The Impact of Advanced Maternal Age on Pregnancy Complications and Neonatal Outcomes
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lean, S.C.; Derricott, H.; Jones, R.L.; Heazell, A.E. Advanced maternal age and adverse pregnancy outcomes: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0186287. [Google Scholar] [CrossRef]
- Cooke, A.; Mills, T.A.; Lavender, T. ‘Informed and uninformed decision making’—women’s reasoning, experiences and perceptions with regard to advanced maternal age and delayed childbearing: A meta-synthesis. Int. J. Nurs. Stud. 2010, 47, 1317–1329. [Google Scholar] [CrossRef]
- Wu, J.; Meldrum, S.; Dozier, A.; Stanwood, N.; Fiscella, K. Contraceptive nonuse among US women at risk for unplanned pregnancy. Contraception 2008, 78, 284–289. [Google Scholar] [CrossRef]
- Gantt, A.; Metz, T.D.; Kuller, J.A.; Louis, J.M.; Cahill, A.G.; Turrentine, M.A. Obstetric Care Consensus #11, Pregnancy at age 35 years or older. Am. J. Obstet. Gynecol. 2023, 228, B25–B40. [Google Scholar] [CrossRef]
- Fitzpatrick, K.E.; Tuffnell, D.; Kurinczuk, J.J.; Knight, M. Pregnancy at very advanced maternal age: A UK population-based cohort study. Int. J. Obstet. Gynaecol. 2017, 124, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Smithson, S.D.; Greene, N.H.; Esakoff, T.F. Pregnancy outcomes in very advanced maternal age women. Am. J. Obstet. Gynecol. MFM 2022, 4, 100491. [Google Scholar] [CrossRef] [PubMed]
- Pethő, B.; Váncsa, S.; Váradi, A.; Agócs, G.; Mátrai, Á.; Zászkaliczky-Iker, F.; Balogh, Z.; Bánhidy, F.; Hegyi, P.; Ács, N. Very young and advanced maternal age strongly elevates the occurrence of nonchromosomal congenital anomalies: A systematic review and meta-analysis of population-based studies. Am. J. Obstet. Gynecol. 2024, 231, 490–500.e73. [Google Scholar] [CrossRef] [PubMed]
- Cleary-Goldman, J.; Malone, F.D.; Vidaver, J.; Ball, R.H.; Nyberg, D.A.; Comstock, C.H.; Saade, G.R.; Eddleman, K.A.; Klugman, S.; Dugoff, L.; et al. Impact of maternal age on obstetric outcome. Obstet. Gynecol. 2005, 105 Pt 1, 983–990. [Google Scholar] [CrossRef]
- Cnattingius, S.; Forman, M.R.; Berendes, H.W.; Isotalo, L. Delayed childbearing and risk of adverse perinatal outcome. A population-based study. J. Am. Med. Assoc. 1992, 268, 886–890. [Google Scholar] [CrossRef]
- Waldenström, U.; Cnattingius, S.; Vixner, L.; Norman, M. Advanced maternal age increases the risk of very preterm birth, irrespective of parity: A population-based register study. Int. J. Obstet. Gynaecol. 2017, 124, 1235–1244. [Google Scholar] [CrossRef]
- Crawford, N.M.; Steiner, A.Z. Age-related infertility. Obstet. Gynecol. Clin. N. Am. 2015, 42, 15–25. [Google Scholar] [CrossRef]
- Greenberg, M.B.; Cheng, Y.W.; Sullivan, M.; Norton, M.E.; Hopkins, L.M.; Caughey, A.B. Does length of labor vary by maternal age? Am. J. Obstet. Gynecol. 2007, 197, 428.E1–428.E7. [Google Scholar] [CrossRef]
- Bayrampour, H.; Heaman, M. Advanced maternal age and the risk of cesarean birth: A systematic review. Birth 2010, 37, 219–226. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists; Society for Maternal-Fetal Medicine. Management of Stillbirth: Obstetric Care Consensus No, 10. Obstet. Gynecol. 2020, 135, e110–e132. [Google Scholar] [CrossRef]
- Claramonte Nieto, M.; Meler Barrabes, E.; Garcia Martínez, S.; Gutiérrez Prat, M.; Serra Zantop, B. Impact of aging on obstetric outcomes: Defining advanced maternal age in Barcelona. BMC Pregnancy Childbirth 2019, 19, 342. [Google Scholar] [CrossRef]
- Keefe, D.L.; Franco, S.; Liu, L.; Trimarchi, J.; Cao, B.; Weitzen, S.; Agarwal, S.; Blasco, M.A. Telomere length predicts embryo fragmentation after in vitro fertilization in women--toward a telomere theory of reproductive aging in women. Am. J. Obstet. Gynecol. 2005, 192, 1256–1260; discussion 1260–1261. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.B.; Yang, Q.; Allran, K.; Taft, L.F.; Sherman, S.L. Women with a reduced ovarian complement may have an increased risk for a child with Down syndrome. Am. J. Hum. Genet. 2000, 66, 1680–1683. [Google Scholar] [CrossRef] [PubMed]
- Hollier, L.M.; Leveno, K.J.; Kelly, M.A.; DD, M.C.; Cunningham, F.G. Maternal age and malformations in singleton births. Obstet. Gynecol. 2000, 96 Pt 1, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Reefhuis, J.; Honein, M.A. Maternal age and non-chromosomal birth defects, Atlanta—1968–2000: Teenager or thirty-something, who is at risk? Birth Defects Res. Part A Clin. Mol. Teratol. 2004, 70, 572–579. [Google Scholar] [CrossRef]
- Silvestri Melkan, M.P.I.; Ferreira, O.S.; Bassan, L.C.L.; Brizot, M.L.; Francisco, R.P.V.; Rodrigues, A.S.; Azevedo Carvalho, M. Prevalence and trends of major congenital anomalies in Brazil: A study from 2011 to 2020. PLoS ONE 2025, 20, e0323654. [Google Scholar] [CrossRef]
- Morris, J.K.; Springett, A.L.; Greenlees, R.; Loane, M.; Addor, M.C.; Arriola, L.; Barisic, I.; Bergman, J.E.H.; Csaky-Szunyogh, M.; Dias, C.; et al. Trends in congenital anomalies in Europe from 1980 to 2012. PLoS ONE 2018, 13, e0194986. [Google Scholar] [CrossRef]
- Ferrucci, L.; Corsi, A.; Lauretani, F.; Bandinelli, S.; Bartali, B.; Taub, D.D.; Guralnik, J.M.; Longo, D.L. The origins of age-related proinflammatory state. Blood 2005, 105, 2294–2299. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Goodnough, L.T. Anemia of chronic disease. N. Engl. J. Med. 2005, 352, 1011–1023. [Google Scholar] [CrossRef]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef]
- Carolan, M.C.; Davey, M.A.; Biro, M.; Kealy, M. Very advanced maternal age and morbidity in Victoria, Australia: A population based study. BMC Pregnancy Childbirth 2013, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- Lisonkova, S.; Potts, J.; Muraca, G.M.; Razaz, N.; Sabr, Y.; Chan, W.S.; Kramer, M.S. Maternal age and severe maternal morbidity: A population-based retrospective cohort study. PLoS Med. 2017, 14, e1002307. [Google Scholar] [CrossRef] [PubMed]
- Sheen, J.J.; Wright, J.D.; Goffman, D.; Kern-Goldberger, A.R.; Booker, W.; Siddiq, Z.; D’Alton, M.E.; Friedman, A.M. Maternal age and risk for adverse outcomes. Am. J. Obstet. Gynecol. 2018, 219, 390.E1–390.E15. [Google Scholar] [CrossRef]
- Nyfløt, L.T.; Sandven, I.; Stray-Pedersen, B.; Pettersen, S.; Al-Zirqi, I.; Rosenberg, M.; Jacobsen, A.F.; Vangen, S. Risk factors for severe postpartum hemorrhage: A case-control study. BMC Pregnancy Childbirth 2017, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, W.M.; Nesbitt, T.S.; Danielsen, B. Childbearing beyond age 40: Pregnancy outcome in 24,032 cases. Obstet. Gynecol. 1999, 93, 9–14. [Google Scholar] [CrossRef]
- Tosti, G.; Barberio, A.; Tartaglione, L.; Rizzi, A.; Di Leo, M.; Viti, L.; Sirico, A.; De Carolis, S.; Pontecorvi, A.; Lanzone, A.; et al. Lights and shadows on the use of metformin in pregnancy: From the preconception phase to breastfeeding and beyond. Front Endocrinol. 2023, 14, 1176623. [Google Scholar] [CrossRef]
- Luke, B.; Brown, M.B. Elevated risks of pregnancy complications and adverse outcomes with increasing maternal age. Hum. Reprod. 2007, 22, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; de Groot, C.J.M.; Hofmeyr, G.J. Pre-eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef]
- Elawad, T.; Scott, G.; Bone, J.N.; Elwell, H.; Lopez, C.E.; Filippi, V.; Green, M.; Khalil, A.; Kinshella, M.W.; Mistry, H.D.; et al. Risk factors for pre-eclampsia in clinical practice guidelines: Comparison with the evidence. Int. J. Obstet. Gynaecol. 2024, 131, 46–62. [Google Scholar] [CrossRef]
- Jacobsson, B.; Ladfors, L.; Milsom, I. Advanced maternal age and adverse perinatal outcome. Obstet. Gynecol. 2004, 104, 727–733. [Google Scholar] [CrossRef]
- Tough, S.C.; Newburn-Cook, C.; Johnston, D.W.; Svenson, L.W.; Rose, S.; Belik, J. Delayed childbearing and its impact on population rate changes in lower birth weight, multiple birth, and preterm delivery. Pediatrics 2002, 109, 399–403. [Google Scholar] [CrossRef]
- Pinheiro, R.L.; Areia, A.L.; Mota Pinto, A.; Donato, H. Advanced Maternal Age: Adverse Outcomes of Pregnancy, A Meta-Analysis. Acta Med. Port. 2019, 32, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Hochler, H.; Lipschuetz, M.; Suissa-Cohen, Y.; Weiss, A.; Sela, H.Y.; Yagel, S.; Rosenbloom, J.I.; Grisaru-Granovsky, S.; Rottenstreich, M. The Impact of Advanced Maternal Age on Pregnancy Outcomes: A Retrospective Multicenter Study. J. Clin. Med. 2023, 12, 5696. [Google Scholar] [CrossRef] [PubMed]
- Getahun, D.; Oyelese, Y.; Salihu, H.M.; Ananth, C.V. Previous cesarean delivery and risks of placenta previa and placental abruption. Obstet. Gynecol. 2006, 107, 771–778. [Google Scholar] [CrossRef] [PubMed]
Parameters | Age 40 and over (345) Median (Min–Max)/(n%) | Age: Under 40 (366) Median (Min–Max)/(n%) | p-Value | |
---|---|---|---|---|
Age | 42 (40–50) | 28 (18–39) | 0.0001 α | |
Gravida | 4 (1–14) | 2 (1–12) | 0.0001 α | |
Parity | 2 (0–8) | 0 (0–6) | 0.0001 α | |
Nationality | Turkish | 345 (100%) | 361 (98.6%) | 0.136 α |
Syria | 0 | 2 (0.5%) | ||
Other | 0 | 3 (0.8%) | ||
BMI (kg/m2) | 24.16 ± 5.23 | 24.18 ± 6.49 | 0.617 α | |
Educational level | Primary or lower secondary | 31 (9%) | 21 (5.8%) | 0.490 α |
High school | 120 (34.8%) | 117 (32.1%) | ||
Undergraduate | 127 (36.8%) | 207 (56.7%) | ||
Postgraduate | 67 (19.4%) | 20 (5.5%) | ||
Conception type | Non ART | 327 (94.78%) | 344 (94%) | 0.136 γ |
ART | 18 (5.22%) | 22 (6%) | ||
Previous CS (number) | 1 (0–4) | 0 (0–5) | 0.490 α | |
Previous NSVD (number) | 0 (0–7) | 0 (0–3) | 0.0001 α | |
Maternal HT | 13 (3.8%) | 10 (2.7%) | 0.439 γ | |
Maternal DM | 16 (4.6%) | 5 (1.4%) | 0.006 γ | |
Asthma | 27 (7.8%) | 2 (0.5%) | 0.0001 γ | |
Autoimmune disease | 44 (12.8%) | 105 (28.7%) | 0.0001 α | |
History of stillbirth | 19 (5.5%) | 5 (1.4%) | 0.004 γ | |
Aspirin use | 8 (2.3%) | 29 (7.9%) | 0.001 γ | |
Thromboembolism | 11 (3.18%) | 5 (1.36%) | 0.147 γ |
Parameters | Age 40 and over (345) Median (Min–Max)/(n%) | Age: Under 40 (366) Median (Min–Max)/ (n%) | p-Value | |
---|---|---|---|---|
Mode of delivery | NSVD | 93 (27%) | 234 (63.9%) | 0.0001 γ |
CS | 252 (73%) | 132 (36.1%) | ||
Fetal parameters | ||||
Birth week | 37 (21–41) | 38 (27–40) | 0.0001 α | |
Birth weight | 3180 (340–5320) | 3080 (720–5130) | 0.648 α | |
5 min APGAR | 8 (0–10) | 7 (0–9) | 0.0001 α | |
Stillbirth | 6 (1.7%) | 2 (0.5%) | 1 | |
Fetal anomaly | 15 (4.3%) | 20 (5.5%) | 0.492 γ | |
Chromosomal abnormalities | 5 (1.4%) | 0 | 0.025 γ | |
Congenital malformations | 10 (2.9%) | 20 (5.5%) | 0.086 γ | |
NICU admission rate | 61 (17.7%) | 46 (12.6%) | 0.057 γ | |
Baby gender | Female | 157(45.5%) | 178 (48.6%) | 0.400 γ |
Male | 188 (54.5%) | 188 (51.4%) | ||
Adverse perinatal outcomes | ||||
GDM | 51 (14.8%) | 28(7.7%) | 0.002 γ | |
GHT | 10 (2.9%) | 10 (2.7%) | 1γ | |
PPROM | 57 (16.5%) | 26 (7.1%) | 0.0001 γ | |
Preeclampsia | 45 (13%) | 21 (5.7%) | 0.001 γ | |
Eclampsia | 1 (0.3%) | 0 | 0.485 γ | |
HELLP | 1 (0.3%) | 1 (0.3%) | 1γ | |
Ablatio placenta | 5 (1.4%) | 4 (1.1%) | 0.746 γ | |
Placenta previa | 19 (5.5%) | 10 (2.7%) | 0.062 γ | |
PAS | 10 (2.9%) | 4 (1.1%) | 0.114 γ | |
Preterm delivery (<37 weeks) | 96 (27.8%) | 66 (18%) | 0.002 γ | |
Preterm delivery (<34 weeks) | 39 (11.3%) | 21 (5.73%) | 0.008 γ | |
Hemoglobin (first trimester) (g/dL) | 13 (7–15) | 12 (8–15) | 0.507 α | |
Hemoglobin (prepartum) (g/dL) | 12.3 (7.5–16.8) | 12 (7.2–15.1) | 0.0001 α | |
Hemoglobin (postpartum) (g/dL) | 11.8 (7.6–15.8) | 12 (7.2–15.1) | 0.0001 α | |
Postpartum Hemorrhage | 62 (18%) | 38 (10.5%) | 0.003 γ | |
Postpartum hysterectomy | 2 (0.6%) | 0 | 0.235 γ | |
Transfusion | 27 (7.8%) | 39 (10.7%) | 0.194 γ | |
Maternal hospital stay longer than 4 days | 58 (16.8%) | 48 (13.1%) | 0.167 γ | |
Maternal intensive care admission | 2 (0.6%) | 0 | 0.235 γ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaman, F.K.; Ezveci, H.; Dogru, S.; Harmanci, M.S.; Bahçeci, P.; Gezginç, K. The Impact of Advanced Maternal Age on Pregnancy Complications and Neonatal Outcomes. J. Clin. Med. 2025, 14, 5387. https://doi.org/10.3390/jcm14155387
Yaman FK, Ezveci H, Dogru S, Harmanci MS, Bahçeci P, Gezginç K. The Impact of Advanced Maternal Age on Pregnancy Complications and Neonatal Outcomes. Journal of Clinical Medicine. 2025; 14(15):5387. https://doi.org/10.3390/jcm14155387
Chicago/Turabian StyleYaman, Fikriye Karanfil, Huriye Ezveci, Sukran Dogru, Melike Sevde Harmanci, Pelin Bahçeci, and Kazım Gezginç. 2025. "The Impact of Advanced Maternal Age on Pregnancy Complications and Neonatal Outcomes" Journal of Clinical Medicine 14, no. 15: 5387. https://doi.org/10.3390/jcm14155387
APA StyleYaman, F. K., Ezveci, H., Dogru, S., Harmanci, M. S., Bahçeci, P., & Gezginç, K. (2025). The Impact of Advanced Maternal Age on Pregnancy Complications and Neonatal Outcomes. Journal of Clinical Medicine, 14(15), 5387. https://doi.org/10.3390/jcm14155387