Sarcopenia as a Prognostic Factor for Critical Limb Ischemia: A Prospective Cohort Study
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design and Population
2.2. Participants
2.3. Data Collection and Clinical Assessment
2.4. Sarcopenia Evaluation
- Initial Screening: The SARC-F questionnaire, a validated tool for identifying the risk of sarcopenia, was administered to all participants. This tool includes five components (strength, assistance in walking, rising from a chair, climbing stairs, and falls), scored from 0 to 10. A total score ≥4 was considered indicative of sarcopenia risk.
- Muscle Strength Assessment: Patients with a positive SARC-F underwent grip strength testing using a Holtein digital handgrip dynamometer (KEEDA brand), following the Southampton protocol [9]. Participants were seated, with feet flat on the floor, elbow flexed at 90 degrees, wrist in a neutral position, and shoulder adducted. They were instructed to squeeze the device with maximum effort for 3 s. The test was repeated three times on each hand, and the highest value was recorded. Strength values were compared to age- and sex-specific percentile charts validated for the local population. A grip strength below the 10th percentile (P10) was considered indicative of probable sarcopenia.
- Confirmation of Sarcopenia: For participants with reduced muscle strength, muscle mass was estimated by measuring calf circumference (CC), adjusted for the body mass index (BMI). This method is a simple and practical alternative to imaging. CC was measured at the widest point of the non-dominant calf using a non-elastic, flexible measuring tape, with the patient in a seated and relaxed position. A low CC adjusted for BMI was considered indicative of reduced muscle mass, confirming the diagnosis of sarcopenia.
2.5. Statistical Analysis
2.6. Ethical Aspects
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BIA | Bioelectrical impedance analysis |
BMI | Body Mass Index |
COPD | Chronic Obstructive Pulmonary Disease |
CT | Computed Tomography |
CTLI | Critical Limb Ischemia |
DXA | Dual-energy X-ray Absorptiometry |
GLASS | (Global limb Anatomic Stating System) |
MACEs | Major Adverse Cardiovascular Events |
MALEs | Major Adverse Limb Events |
MNA-SF | Mini Nutritional Assessment–Short Form |
MRI | Magnetic Resonance Imaging |
PAD | Peripheral Arterial Disease |
SARC-F | Strength, Assistance in walking, Rise from a chair, Climb stairs, Falls |
SET | Supervised Exercise Therapy |
WIFI | (Wound, Ischemia, and Foot Infection) |
References
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Rivière, A.; De Backer, J.; Deglise, S.; Della Corte, A.; et al. 2024 ESC Guidelines for the Management of Peripheral Arterial and Aortic Diseases. Eur. Heart J. 2024, 45, 3538–3700. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.J.; Armstrong, D.G. Critical Limb Ischemia. Vasc. Med. 2021, 26, 228–231. [Google Scholar] [CrossRef]
- Mills, J.L.; Conte, M.S.; Armstrong, D.G.; Pomposelli, F.B.; Schanzer, A.; Sidawy, A.N.; Andros, G. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: Risk Stratification Based on Wound, Ischemia, and Foot Infection (WIfI). J. Vasc. Surg. 2014, 59, 220–234.e2. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.S.; Bradbury, A.W.; Kolh, P.; White, J.V.; Dick, F.; Fitridge, R.; Mills, J.L.; Ricco, J.B.; Suresh, K.R.; Murad, M.H.; et al. Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia. J. Vasc. Surg. 2019, 69, 3S–125S.e40. [Google Scholar] [CrossRef]
- Taniguchi, R.; Deguchi, J.; Hashimoto, T.; Sato, O. Sarcopenia as a Possible Negative Predictor of Limb Salvage in Patients with Chronic Limb-Threatening Ischemia. Ann. Vasc. Dis. 2019, 12, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Aihie, A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Ferreira, J.M.M.; Cunha, P.; Carneiro, A.; Vila, I.; Cunha, C.; Silva, C.; Longatto-Filho, A.; Mesquita, A.; Cotter, J.; Mansilha, A.; et al. Sarcopenia as a Prognostic Factor in Peripheral Arterial Disease: Descriptive Review. Ann. Vasc. Surg. 2021, 74, 460–474. [Google Scholar] [CrossRef]
- Engin, M.; As, A.K.; Aydın, U.; Ata, Y. Mortality and Morbidity Risk Factors in Patients with Critical Limb Ischemia. Vascular 2024, 33, 473–474. [Google Scholar] [CrossRef]
- Sayer, A.A.; Cruz-Jentoft, A. Sarcopenia Definition, Diagnosis and Treatment: Consensus Is Growing. Age Ageing 2022, 51, afac220. [Google Scholar] [CrossRef]
- Ravindhran, B.; Igwe, C.; Nazir, S.; Harwood, A.E.; Lathan, R.; Carradice, D.; Smith, G.E.; Chetter, I.C.; Pymer, S. The Association Between Completion of Supervised Exercise Therapy and Long-Term Outcomes in Patients with Intermittent Claudication, Concomitant Sarcopenia, and Cardiometabolic Multimorbidity. Ann. Vasc. Surg. 2025, 110, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Pizzimenti, M.; Meyer, A.; Charles, A.L.; Giannini, M.; Chakfé, N.; Lejay, A.; Geny, B. Sarcopenia and Peripheral Arterial Disease: A Systematic Review. J. Cachexia Sarcopenia Muscle 2020, 11, 866–886. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, B.; Jiang, T.; Zhang, T.; Yu, X.; Li, Y.; Wu, W. Association of Sarcopenia with Mortality in Patients with Chronic Limb-Threatening Ischemia Undergoing Endovascular Revascularization. J. Surg. Res. 2023, 289, 52–60. [Google Scholar] [CrossRef]
- Selçuk, N.; Albeyoğlu, Ş.; Bastopcu, M.; Selçuk, İ.; Barutca, H.; Şahan, H. Sarcopenia Is a Risk Factor for Major Adverse Cardiac Events after Surgical Revascularization for Critical Limb Ischemia. Vascular 2023, 31, 64–71. [Google Scholar] [CrossRef]
- Sivaharan, A.; Boylan, L.; Witham, M.D.; Nandhra, S. Sarcopenia in Patients Undergoing Lower Limb Bypass Surgery Is Associated with Higher Mortality and Major Amputation Rates. Ann. Vasc. Surg. 2021, 75, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Bradley, N.A.; Walter, A.; Roxburgh, C.S.D.; McMillan, D.C.; Guthrie, G.J.K. The Relationship between Clinical Frailty Score, CT-Derived Body Composition, Systemic Inflammation, and Survival in Patients with Chronic Limb-Threatening Ischemia. Ann. Vasc. Surg. 2024, 104, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Higashiguchi, T.; Shi, H.P.; Bischoff, S.C.; Boirie, Y.; Carrasco, F.; Cruz-Jentoft, A.; et al. Guidance for Assessment of the Muscle Mass Phenotypic Criterion for the Global Leadership Initiative on Malnutrition (GLIM) Diagnosis of Malnutrition. Clin. Nutr. 2022, 41, 1425–1433. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, D.; De Meester, D.; Minon, L.; Claessens, M.; Gümüs, N.; Lieten, S.; Benoit, F.; Surquin, M.; Marco, E. Association between Malnutrition Assessed by the Global Leadership Initiative on Malnutrition Criteria and Mortality in Older People: A Scoping Review. Int. J. Environ. Res. Public Health 2023, 20, 5320. [Google Scholar] [CrossRef]
- Miyahara, S.; Maeda, K.; Yasuda, A.; Satake, S.; Arai, H. The Potential of Body Mass Index-Adjusted Calf Circumference as a Proxy for Low Muscle Mass in the Global Leadership Initiative on Malnutrition Criteria. Clin. Nutr. 2024, 43, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.; Carneiro, A.; Vila, I.; Silva, C.; Cunha, C.; Longatto-Filho, A.; Mesquita, A.; Cotter, J.; Mansilha, A.; Correia-Neves, M.; et al. Inflammation and Loss of Skeletal Muscle Mass in Chronic Limb Threatening Ischemia. Ann. Vasc. Surg. 2023, 88, 164–173. [Google Scholar] [CrossRef]
- Lebreton, O.; Fels, A.; Compagnon, A.; Lazareth, I.; Ghaffari, P.; Chatellier, G.; Emmerich, J.; Michon-Pasturel, U.; Priollet, P.; Yannoutsos, A. Amputation-Free Survival in the Long-Term Follow-up and Gender-Related Characteristics in Patients Revascularized for Critical Limb Ischemia. JMV-J. Med. Vasc. 2023, 48, 105–115. [Google Scholar] [CrossRef]
- Zielke, T.; Korepta, L.; Wesolowski, M.; D’Andrea, M.; Aulivola, B. The Association of Comorbid Depression with Mortality and Amputation Risk in Patients with Chronic Limb-Threatening Ischemia. J. Vasc. Surg. 2024, 79, 96–101.e1. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.M.; Mena-Hurtado, C.; Burg, M.M.; Vriens, P.W.; Heyligers, J.; Smolderen, K.G. Association of Depression and Anxiety Disorders with Outcomes after Revascularization in Chronic Limb-Threatening Ischemia Hospitalizations Nationwide. J. Vasc. Surg. 2023, 77, 480–489. [Google Scholar] [CrossRef]
- Zahner, G.J.; Cortez, A.; Duralde, E.; Ramirez, J.L.; Wang, S.; Hiramoto, J.; Cohen, B.E.; Wolkowitz, O.M.; Arya, S.; Hills, N.K.; et al. Association of Comorbid Depression with Inpatient Outcomes in Critical Limb Ischemia. Vasc. Med. 2020, 25, 25–32. [Google Scholar] [CrossRef]
- Casajuana Urgell, E.; Calsina Juscafresa, L.; Nieto Fernandez, L.; Romero Montaña, L.; Llort Pont, C.; Clarà Velasco, A. Critical Limb Ischemia in Nonagenarians: A Challenge of Our Times. World J. Surg. 2022, 46, 2825–2831. [Google Scholar] [CrossRef] [PubMed]
- Froud, J.L.J.; Landin, M.; Wafi, A.; White, S.; Bearne, L.; Patel, A.; Modarai, B. Rate and Predictors of Disease Progression in Patients with Conservatively Managed Intermittent Claudication: A Systematic Review. Ann. Vasc. Surg. 2025, 112, 183–192. [Google Scholar] [CrossRef]
- Morisaki, K.; Furuyama, T.; Matsubara, Y.; Inoue, K.; Kurose, S.; Yoshino, S.; Nakayama, K.; Yamashita, S.; Yoshiya, K.; Mori, M. Thigh Sarcopenia and Hypoalbuminemia Predict Impaired Overall Survival after Infrainguinal Revascularization in Patients with Critical Limb Ischemia. Vascular 2020, 28, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Gornik, H.L.; Aronow, H.D.; Goodney, P.P.; Arya, S.; Brewster, L.P.; Byrd, L.; Chandra, V.; Drachman, D.E.; Eaves, J.M.; Ehrman, J.K.; et al. 2024 ACC/AHA/AACVPR/APMA/ABC/SCAI/SVM/SVN/SVS/SIR/VESS Guideline for the Management of Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1313–e1410. [Google Scholar] [CrossRef]
- Jansen, S.C.P.; Hoorweg, B.B.N.; Hoeks, S.E.; van den Houten, M.M.L.; Scheltinga, M.R.M.; Teijink, J.A.W.; Rouwet, E.V. A Systematic Review and Meta-Analysis of the Effects of Supervised Exercise Therapy on Modifiable Cardiovascular Risk Factors in Intermittent Claudication. J. Vasc. Surg. 2019, 69, 1293–1308.e2. [Google Scholar] [CrossRef]
- Noetel, M.; Sanders, T.; Gallardo-Gómez, D.; Taylor, P.; Del Pozo Cruz, B.; Van Den Hoek, D.; Smith, J.J.; Mahoney, J.; Spathis, J.; Moresi, M.; et al. Effect of Exercise for Depression: Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. BMJ 2024, 384, e075847. [Google Scholar] [CrossRef]
- Pearce, M.; Garcia, L.; Abbas, A.; Strain, T.; Schuch, F.B.; Golubic, R.; Kelly, P.; Khan, S.; Utukuri, M.; Laird, Y.; et al. Association between Physical Activity and Risk of Depression: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2022, 79, 550–559. [Google Scholar] [CrossRef]
- Söderlund, M.; Huhtamo, H.; Protto, S.; Hernesniemi, J.A.; Vakhitov, D.; Oksala, N.; Khan, N. Magnetic Resonance Imaging—Derived Psoas Muscle Area and Survival in Patients Treated Invasively for Peripheral Arterial Disease. Scand. J. Surg. 2024, 114, 44–55. [Google Scholar] [CrossRef] [PubMed]
General Characteristics | Total Population (n = 170) | With Sarcopenia (n = 77) | Without Sarcopenia (n = 93) | p |
---|---|---|---|---|
Age (years) | 72 ± 12 | 76 ± 12 | 68 ± 10 | 0.001 |
Male sex | 126 (74.1) | 44 (57.1) | 82 (88.2) | 0.001 |
Rural area | 99 (58.2) | 44 (57.1) | 55 (59.1) | 0.79 |
Cardiovascular risk factors | ||||
Hypertension | 142 (83.5) | 69 (89.6) | 73 (78.5) | 0.05 |
Diabetes | 129 (75.9) | 59 (76.6) | 70 (54.3) | 0.84 |
Dyslipidemia | 101 (59.4) | 43 (55.8) | 58 (62.4) | 0.39 |
Active smoking | 77 (45.3)) | 42 (54.5) | 71 (62.8) | 0.003 |
Obesity > 30 | 24 (14.1) | 18 (23.4) | 20 (52.6) | 0.77 |
BMI (kg/m2) | 25 (21–27) | 25 (22–31) | 26 (24–29) | 0.80 |
Medical history | ||||
Alcoholism | 46 (27.1) | 14 (18.2) | 32 (34.4) | 0.018 |
Ischemic heart disease | 48 (28.2) | 22 (28.6) | 26 (28) | 0.93 |
Stroke | 42 (24.7) | 21 (27.3) | 21 (27.3) | 0.48 |
Chronic Kidney disease | 52 (30.6) | 27 (35.1) | 25 (26.9) | 0.25 |
Heart failure | 36 (21.5) | 18 (23.4) | 18 (19.4) | 0.31 |
Atrial fibrillation | 44 (25.9) | 27 (35.1) | 17 (18.3) | 0.01 |
Autoimmune disease | 10 (5.9) | 5 (6.5) | 5 (5.4) | 0.76 |
COPD | 19 (11.2) | 9 (11.7) | 12 (12.9) | 0.85 |
Depression | 22 (12,9) | 11 (14.3) | 11 (11.8) | 0.63 |
Microvascular disease | 43 (25.3) | 16 (20.8) | 16 (20.8) | 0.22 |
History of cancer | 30 (17.6) | 20 (26) | 10 (10.8) | 0.01 |
Sleep apnea | 13 (7.6) | 3 (3.9) | 10 (10.8) | 0.09 |
Scales | ||||
BARTHEL index | 80 (40–96) | 40(20–80) | 90 (80–100) | 0.001 |
SARC-F score | 5 (3–8) | 7 (5–9) | 3 (1–5) | 0.001 |
MNA-SF score | 7 (4–10) | 5 (3–7) | 9 (7–11) | 0.001 |
Nutritional parameters | ||||
Handgrip strength (Kg) | 23 (18–30) | 9 (5–15) | 25 (19–32) | 0.001 |
Calf circumference adjusted for BMI (cm) | 31.74 ± 5.93 | 29.43 ± 5.85 | 32.38 ± 0.48 | 0.001 |
Location | ||||
Infrapopliteal lesions | 61 (35.9) | 28 (36.4) | 33 (35.5) | 0.78 |
Suprapopliteal lesions | 21 (14.2) | 8 (10.4) | 13 (14) | 0.77 |
Both locations | 88 (51.8) | 41 (53.2) | 47 (50.5) | 0.90 |
Fontaine stage | 0.52 | |||
Fontaine stage III | 73 (42.9) | 31 (40.3) | 42 (45.2) | |
Fontaine stage IV | 97 (57.1) | 46 (59.7) | 51 (54.8) | |
Complications | ||||
Infection | 97 (57.1) | 48 (62.3) | 49 (52.7) | 0.21 |
Event | Global Cohort | With Sarcopenia | Without Sarcopenia | p |
---|---|---|---|---|
Conservative treatment | 41 (24.1) | 23 (29.9) | 19 (20.4) | 0.11 |
Amputation | 66 (39.4)) | 30 (39) | 37 (39.8) | 0.91 |
Minor | 34 (20.0) | 17 (22.1) | 18 (51.4) | |
Major | 33 (19.4) | 13 (40.6) | 19 (59.4) | |
Surgical debridement | 38 (22.4) | 11 (14.3) | 27 (29) | 0.02 |
Endovascular treatment | 70 (41.2) | 24 (31.2) | 46 (49.5) | 0.02 |
Ischemic heart disease | 10 (5.9) | 7 (9.1) | 3 (3.2) | 0.11 |
MACEs | 27 (15.9) | 20 (26) | 6 (6.5) | 0.001 |
MALEs | 113 (63.5) | 43 (55.8) | 72 (77.4) | 0.003 |
Death during admission | 16 (9.4) | 13 (16.9) | 3 (3.2) | 0.002 |
30-day mortality | 26 (15.3) | 19 (24.7) | 18 (23.4) | 0.002 |
Hospital stay (days) | 10 (7–15) | 9 (6–15) | 11 (7–15) | 0.24 |
Amputation at 6 months | 98 (57.6) | 45 (58.4) | 53 (57) | 0.85 |
MALE 6 months | 128 (75.3) | 53 (68.8) | 75 (80.6) | 0.07 |
MACE 6 months | 62 (36.5) | 42 (67.7) | 20 (21.5) | 0.001 |
6-month mortality | 53 (31.2) | 39 (50.6) | 14 (15.1) | 0.001 |
Composite endpoint (Death + Major Amputation at 6 Months) | 98 (57.6) | 58 (75.3) | 40 (43) | 0.001 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
HR (CI 95%) | p | HR (CI 95%) | p | |
Age > 72 | 1.54 (0.80–2.97) | 0.195 | 1.59 (0.79–3.22) | 0.194 |
Men | 1.66 (1.04–2.66) | 0.033 | 1.20 (0.57–2.51) | 0.632 |
Rural | 1.15 (0.74–1.79) | 0.530 | ||
Hypertension | 1.38 (0.73–2.60) | 0.324 | ||
Diabetes mellitus | 0.82 (0.50–1.34) | 0.421 | ||
Dyslipidemia | 0.71 (0.46–1.11) | 0.130 | ||
Active smoker | 0.72 (0.42–1.13) | 0.156 | ||
BMI > 30 | 1.13 (0.67–1.90) | 0.660 | ||
Alcoholism | 1.03 (0.63–1.68) | 0.913 | ||
Ischemic heart disease | 0.78 (0.46–1.31) | 0.354 | ||
Stroke | 0.96 (0.58–1.59) | 0.873 | ||
CKD | 1.05 (0.66–1.68) | 0.840 | 1.15 (0.57–2.31) | 0.690 |
HF | 1.20 (0.76–1.91) | 0.424 | ||
AF | 1.28 (0.79–2.07) | 0.308 | ||
Autoimmune disease | 0.70 (0.26–1.92) | 0.489 | ||
COPD | 1.06 (0.56–2.00) | 0.860 | ||
Depression | 2.11 (1.20–3.71) | 0.009 | 3.23 (1.38–7.57) | 0.007 |
Cancer history | 1.38 (0.81–2.36) | 0.236 | ||
Sleep apnea | 0.81 (0.33–2.00) | 0.646 | ||
Sarcopenia | 2.05 (1.31–3.20) | 0.002 | 1.95 (1.01–3.79) | 0.048 |
Suprapopliteal and infrapopliteal lesion | 1.35 (0.87–2.11) | 0.180 | ||
Fontaine stage IV | 1.14 (0.73–1.78) | 0.564 | ||
Infection | 1.36 (0.87–2.14) | 0.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luque-Linero, P.; Frutos-Reoyo, E.-J.; Castilla-Guerra, L.; Rico-Corral, M.-Á.; Salamanca-Bautista, P.; Garrachón-Vallo, F. Sarcopenia as a Prognostic Factor for Critical Limb Ischemia: A Prospective Cohort Study. J. Clin. Med. 2025, 14, 5388. https://doi.org/10.3390/jcm14155388
Luque-Linero P, Frutos-Reoyo E-J, Castilla-Guerra L, Rico-Corral M-Á, Salamanca-Bautista P, Garrachón-Vallo F. Sarcopenia as a Prognostic Factor for Critical Limb Ischemia: A Prospective Cohort Study. Journal of Clinical Medicine. 2025; 14(15):5388. https://doi.org/10.3390/jcm14155388
Chicago/Turabian StyleLuque-Linero, Paula, Emilio-Javier Frutos-Reoyo, Luis Castilla-Guerra, Miguel-Ángel Rico-Corral, Prado Salamanca-Bautista, and Fernando Garrachón-Vallo. 2025. "Sarcopenia as a Prognostic Factor for Critical Limb Ischemia: A Prospective Cohort Study" Journal of Clinical Medicine 14, no. 15: 5388. https://doi.org/10.3390/jcm14155388
APA StyleLuque-Linero, P., Frutos-Reoyo, E.-J., Castilla-Guerra, L., Rico-Corral, M.-Á., Salamanca-Bautista, P., & Garrachón-Vallo, F. (2025). Sarcopenia as a Prognostic Factor for Critical Limb Ischemia: A Prospective Cohort Study. Journal of Clinical Medicine, 14(15), 5388. https://doi.org/10.3390/jcm14155388