rep. 2021, 23, 101111. [Google Scholar] [CrossRef]
- Hiromatsu, Y.; Ishikawa, E.; Kozaki, A.; Takahashi, Y.; Tanabe, M.; Hayashi, K.; Imagawa, Y.; Kaneda, K.; Mimura, M.; Dai, X.; et al. A randomised, double-masked, placebo-controlled trial evaluating the efficacy and safety of teprotumumab for active thyroid eye disease in Japanese patients. Lancet Reg. Health West. Pac. 2025, 55, 101464. [Google Scholar] [CrossRef]
- Ugradar, S.; Parunakian, E.; Zimmerman, E.; Malkhasyan, E.; Raika, P.; Douglas, R.N.; Kossler, A.L.; Douglas, R.S. Clinical and Radiologic Predictors of Response to Teprotumumab: A 3D Volumetric Analysis of 35 Patients. Ophthalmic Plast. Reconstr. Surg. 2024, 41, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.P.; Gellada, N.; Ugradar, S.; Kumar, A.; Kahaly, G.; Douglas, R. Teprotumumab reduces extraocular muscle and orbital fat volume in thyroid eye disease. Br. J. Ophthalmol. 2022, 106, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.J.; Rebollo, N.P.; Mechels, K.B.; Perry, J.D. Reactivation After Teprotumumab Treatment for Active Thyroid Eye Disease. Am. J. Ophthalmol. 2024, 263, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Ugradar, S.; Parunakian, E.; Malkhasyan, E.; Chiou, C.A.; Walsh, H.L.; Tolentino, J.; Wester, S.T.; Freitag, S.K.; Douglas, R.S. The Rate of Re-treatment in Patients Treated with Teprotumumab: A Multicenter Study of 119 Patients with 1 Year of Follow-up. Ophthalmology 2025, 132, 92–97. [Google Scholar] [CrossRef]
- Walsh, H.L.; Clauss, K.D.; Meyer, B.I.; Parunakian, E.; Yasar, C.; Chiou, C.A.; Johnson, T.E.; Ugradar, S.; Kossler, A.L.; Freitag, S.K.; et al. Surgical Timing for Patients with Thyroid Eye Disease Treated With Teprotumumab: A Collaborative Multicenter Study. Ophthalmic Plast. Reconstr. Surg. 2025, 41, 320. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Su, A.; Yang, J.; Zhuang, W.; Li, Z., Sr. Postmarketing Safety Concerns of Teprotumumab: A Real-World Pharmacovigilance Assessment. J. Clin. Endocrinol. Metab. 2025, 110, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Brito, J.P.; Nagy, E.V.; Singh Ospina, N.; Zˇarković, M.; Dosiou, C.; Fichter, N.; Lucarelli, M.J.; Hegedüs, L. A Survey on the Management of Thyroid Eye Disease Among American and European Thyroid Association Members. Thyroid® 2022, 32, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Amgen. A Phase 3, Randomized, Double-Masked, Placebo-Controlled, Parallel-Group, Multicenter Trial to Evaluate the Efficacy, Safety and Tolerability of Subcutaneous Teprotumumab in Participants with Moderate-to-Severe Active Thyroid Eye Disease. 2025. Available online: https://clinicaltrials.gov/study/NCT06248619 (accessed on 13 June 2025).
- Innovent Biologics. Innovent Announces Primary Endpoint Met in the Phase 3 Clinical Trial (RESTORE-1) of IBI311 (Anti-IGF-1R Antibody) in Treating Thyroid Eye Disease and Plans to Submit NDA to the NMPA. 2024. Available online: https://www.prnewswire.com/news-releases/innovent-announces-primary-endpoint-met-in-the-phase-3-clinical-trial-restore-1-of-ibi311-anti-igf-1r-antibody-in-treating-thyroid-eye-disease-and-plans-to-submit-nda-to-the-nmpa-302065096.html (accessed on 13 June 2025).
- Viridian Therapeutics, Inc. THRIVE Readout Data. 2024. Available online: https://s203.q4cdn.com/807813999/files/doc_presentations/2024/Sep/THRIVE-readout-data-deck-FINAL.pdf (accessed on 13 June 2025).
- Rodien, P.; Schittkowski, M.; Konuk, O.; Eckstein, A.; Csutak, A.; Eade, E.; Uddin, J.; Lee, V.; Sales Sanz, M.; Conroy, W.; et al. THRIVE-2 phase 3 trial of Veligrotug (VRDN-001) in chronic thyroid eye disease (TED): Efficacy and safety at 15 weeks. Endocr. Abstr. 2025, 110, 29. [Google Scholar] [CrossRef]
- Viridian Therapeutics, Inc. A Randomized, Controlled, Safety and Tolerability Study of VRDN-001, a Humanized Monoclonal Antibody Directed Against the IGF-1 Receptor, in Participants with Thyroid Eye Disease (TED). 2025. Available online: https://clinicaltrials.gov/study/NCT06384547 (accessed on 13 June 2025).
- Newell, R.; Zhao, Y.; Bedian, V. Design and Preclinical Characterization of VRDN-003, a Next-Generation, Half-life Extended Antibody to IGF-1 Receptor in Development for Thyroid Eye Disease (TED). Investig. Ophthalmol. Vis. Sci. 2023, 64, 4044. [Google Scholar]
- Ugradar, S.; Kostick, D.A.; Spadaro, J.; Grover, A.; Imm, S.; Chesler, S.; Mpofu, S.; Khong, J. Preliminary Safety and Efficacy of Subcutaneous Lonigutamab (anti-IGF-1R) from a Phase 1/2 Proof of Concept Study in Patients with Thyroid Eye Disease. J. Endocr. Soc. 2024, 8, bvae163.2040. [Google Scholar] [CrossRef]
- Boutin, A.; Eliseeva, E.; Templin, S.; Marcus-Samuels, B.; Anderson, D.E.; Gershengorn, M.C.; Neumann, S. Linsitinib Decreases Thyrotropin-Induced Thyroid Hormone Synthesis by Inhibiting Crosstalk Between Thyroid-Stimulating Hormone and Insulin-Like Growth Factor 1 Receptors in Human Thyrocytes In Vitro and In Vivo in Mice. Thyroid® 2025, 35, 216–224. [Google Scholar] [CrossRef]
- Luffy, M.; Ganz, A.L.; Wagner, S.; Wolf, J.; Ropertz, J.; Zeidan, R.; Kent, J.D.; Douglas, R.S.; Kahaly, G.J. Linsitinib inhibits proliferation and induces apoptosis of both IGF-1R and TSH-R expressing cells. Front. Immunol. 2024, 15, 1488220. [Google Scholar] [CrossRef]
- Sling Therapeutics. Sling Therapeutics Announces Positive Topline Results from Phase 2b/3 LIDS Clinical Trial of Oral Small Molecule Linsitinib in Patients with Thyroid Eye Disease. 2025. Available online: https://live-vasaragen.pantheonsite.io/2025/01/14/sling-therapeutics-announces-positive-topline-results-from-phase-2b-3-lids-clinical-trial-of-oral-small-molecule-linsitinib-in-patients-with-thyroid-eye-disease/ (accessed on 13 June 2025).
- Kriya Therapeutics. Kriya Highlights Positive Preclinical Data for KRIYA-586, a Gene Therapy Product Candidate for Thyroid Eye Disease (TED), at ESOPRS Annual Meeting. 2024. Available online: https://kriyatherapeutics.com/news/kriya-highlights-positive-preclinical-data-for-kriya-586-a-gene-therapy-product-candidate-for-thyroid-eye-disease-ted-at-esoprs-annual-meeting/ (accessed on 13 June 2025).
- Remlinger, J.; Madarasz, A.; Guse, K.; Hoepner, R.; Bagnoud, M.; Meli, I.; Feil, M.; Abegg, M.; Linington, C.; Shock, A.; et al. Antineonatal Fc Receptor Antibody Treatment Ameliorates MOG-IgG–Associated Experimental Autoimmune Encephalomyelitis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1134. [Google Scholar] [CrossRef]
- Kahaly, G.J.; Dolman, P.J.; Wolf, J.; Giers, B.C.; Elflein, H.M.; Jain, A.P.; Srinivasan, A.; Hadjiiski, L.; Jordan, D.; Bradley, E.A.; et al. Proof-of-concept and Randomized, Placebo-controlled Trials of an FcRn Inhibitor, Batoclimab, for Thyroid Eye Disease. J. Clin. Endocrinol. Metab. 2023, 108, 3122–3134. [Google Scholar] [CrossRef]
- Immunovant Sciences GmbH. A Phase 3, Multi-Center, Randomized, Quadruple-Masked, Placebo-Controlled Study of Batoclimab for the Treatment of Participants with Active Thyroid Eye Disease (TED). 2025. Available online: https://clinicaltrials.gov/study/NCT05517421 (accessed on 13 June 2025).
- Argenx. A Phase 3, Randomized, Double-Masked, Placebo-Controlled, Multicenter Study to Evaluate the Efficacy, Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Immunogenicity of Efgartigimod PH20 SC Administered by Prefilled Syringe in Adult Participants with Thyroid Eye Disease. 2025. Available online: https://clinicaltrials.gov/study/NCT06307626 (accessed on 12 June 2025).
- Viridian Therapeutics, Inc. VRDN Q1 2024 Corporate Presentation. 2024. Available online: https://s203.q4cdn.com/807813999/files/doc_events/2024/May/08/VRDN-Q1-2024-Deck-May-13-Final.pdf (accessed on 13 June 2025).
- Heo, Y.-A. Efgartigimod: First Approval. Drugs 2022, 82, 341–348. [Google Scholar] [CrossRef]
- Broome, C. Efgartigimod alfa for the treatment of primary immune thrombocytopenia. Ther. Adv. Hematol. 2023, 14, 20406207231172831. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Hammond, C.L.; Roztocil, E.; Gonzalez, M.O.; Feldon, S.E.; Woeller, C.F. Thinking inside the box: Current insights into targeting orbital tissue remodeling and inflammation in thyroid eye disease. Surv. Ophthalmol. 2022, 67, 858–874. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Bansal, Y.; Kumar, R.; Bansal, G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorganic Med. Chem. 2020, 28, 115327. [Google Scholar] [CrossRef] [PubMed]
- Kulbay, M.; Tanya, S.M.; Tuli, N.; Dahoud, J.; Dahoud, A.; Alsaleh, F.; Arthurs, B.; El-Hadad, C. A Comprehensive Review of Thyroid Eye Disease Pathogenesis: From Immune Dysregulations to Novel Diagnostic and Therapeutic Approaches. Int. J. Mol. Sci. 2024, 25, 11628. [Google Scholar] [CrossRef]
- Perez-Moreiras, J.V.; Gomez-Reino, J.J.; Maneiro, J.R.; Perez-Pampin, E.; Romo Lopez, A.; Rodríguez Alvarez, F.M.; Castillo Laguarta, J.M.; Del Estad Cabello, A.; Gessa Sorroche, M.; España Gregori, E.; et al. Efficacy of Tocilizumab in Patients with Moderate-to-Severe Corticosteroid-Resistant Graves Orbitopathy: A Randomized Clinical Trial. Am. J. Ophthalmol. 2018, 195, 181–190. [Google Scholar] [CrossRef]
- Sánchez-Bilbao, L.; Martínez-López, D.; Revenga, M.; López-Vázquez, Á.; Valls-Pascual, E.; Atienza-Mateo, B.; Valls-Espinosa, B.; Maiz-Alonso, O.; Blanco, A.; Torre-Salaberri, I. Anti-IL-6 Receptor Tocilizumab in Refractory Graves’ Orbitopathy: National Multicenter Observational Study of 48 Patients. J. Clin. Med. 2020, 9, 2816. [Google Scholar] [CrossRef]
- Duarte, A.F.; Xavier, N.F.; Sales Sanz, M.; Cruz, A.A.V. Efficiency and Safety of Tocilizumab for the Treatment of Thyroid Eye Disease: A Systematic Review. Ophthalmic Plast. Reconstr. Surg. 2024, 40, 367. [Google Scholar] [CrossRef]
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico. Multicenter, Randomized, Observer-Blind, Controlled Study of the Anti-IL-6 Receptor Antibody Tocilizumab (TCZ) or Methylprednisolone (MP) Treatment in Patients with Active Moderate-Severe Graves’ Orbitopathy. 2022. Available online: https://clinicaltrials.gov/study/NCT04876534 (accessed on 13 June 2025).
- Ezra, D. Interleukin-6 (IL-6) Receptor Signalling Inhibition with Satralizumab in Thyroid Eye Disease (TED): Phase 3 SatraGO-1 and SatraGO-2 Trial Design. 2024. Available online: https://medically.roche.com/global/en/ophthalmology/esoprs-2024/medical-material/ESOPRS-2024-presentation-ezra-interleukin-6-IL-6-receptor-pdf.html (accessed on 13 June 2025).
- Lassen Therapeutics, Inc. A Study to Evaluate the Efficacy and Safety of LASN01 in Patients with Thyroid Eye Disease. 2025. Available online: https://clinicaltrials.gov/study/NCT06226545?intr=NCT06226545&rank=1 (accessed on 13 June 2025).
- Fang, S.; Huang, Y.; Wang, S.; Zhang, Y.; Luo, X.; Liu, L.; Zhong, S.; Liu, X.; Li, D.; Liang, R. IL-17A Exacerbates Fibrosis by Promoting the Proinflammatory and Profibrotic Function of Orbital Fibroblasts in TAO. J. Clin. Endocrinol. Metab. 2016, 101, 2955–2965. [Google Scholar] [CrossRef]
- Kim, S.E.; Yoon, J.S.; Kim, K.H.; Lee, S.Y.; Kim, S.E.; Yoon, J.S.; Kim, K.H.; Lee, S.Y. Increased serum interleukin-17 in Graves’ ophthalmopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 1521–1526. [Google Scholar] [CrossRef]
- Suzhou Suncadia Biopharmaceuticals Co. Ltd. A Single-Arm, Open-Label, Prospective Phase II Study to Evaluate the Efficacy and Safety of SHR-1314 by Subcutaneous Injection in Active Moderate to Severe Graves’ Orbitopathy Patients. 2024. Available online: https://clinicaltrials.gov/study/NCT05394857 (accessed on 13 June 2025).
- Novartis Pharmaceuticals. A Two-Year Multi-Center Phase 3 Study to Investigate the Efficacy and Safety of Secukinumab in Adult Patients with Active, Moderate to Severe Thyroid Eye Disease (ORBIT), with a Randomized, Parallel-Group, Double-Blind, Placebo-Controlled, 16-Week Treatment Period, and a Follow-Up/Retreatment Period. 2025. Available online: https://clinicaltrials.gov/study/NCT04737330 (accessed on 13 June 2025).
- Lin, F.; Yao, Q.; Yu, B.; Deng, Z.; Qiu, J.; He, R. The Efficacy and Safety of Teprotumumab in Thyroid Eye Disease: Evidence from Randomized Controlled Trials. Int. J. Clin. Pract. 2023, 2023, 6638089. [Google Scholar] [CrossRef]
- Moledina, M.; Damato, E.M.; Lee, V. The changing landscape of thyroid eye disease: Current clinical advances and future outlook. Eye 2024, 38, 1425–1437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farde, K.; Träisk, F. Tocilizumab—A disease-modulating treatment for thyroid associated ophthalmopathy? Orbit 2025, 44, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Murdock, J.; Nguyen, J.; Hurtgen, B.J.; Andorfer, C.; Walsh, J.; Lin, A.; Tubbs, C.; Erickson, K.; Cockerham, K. The role of IL-6 in thyroid eye disease: An update on emerging treatments. Front. Ophthalmol. 2025, 5, 1544436. [Google Scholar] [CrossRef]
- Lanzolla, G.; Comi, S.; Cosentino, G.; Pakdel, F.; Marinò, M. Statins in Graves Orbitopathy: A New Therapeutic Tool. Ophthalmic Plast. Reconstr. Surg. 2023, 39, S29–S39. [Google Scholar] [CrossRef]
- Silkiss, R.Z.; Kim, S.; Bilyk, J.R. Treatment of corticosteroid-resistant thyroid eye disease. Can. J. Ophthalmol. 2021, 56, 312–318. [Google Scholar] [CrossRef]
- Dallalzadeh, L.O.; Villatoro, G.A.; Chen, L.; Sim, M.S.; Movaghar, M.; Robbins, S.L.; Karlin, J.N.; Khitri, M.R.; Velez, F.G.; Korn, B.S.; et al. Teprotumumab for Thyroid Eye Disease-related Strabismus. Ophthalmic Plast. Reconstr. Surg. 2024, 40, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Topilow, N.J.; Penteado, R.C.; Ting, M.; Al-Sharif, E.; Villatoro, G.A.; Yoon, J.S.; Liu, C.Y.; Korn, B.S.; Kikkawa, D.O. Orbital decompression following treatment with teprotumumab for thyroid eye disease. Can. J. Ophthalmol. 2025, 60, e59–e64. [Google Scholar] [CrossRef] [PubMed]
Drug | Developer | Drug Type | Initially Developed for | Cohort and Clinical Trial Phase in TED | Dosing Regimen | Most Effective on | Side Effects in TED |
---|---|---|---|---|---|---|---|
Teprotumumab (TEPEZZA®, 2020 FDA Approval) | Horizon/ Amgen, Thousand Oaks, CA, USA | Fully human mAb | Solid cancer | Active and Chronic TED (FDA approved/Phase IV) | Eight Q3W IV inj. (1st: 10 mg/kg, then 20 mg/kg) | CAS Proptosis Diplopia | Hearing Impairment, Hyperglycemia, Muscle Spasms, Nausea/Diarrhea, Teratogenicity |
IBI311 | Innovent, Mountain View, CA, USA | Recombinant mAb | TED | Active TED (Phase IIb) | Eight Q3W IV inj. (1st: 10 mg/kg, then 20 mg/kg) | CAS Proptosis | Not Yet Reported, Expected Similar to Teprotumumab |
Veligrotug (VRDN-001) | Viridian Therapeutics, Waltham, MA, USA | Humanized mAb | TED | Active and Chronic TED (Phase III) | Five Q3W IV inj. (10 mg/kg) | CAS Proptosis Diplopia | Muscle Spasms, Headache, Mild Hearing Issues |
VRDN-003 | Viridian Therapeutics, Waltham, MA, USA | Next-gen, half-life extended Humanized mAb | TED | Active and Chronic TED (Phase III) | Loading dose (600 mg) + Two Q8W or Five Q4W SC inj. (300 mg) | Not yet reported | Not Reported, Expected Similar to Veligrotug |
Lonigutamab | ValenzaBIO, Bethesda, MD, USA/Acelyrin Inc., Agoura Hills, CA, USA | Humanized mAb | TED | Active TED (Phase Ib) | Four Q3W (40 mg) or Twelve QW SC inj. (1st 50 mg, then 25 mg) | CAS Proptosis Diplopia | Muscle Spasms, Headache, No Hearing Impairment |
Linsitinib | Sling Therapeutics, Ann Arbor, MI, USA | Small molecule | Cancer | Active TED (Phase III) | 75 mg or 150 mg tablets BID for 24 weeks | Proptosis | Diarrhea, Headache, Nausea, Fatigue, Elevated Liver Enzymes |
Kriya-586 | Kriya Therapeutics, Morrisville, NC, USA | AAV Gene Therapy | TED | Not specified (Phase I) | Single peribulbar injection | Not yet reported | Not Yet Reported |
Target | Drug | Developer | Initially Developed for | Cohort and Clinical Trial Phase in TED | Dosing Regimen | Most Effective on | Side Effects in TED |
---|---|---|---|---|---|---|---|
TSH-R | K1-70 | RSR Ltd., Lancashire, UK | Thyroid Cancer | Active TED (Phase I) | Single dose 25 mg IM inj or Single dose 50/150 mg IV inj | CAS Proptosis | Fatigue, Diarrhea |
FcRn | Batoclimab | Immunovant, New York, NY, USA | MG | Active TED (Phase III) | Six QW SC inj. (2 × 680 mg + 4 × 340 mg) | Lower TRAB CAS | Hypercholesterolemia, Hypoalbuminemia, Headache |
Efgartigimod | Argenx, Amsterdam, The Netherlands | MG | Active TED (Phase III) | Twentyfour QW SC inj. (1 g prefilled syringe) | Not yet reported | Not Yet Reported | |
IL6R | Tocilizumab | Hoffmann- La Roche, Basel, Switzerland | Rheumatoid Arthritis | Active TED (Phase II) | Four Q4W IV inj. (8 mg/kg) | CAS Proptosis (low) | Mild AEs, Neutropenia, Hypercholesterolemia |
Satralizumab | Hoffmann- La Roche | NMOSD | Active and Chronic TED (Phase III) | Three Q2W + Five Q4W SC inj. (120 mg) | Not yet reported | Not Yet Reported | |
Pacibekitug | Tourmaline Bio, Inc., New York, NY, USA | ASCVD | Active TED (Phase IIb) | Three Q8W SC inj. (20 mg or 50 mg) | Not yet reported | Not Yet Reported | |
IL11R | LASN01 | Lassen Therapeutics, Inc., San Diego, CA, USA | Pulmonary fibrosis | Active TED (Phase II) | Four Q4W IV inj. (multiple ascending dose) | Not yet reported | Not Yet Reported |
IL17R | Vunakizumab | Suzhou Suncadia Biopharmaceuticals Co., Ltd., Beijing, China | Anti-rheumatic and Psoriasis | Active TED (Phase II— terminated early) | SC inj. (Details not reported) | Not reported | Not Reported |
Secukinumab | Novartis, Basel, Switzerland | Anti-rheumatic and Psoriasis | Active TED (Phase III— terminated early) | Four QW inj. + Two Q4W SC inj. (300 mg each) | Primary endpoint not met | Not Reported |
Study | Study Population | Follow-Up Duration | Primary Endpoint | Key Findings | Main Adverse Events |
---|---|---|---|---|---|
Smith et al., 2017 [46] | RCT on moderate-to-severe active TED; average CAS ≥ 4 and disease duration < 9 months | 24 weeks | Proptosis reduction ≥ 2 mm | Proptosis response: 71% vs. 20% CAS 0–1: 59% vs. 21% | Hyperglycemia in Diabetic Patients |
Douglas et al., 2020 (OPTIC) [47] | RCT on moderate-to-severe active TED; average CAS ≥ 4 and disease duration 6.3 months | 24 weeks | Proptosis reduction ≥ 2 mm | Proptosis response: 83% vs. 10% CAS 0–1: 59% vs. 21% Diplopia response: 68% vs. 29% GO-QOL Score Improvement: 13.79 vs. 4.43 | Muscle Spasms (25%) Nausea (17%) Alopecia (13%) Diarrhea (13%) Hearing Impairment (10%) Hyperglycemia (8%) |
Sears et al., 2021 [50] | Retrospective observational case series | 15 weeks | Unspecified | BCVA improvement: 0.87 logMAR Proptosis reduction: 4.7 mm CAS improvement: 5.25 points Diplopia improvement: 0.75 points RAPD resolution/improvement: 100% Color normalization/improvement: 100% | Not Reported |
Douglas et al., 2022 (OPTIC-X) [48] | Open-label extension study on non-responders or relapsed from OPTIC | 48 weeks | Proptosis reduction ≥ 2 mm | Proptosis response: 89% CAS 0–1: 65.6% Diplopia response: 63% GO-QOL Score Improvement: 11.7 Proptosis recurrence at 6 m: 26% | Similar Profile to OPTIC |
Douglas et al., 2024 [49] | RCT on inactive/Chronic TED; average CAS ≤ 1 and disease duration 2–10 years | 24 weeks | Proptosis Reduction ≥ 2 mm | Proptosis response: 61.9% vs. 25% Diplopia Response not significant (study not powered enough) | Muscle Spasms (41.5%) Hearing Impairment (22%) Hyperglycemia (14.6%) |
Hiromatsu et al., 2025 (OPTIC-J) [51] | RCT on Japanese patients with moderate-to-severe active TED; average CAS ≥ 3 and disease duration < 9 months | 24 weeks | Proptosis reduction ≥ 2 mm | Proptosis improvement: 89% vs. 11% CAS 0–1: 59% vs. 22% Diplopia improvement: 64% vs. 45% (not significant) | Hyperglycemia (22%) Hearing Impairment (15%) |
Study | Study Population | Follow-Up Duration | Primary Endpoint | Key Findings | Main Adverse Events |
---|---|---|---|---|---|
THRIVE [61] (2024) | RCT on moderate-to-severe active TED; average CAS ≥ 4 and disease duration < 8 months | 15 weeks | Proptosis reduction ≥ 2 mm | Proptosis response: 70% vs. 5% CAS 0–1: 64% vs. 18% Diplopia response: 63% vs. 20% Diplopia complete resolution: 54% vs. 12% | Muscle spasms (43%) Headache (21%) Hearing impairment (16%) Hyperglycemia (15%) |
THRIVE-2 [62] (2024) | RCT on chronic TED; average CAS < 3 and disease duration > 5 years | 15 weeks for primary endpoint, extended up to 52 weeks | Proptosis reduction ≥ 2 mm | Proptosis response: 56% vs. 8% CAS 0–1: 54% vs. 24% Diplopia response: 56% vs. 25% Diplopia complete resolution: 32% vs. 14% | Muscle spasms (6%) Menstrual disorders (33%) Headache (13%) Hearing impairment (13%) Diarrhea (10%) Hyperglycemia (5%) |
STRIVE (ongoing) [63] | RCT on TED of any severity or duration | 52 weeks | Incidence of treatment-emergent adverse events (TEAEs) | Expected late 2025 | Not yet reported |
Drug | Study | Population Tested | Follow-Up Duration | Treatment Regimen | Primary Endpoint | Key Findings | Main Adverse Events |
---|---|---|---|---|---|---|---|
Batoclimab (HBM9161) | ASCEND-GO 1 (Phase IIa) [71] | RCT on moderate-to-severe active TED | 6 weeks | 5 QW SC injections (680 mg 1st and 2nd, then 340 mg) | Changes in serum levels of anti-TSH-R Abs and total IgG | Significant reductions in serum IgG (64.8%) and anti-TSHR antibodies (56.7%) | Mild Reversible Hypoalbuminemia, Headache |
Batoclimab (HBM9161) | ASCEND-GO 2 (Phase IIb) [71] | RCT on moderate-to-severe active TED | 13 weeks | 12 QW SC injections, various doses tested (680 mg, 340 mg, 255 mg) | Proptosis reduction ≥ 2 mm | Despite early termination due to unexpected increases in cholesterol levels, significant reductions in pathogenic antibodies Were observed | Reversible Increase in Serum Cholesterol Levels |
Batoclimab (HBM9161) | NCT05517421 (Phase III) [72] | RCT on moderate-to-severe active TED | 24 weeks | 24 QW SC injections (twelve 680 mg inj. + twelve 340 mg inj.) | Incidence of treatment-emergent adverse events (TEAEs) | Expected in 2027 | Not Yet Reported |
Efgartigimod | UplighTED (Phase III) [73] | RCT on moderate-to-severe active TED | 24 weeks for primary endpoint; extended up to 110 weeks | 24 QW SC injections (1 g prefilled syringe) | Proptosis reduction ≥ 2 mm | Expected in 2027 (75–90% IgG reduction in preclinical murine models) | No Impact on IgM, IgA, Cholesterol or Albumin in Other Conditions Tested |
VRND-006 | Phase I [74] | Healthy volunteers | Not yet reported | Not yet reported | Not yet reported | Expected late 2025 Similar to Efgartigimod in preclinical trials. | Safety Profile Similar to Efgartigimod in Preclinical Trials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciarmatori, N.; Quaranta Leoni, F.; Quaranta Leoni, F.M. Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies. J. Clin. Med. 2025, 14, 5528. https://doi.org/10.3390/jcm14155528
Ciarmatori N, Quaranta Leoni F, Quaranta Leoni FM. Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies. Journal of Clinical Medicine. 2025; 14(15):5528. https://doi.org/10.3390/jcm14155528
Chicago/Turabian StyleCiarmatori, Nicolò, Flavia Quaranta Leoni, and Francesco M. Quaranta Leoni. 2025. "Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies" Journal of Clinical Medicine 14, no. 15: 5528. https://doi.org/10.3390/jcm14155528
APA StyleCiarmatori, N., Quaranta Leoni, F., & Quaranta Leoni, F. M. (2025). Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies. Journal of Clinical Medicine, 14(15), 5528. https://doi.org/10.3390/jcm14155528