Real-World Efficacy and Durability of Faricimab in Aflibercept-Resistant Neovascular Age-Related Macular Degeneration
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Participants
2.3. Outcome Measurement
2.4. Statistical Analysis
3. Results
3.1. Demographics and Clinical Characteristics
3.2. Visual and Anatomic Outcomes over 6 Months
3.3. Changes in PED
3.4. Changes in Retinal Fluid Compartment
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, L.S.; Mitchell, P.; Seddon, J.M.; Holz, F.G.; Wong, T.Y. Age-related macular degeneration. Lancet 2012, 379, 1728–1738. [Google Scholar] [CrossRef]
- Higashijima, F.; Hasegawa, M.; Yoshimoto, T.; Kobayashi, Y.; Wakuta, M.; Kimura, K. Molecular mechanisms of TGFβ-mediated EMT of retinal pigment epithelium in subretinal fibrosis of age-related macular degeneration. Front. Ophthalmol. 2023, 2, 1060087. [Google Scholar] [CrossRef]
- Ferrante, N.; Ritrovato, D.; Bitonti, R.; Furneri, G. Cost-effectiveness analysis of brolucizumab versus aflibercept for the treatment of neovascular age-related macular degeneration (nAMD) in Italy. BMC Health Serv. Res. 2022, 22, 573. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Yi, C.; Pan, W.; Liu, J.; Qi, J.; Chen, J.; Zhou, Z.; Duan, Y.; Ning, X.; Li, J.; et al. Vascular Cell Adhesion Molecule-1 (VCAM-1) contributes to macular fibrosis in neovascular age-related macular degeneration through modulating macrophage functions. Immun. Ageing. 2023, 20, 65. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Zhang, J.; Xu, G.T.; Zhang, J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol. Dis. 2023, 185, 106250. [Google Scholar] [CrossRef] [PubMed]
- Moon, B.H.; Kim, Y.; Kim, S.Y. Twenty Years of Anti-Vascular Endothelial Growth Factor Therapeutics in Neovascular Age-Related Macular Degeneration Treatment. Int. J. Mol. Sci. 2023, 24, 13004. [Google Scholar] [CrossRef]
- Wykoff, C.C.; Clark, W.L.; Nielsen, J.S.; Brill, J.V.; Greene, L.S.; Heggen, C.L. Optimizing Anti-VEGF Treatment Outcomes for Patients with Neovascular Age-Related Macular Degeneration. J. Manag. Care Spec. Pharm. 2018, 24, S3–S15. [Google Scholar] [CrossRef]
- ElSheikh, R.H.; Chauhan, M.Z.; Sallam, A.B. Current and Novel Therapeutic Approaches for Treatment of Neovascular Age-Related Macular Degeneration. Biomolecules 2022, 12, 1629. [Google Scholar] [CrossRef]
- Cheng, A.M.; Joshi, S.; Banoub, R.G.; Saddemi, J.; Chalam, K.V. Faricimab Effectively Resolves Intraretinal Fluid and Preserves Vision in Refractory, Recalcitrant, and Nonresponsive Neovascular Age-Related Macular Degeneration. Cureus 2023, 15, e40100. [Google Scholar] [CrossRef]
- Sahni, J.; Dugel, P.U.; Patel, S.S.; Chittum, M.E.; Berger, B.; Del Valle Rubido, M.; Sadikhov, S.; Szczesny, P.; Schwab, D.; Nogoceke, E.; et al. Safety and Efficacy of Different Doses and Regimens of Faricimab vs Ranibizumab in Neovascular Age-Related Macular Degeneration: The AVENUE Phase 2 Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Liberski, S.; Wichrowska, M.; Kocięcki, J. Aflibercept versus Faricimab in the Treatment of Neovascular Age-Related Macular Degeneration and Diabetic Macular Edema: A Review. Int. J. Mol. Sci. 2022, 23, 9424. [Google Scholar] [CrossRef] [PubMed]
- Khanani, A.M.; Kotecha, A.; Chang, A.; Chen, S.J.; Chen, Y.; Guymer, R.; Heier, J.S.; Holz, F.G.; Iida, T.; Ives, J.A.; et al. TENAYA and LUCERNE Investigators. TENAYA and LUCERNE: Two-Year Results from the Phase 3 Neovascular Age-Related Macular Degeneration Trials of Faricimab with Treat-and-Extend Dosing in Year 2. Ophthalmology 2024, 131, 914–926. [Google Scholar] [CrossRef] [PubMed]
- Khanani, A.M.; Eichenbaum, D.; Schlottmann, P.G.; Tuomi, L.; Sarraf, D. Optimal management of pigment epithelial detachments in eyes with neovascular age-related macular degeneration. Retina 2018, 38, 2103–2117. [Google Scholar] [CrossRef]
- Kishi, M.; Miki, A.; Kamimura, A.; Okuda, M.; Matsumiya, W.; Imai, H.; Kusuhara, S.; Nakamura, M. Short-Term Outcomes of Faricimab Treatment in Aflibercept-Refractory Eyes with Neovascular Age-Related Macular Degeneration. J. Clin. Med. 2023, 12, 5145. [Google Scholar] [CrossRef]
- Rush, R.B.; Rush, S.W. Intravitreal Faricimab for Aflibercept-Resistant Neovascular Age-Related Macular Degeneration. Clin. Ophthalmol. 2022, 16, 4041–4046. [Google Scholar] [CrossRef]
- Rush, R.B. One-Year Outcomes of Faricimab Treatment for Aflibercept-Resistant Neovascular Age-Related Macular Degeneration. Clin. Ophthalmol. 2023, 17, 2201–2208. [Google Scholar] [CrossRef]
- Goodchild, C.; Bailey, C.; Soto Hernaez, J.; Ahmed, E.; Salvatore, S. Real world efficacy and durability of faricimab in patients with neovascular AMD (nAMD) who had sub-optimal response to prior anti-VEGF therapy. Eye 2024, 38, 3059–3064. [Google Scholar] [CrossRef]
- Kataoka, K.; Itagaki, K.; Hashiya, N.; Wakugawa, S.; Tanaka, K.; Nakayama, M.; Yamamoto, A.; Mukai, R.; Honjyo, J.; Maruko, I.; et al. Six-month outcomes of switching from aflibercept to faricimab in refractory cases of neovascular age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 43–51. [Google Scholar] [CrossRef]
- Sarraf, D.; Khanani, A.M.; Sadda, S.R.; Chang, A.; Wong, D.T.; Kempf, A.S.; Saffar, I.; Tang, S.; Tadayoni, R. Pigment epithelial detachment thickness and variability affects visual outcomes in patients with neovascular age-related macular degeneration. Retina 2024, 44, 10–19. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Waldstein, S.M.; Deak, G.G.; Kundi, M.; Simader, C. Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration. Ophthalmology 2015, 122, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yang, Y.; Lin, B.; Huang, Y.; Zhou, R.; Yang, C.; Li, Y.; Huang, S.; Liu, X. Comparative efficacy of aflibercept and ranibizumab in the treatment of age-related macular degeneration with retinal pigment epithelial detachment: A systematic review and network meta-analysis. BMC Ophthalmol. 2023, 23, 473. [Google Scholar] [CrossRef] [PubMed]
- Selvam, A.; Singh, S.R.; Arora, S.; Patel, M.; Kuchhal, A.; Shah, S.; Ong, J.; Rasheed, M.A.; Manne, S.R.; Ibrahim, M.N.; et al. Pigment epithelial detachment composition indices (PEDCI) in neovascular age-related macular degeneration. Sci. Rep. 2023, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Haug, S.; Amador, M.; Kotecha, A.; Margaron, P.; Stoilov, I.; Tang, Y. Clinical pearls from the TENAYA/LUCERNE trials of faricimab in patients with nAMD. Investig. Ophthalmol. Vis. Sci. 2024, 65, 5696. [Google Scholar]
- Hoven, E.; Michelet, J.T.; Vettore, M.V.; Lagali, N. Choroidal thickness after anti-vascular endothelial growth factor in typical neovascular age-related macular degeneration—A systematic review and meta-analysis. Surv. Ophthalmol. 2025, 70, 86–95. [Google Scholar] [CrossRef]
- Fan, W.; Abdelfattah, N.S.; Uji, A.; Lei, J.; Ip, M.; Sadda, S.R.; Wykoff, C.C.; TREX-AMD Study Group. Subfoveal choroidal thickness predicts macular atrophy in age-related macular degeneration: Results from the TREX-AMD trial. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 511–518. [Google Scholar] [CrossRef]
- Heussen, F.M.; Ouyang, Y.; Sadda, S.R.; Walsh, A.C. Simple estimation of clinically relevant lesion volumes using spectral domain-optical coherence tomography in neovascular age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7792–7798. [Google Scholar] [CrossRef]
N = 60 | |
---|---|
Age (years) | 71.8 ± 9.7 |
Gender (male/female) | 36/24 |
Type of age-related macular degeneration (n, %) | |
Typical neovascular age-related macular degeneration | 24 (40) |
Polypoidal choroidal vasculopathy | 32 (53) |
Retinal angiomatous proliferation | 4 (7) |
Time from diagnosis to first faricimab (months) | 39.3 ± 12.5 |
Number of previous injections before switching | 13.4 ± 5.8 |
Number of aflibercept injections before switching | 8.5 ± 4.9 |
Injection interval before switching (weeks) | 6.8 ± 2.4 |
Duration since the last injection (aflibercept, weeks) | 5.2 ± 1.8 |
Best-corrected visual acuity (logMAR) | 0.51 ± 0.13 |
Central subfield thickness (μm) | 356.2 ± 38.4 |
Subfoveal choroidal thickness (µm) | 182.7 ± 22.8 |
Eyes with pigment epithelial detachment (n, %) | 55 (91.7) |
Type of pigment epithelial detachment (n, %) | |
Predominantly serous | 14 (25.4) |
Predominantly fibrovascular | 26 (47.3) |
Fibrovascular only | 15 (27.3) |
Maximum pigment epithelial detachment height (µm) | 309.1 ± 32.1 |
Maximum pigment epithelial detachment width (µm) | 2327.4 ± 842.3 |
Baseline | 1 Month | 3 Months | 6 Months | p-Value | |
---|---|---|---|---|---|
Best-corrected visual acuity (logMAR) | 0.51 ± 0.13 | 0.49 ± 0.17 | 0.47 ± 0.16 | 0.48 ± 0.14 | 0.150 |
Central subfield thickness (μm) | 356.2 ± 38.4 | 348.8 ± 42.1 | 338.7 ± 49.7 | 324.5 ± 45.1 | 0.020 |
Subfoveal choroidal thickness (μm) | 182.7 ± 22.8 | 176.5 ± 28.7 | 175.1 ± 24.3 | 172.8 ± 25.9 | 0.072 |
Maximum pigment epithelial detachment height (μm) | 309.1 ± 32.1 | 288.2 ± 26.4 | 283.7 ± 31.7 | 279.0 ± 29.5 | 0.030 |
Maximum pigment epithelial detachment width (μm) | 2327.4 ± 842.3 | 2298.6 ± 764.2 | 2285.9 ± 658.3 | 2290.3 ± 723.8 | 0.068 |
Factors | p * | β | 95% CI |
---|---|---|---|
Age | 0.723 | ||
Gender | 0.562 | ||
Type of AMD | 0.056 | ||
Number of aflibercept injections before switching | 0.460 | ||
Mean injection interval before switching | 0.030 | 0.178 | 0.039–0.786 |
Central subfield thickness (μm) | 0.319 | ||
Subfoveal choroidal thickness (μm) | 0.239 | ||
Maximum PED height (μm) | 0.048 | −0.602 | 0.340–0.090 |
Maximum PED width (μm) | 0.649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, A.; Liang, H.; Baek, S.C.; Sagong, M. Real-World Efficacy and Durability of Faricimab in Aflibercept-Resistant Neovascular Age-Related Macular Degeneration. J. Clin. Med. 2025, 14, 5412. https://doi.org/10.3390/jcm14155412
Jeong A, Liang H, Baek SC, Sagong M. Real-World Efficacy and Durability of Faricimab in Aflibercept-Resistant Neovascular Age-Related Macular Degeneration. Journal of Clinical Medicine. 2025; 14(15):5412. https://doi.org/10.3390/jcm14155412
Chicago/Turabian StyleJeong, Areum, Huiyu Liang, Seung Chul Baek, and Min Sagong. 2025. "Real-World Efficacy and Durability of Faricimab in Aflibercept-Resistant Neovascular Age-Related Macular Degeneration" Journal of Clinical Medicine 14, no. 15: 5412. https://doi.org/10.3390/jcm14155412
APA StyleJeong, A., Liang, H., Baek, S. C., & Sagong, M. (2025). Real-World Efficacy and Durability of Faricimab in Aflibercept-Resistant Neovascular Age-Related Macular Degeneration. Journal of Clinical Medicine, 14(15), 5412. https://doi.org/10.3390/jcm14155412