Determining Reference Intervals and Median Blood Creatinine Levels in Children from Three Different Regional Populations
Abstract
1. Background
2. Methods
2.1. Study Population
2.2. Serum Creatinine Examination
2.3. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warady, B.A.; Chadha, V. Chronic kidney disease in children: The global perspective. Pediatr. Nephrol. 2007, 22, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Kogon, A.J.; Harshman, L.A. Chronic Kidney Disease: Treatment of Comorbidities. Curr. Treat. Options Pediatr. 2019, 5, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.J. Acute kidney injury. Nat. Rev. Dis. Primers 2021, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Shlipak, M.G.; Tummalapalli, S.L.; Boulware, L.E.; Grams, M.E.; Ix, J.H.; Jha, V.; Kengne, A.P.; Madero, M.; Mihaylova, B.; Tangri, N.; et al. The case for early identification and intervention of chronic kidney disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2021, 99, 34–47. [Google Scholar] [CrossRef]
- El-Khoury, J.M.; Hoenig, M.P.; Jones, G.R.D.; Lamb, E.J.; Parikh, C.R.; Tolan, N.V.; Wilson, F.P. AACC Guidance Document on Laboratory Investigation of Acute Kidney Injury. J. Appl. Lab. Med. 2021, 6, 1316–1337. [Google Scholar] [CrossRef]
- Pottel, H.; Hoste, L.; Dubourg, L.; Ebert, N.; Schaeffner, E.; Eriksen, B.O.; Melsom, T.; Lamb, E.J.; Rule, A.D.; Turner, S.T.; et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol. Dial. Transplant. 2016, 31, 798–806. [Google Scholar] [CrossRef]
- Pottel, H.; Dubourg, L.; Goffin, K.; Delanaye, P. Alternatives for the Bedside Schwartz Equation to Estimate Glomerular Filtration Rate in Children. Adv. Chronic Kidney Dis. 2018, 25, 57–66. [Google Scholar] [CrossRef]
- Chuang, G.T.; Tsai, I.J.; Tsau, Y.K. Serum Creatinine Reference Limits in Pediatric Population—A Single Center Electronic Health Record-Based Database in Taiwan. Front. Pediatr. 2021, 9, 793446. [Google Scholar] [CrossRef]
- Cusumano, A.M.; Tzanno-Martins, C.; Rosa-Diez, G.J. The Glomerular Filtration Rate: From the Diagnosis of Kidney Function to a Public Health Tool. Front. Med. 2021, 8, 302–310. [Google Scholar] [CrossRef]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef]
- Eppenga, W.L.; Kramers, C.; Derijks, H.J.; Wensing, M.; Wetzels, J.F.M.; De Smet, P.A.G.M. Drug therapy management in patients with renal impairment: How to use creatinine-based formulas in clinical practice. Eur. J. Clin. Pharmacol. 2016, 72, 1433–1439. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Cavalier, E.; Pottel, H. Serum Creatinine: Not so Simple! Nephron 2017, 136, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. EP28-A3c Defining, Establishing, and Verifying Reference Interval; Approved Guideline—Third Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010. [Google Scholar]
- Thompson, L.E.; Joy, M.S. Endogenous markers of kidney function and renal drug clearance processes of filtration, secretion, and reabsorption. Curr. Opin. Toxicol. 2022, 31, 100344. [Google Scholar] [CrossRef] [PubMed]
- Suwanrungroj, S.; Pattarapanitchai, P.; Chomean, S.; Kaset, C. Establishing age and gender-specific serum creatinine reference ranges for Thai pediatric population. PLoS ONE 2024, 19, e0300369. [Google Scholar] [CrossRef]
- Jhee, J.H.; Hwang, S.D.; Song, J.H.; Lee, S.W. Upper normal serum creatinine concentrations as a predictor for chronic kidney disease: Analysis of 14 years’ korean genome and epidemiology study (KoGES). J. Clin. Med. 2018, 7, 463. [Google Scholar] [CrossRef]
- Bostom, A.G.; Kronenberg, F.; Ritz, E. Predictive performance of renal function equations for patients with chronic kidney disease and normal serum creatinine levels. J. Am. Soc. Nephrol. 2002, 13, 2140–2144. [Google Scholar] [CrossRef]
- Kim, H.S.; Ng, D.K.; Matheson, M.B.; Atkinson, M.A.; Akhtar, Y.; Warady, B.A.; Furth, S.L.; Ruebner, R.L. Association of Puberty With Changes in GFR in Children With CKD. Am. J. Kidney Dis. 2022, 79, 131–134. [Google Scholar] [CrossRef]
- Schlebusch, H.; Liappis, N.; Kalina, E.; Klein, C. High Sensitive CRP and Creatinine: Reference intervais from infancy to Chiidhood. LaboratoriumsMedizin 2002, 26, 341–346. [Google Scholar] [CrossRef]
- Pottel, H.; Vrydags, N.; Mahieu, B.; Vandewynckele, E.; Croes, K.; Martens, F. Establishing age/sex related serum creatinine reference intervals from hospital laboratory data based on different statistical methods. Clin. Chim. Acta 2008, 396, 49–55. [Google Scholar] [CrossRef]
- Savory, D.J. Reference Ranges for Serum Creatinine in Infants, Children and Adolescents. Ann. Clin. Biochem. Int. J. Lab. Med. 1990, 27, 99–101. [Google Scholar] [CrossRef]
- Ahmed, S.; Zierk, J.; Siddiqui, I.; Khan, A.H. Indirect determination of serum creatinine reference intervals in a Pakistani pediatric population using big data analytics. World J. Clin. Pediatr. 2021, 10, 72–78. [Google Scholar] [CrossRef]
- Tanner, J.M.; Davies, P.S.W. Clinical longitudinal standards for height and height velocity for North American children. J. Pediatr. 1985, 107, 317–329. [Google Scholar] [CrossRef]
- Reeds, P.J.; Jackson, A.A.; Picou, D.; Poulter, N. Muscle mass and composition in malnourished infants and children and changes seen after recovery. Pediatr. Res. 1978, 12, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Haizlip, K.M.; Harrison, B.C.; Leinwand, L.A. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology 2015, 30, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Poortmans, J.R.; Boisseau, N.; Moraine, J.J.; Moreno-Reyes, R.; Goldman, S. Estimation of total-body skeletal muscle mass in children and adolescents. Med. Sci. Sports Exerc. 2005, 37, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Ozarda, Y.; Higgins, V.; Adeli, K. Verificación de intervalos de referencia en laboratorios clínicos de rutina: Desafíos prácticos y recomendaciones. Clin. Chem. Lab. Med. 2019, 57, 30–37. [Google Scholar] [CrossRef]
- Horn, P.S.; Pesce, A.J. Reference intervals: An update. Clin. Chim. Acta 2003, 334, 5–23. [Google Scholar] [CrossRef]
- Marpaung, F.R.; Purnami, S.W.; Andari, S.; Rohman, A.; I’tishom, R.; Notobroto, H.B.; Nugraha, J.; Prasetyo, R.V.; Santoso, D.; Cavalier, E.; et al. The varied Q creatinine in multi ethnics population and impact of adopting three different estimated glomerular filtration rates based on creatinine in adult populations: A call for performance validation. Front. Med. 2025, 12, 1467503. [Google Scholar] [CrossRef]
- Aakhus, T.; Sommerfelt, S.C.; Stormorken, H.; Dahlstrom, K. Tolerance and excretion of iohexol after intravenous injection in healthy volunteers. Preliminary report. Acta Radiol. 1980, 21 (Suppl. S362), 131–134. [Google Scholar] [CrossRef]
- Delanaye, P.; Cavalier, E. Arguments for an age-adapted definition of chronic kidney disease. Port. J. Nephrol. Hypertens. 2022, 35, 261–262. [Google Scholar] [CrossRef]
Age (Year) | n | Median (mg/dL) | IQR | Percentile (mg/dL) | p Value | |||
---|---|---|---|---|---|---|---|---|
25th | 75th | 2.5th (LRL) | 97.5th (URL) | |||||
<1 | 121 | 0.29 | 0.09 | 0.25 | 0.34 | 0.19 | 0.50 | |
1–<2 | 216 | 0.30 | 0.13 | 0.27 | 0.40 | 0.21 | 0.83 | 0.0065 |
2–<3 | 168 | 0.39 | 0.03 | 0.37 | 0.40 | 0.35 | 0.45 | <0.0001 |
3–<4 | 391 | 0.34 | 0.12 | 0.28 | 0.40 | 0.17 | 0.51 | <0.0001 |
4–<5 | 310 | 0.41 | 0.09 | 0.38 | 0.47 | 0.30 | 0.48 | <0.0001 |
5–<6 | 345 | 0.43 | 0.21 | 0.38 | 0.59 | 0.30 | 0.70 | <0.0001 |
6–<7 | 257 | 0.47 | 0.09 | 0.40 | 0.49 | 0.30 | 0.65 | 0.3910 |
7–<8 | 172 | 0.48 | 0.20 | 0.36 | 0.56 | 0.23 | 0.71 | 0.7309 |
8–<9 | 240 | 0.47 | 0.09 | 0.43 | 0.51 | 0.36 | 0.77 | 0.0265 |
9–<10 | 180 | 0.51 | 0.20 | 0.41 | 0.61 | 0.30 | 0.73 | 0.0054 |
10–<11 | 204 | 0.56 | 0.17 | 0.46 | 0.63 | 0.35 | 0.94 | 0.0161 |
11–<12 | 152 | 0.55 | 0.09 | 0.51 | 0.60 | 0.46 | 0.75 | 0.2251 |
12–<13 | 276 | 0.57 | 0.16 | 0.50 | 0.66 | 0.40 | 0.91 | 0.1606 |
13–<14 | 255 | 0.65 | 0.25 | 0.52 | 0.77 | 0.39 | 0.93 | <0.0001 |
14–<15 | 246 | 0.62 | 0.19 | 0.55 | 0.73 | 0.40 | 0.94 | 0.2320 |
15–<16 | 160 | 0.74 | 0.13 | 0.69 | 0.82 | 0.55 | 1.02 | <0.0001 |
16–<17 | 375 | 0.78 | 0.24 | 0.69 | 0.93 | 0.47 | 1.20 | 0.0337 |
17–<18 | 694 | 0.89 | 0.17 | 0.75 | 0.92 | 0.60 | 1.04 | <0.0001 |
Total | 4762 |
Age (Year) | n | Median (mg/dL) | IQR (mg/dL) | Percentile (mg/dL) | p Value | |||
---|---|---|---|---|---|---|---|---|
25th | 75th | 2.5th (LRL) | 97.5th (URL) | |||||
<1 | 199 | 0.22 | 0.11 | 0.19 | 0.30 | 0.19 | 0.50 | |
1–<2 | 208 | 0.28 | 0.11 | 0.25 | 0.36 | 0.16 | 0.41 | <0.0001 |
2–<3 | 209 | 0.39 | 0.06 | 0.35 | 0.41 | 0.35 | 0.47 | <0.0001 |
3–<4 | 297 | 0.36 | 0.10 | 0.30 | 0.40 | 0.19 | 0.44 | <0.0001 |
4–<5 | 245 | 0.40 | 0.14 | 0.36 | 0.50 | 0.30 | 0.60 | <0.0001 |
5–<6 | 358 | 0.40 | 0.10 | 0.37 | 0.47 | 0.26 | 0.60 | 0.4613 |
6–<7 | 243 | 0.45 | 0.11 | 0.39 | 0.50 | 0.26 | 0.61 | <0.0001 |
7–<8 | 240 | 0.47 | 0.09 | 0.38 | 0.47 | 0.30 | 0.60 | 0.2610 |
8–<9 | 177 | 0.45 | 0.12 | 0.39 | 0.51 | 0.33 | 0.58 | 0.2986 |
9–<10 | 195 | 0.48 | 0.12 | 0.42 | 0.54 | 0.39 | 0.64 | 0.0001 |
10–<11 | 192 | 0.49 | 0.10 | 0.43 | 0.52 | 0.39 | 0.67 | 0.9129 |
11–<12 | 205 | 0.53 | 0.14 | 0.48 | 0.62 | 0.38 | 0.84 | <0.0001 |
12–<13 | 217 | 0.54 | 0.20 | 0.44 | 0.64 | 0.31 | 1.16 | 0.6283 |
13–<14 | 210 | 0.53 | 0.14 | 0.44 | 0.58 | 0.35 | 0.79 | 0.2225 |
14–<15 | 192 | 0.60 | 0.11 | 0.55 | 0.65 | 0.44 | 0.84 | <0.0001 |
15–<16 | 194 | 0.60 | 0.14 | 0.52 | 0.66 | 0.33 | 0.79 | 0.9497 |
16–<17 | 315 | 0.64 | 0.19 | 0.54 | 0.73 | 0.41 | 1.29 | 0.0076 |
17–<18 | 432 | 0.87 | 0.25 | 0.71 | 0.96 | 0.56 | 1.11 | <0.0001 |
Total | 4328 |
Age | Region | n | Median (mg/dL) | IQR (mg/dL) | p Value * |
---|---|---|---|---|---|
<1 year | Java | 68 | 0.4 | 0.25–0.35 | <0.0001 a |
Sulawesi | 56 | 0.58 | 0.17–0.30 | ||
N/A | |||||
1–<4 year | Java | 1281 | 0.44 | 0.34–0.83 | 0.4437 a |
Sulawesi | 97 | 0.58 | 0.40–0.63 | 0.9226 b | |
Sumatera | 519 | 0.47 | 0.38–0.80 | 0.1506 c | |
4–<12 year | Java | 1946 | 0.55 | 0.44–0.72 | 0.0170 a |
Sulawesi | 189 | 0.54 | 0.47–0.61 | <0.0001 b | |
Sumatera | 433 | 0.66 | 0.60–0.89 | <0.0001 c | |
12–<16 year | Java | 858 | 0.72 | 0.59–0.80 | <0.0001 a |
Sulawesi | 90 | 0.60 | 0.56–0.69 | <0.0001 b | |
Sumatera | 93 | 0.74 | 0.64–0.97 | 0.0013 c | |
16–<18 year | Java | 446 | 0.89 | 0.79–0.89 | <0.0001 a |
Sulawesi | 38 | 0.63 | 0.58–0.64 | <0.0001 b | |
Sumatera | 234 | 0.86 | 0.70–0.93 | 0.0004 c |
Age | Region | n | Median (mg/dL) | IQR (mg/dL) | p Value * |
---|---|---|---|---|---|
<1 year | Java | 93 | 0.22 | 0.21–0.23 | |
Sulawesi | N/A | ||||
Sumatera | 39 | 0.30 | 0.24–0.37 | <0.0001 c | |
1–<4 year | Java | 741 | 0.37 | 0.31–0.41 | <0.0001 a |
Sulawesi | 45 | 0.53 | 0.53–0.59 | <0.0001 b | |
Sumatera | 243 | 0.35 | 0.28–0.40 | 0.0010 c | |
4–<12 year | Java | 1393 | 0.47 | 0.41–0.53 | <0.0001 a |
Sulawesi | 212 | 0.43 | 0.42–0.53 | 0.0602 b | |
Sumatera | 222 | 0.46 | 0.39–0.53 | 0.1179 c | |
12–<16 | Java | 817 | 0.60 | 0.53–0.69 | 0.0181 a |
Sulawesi | 90 | 0.55 | 0.50–0.67 | 0.2635 b | |
Sumatera | 95 | 0.51 | 0.64–0.97 | 0.0005 c | |
16–<18 | Java | 357 | 0.70 | 0.57–0.88 | 0.0004 a |
Sulawesi | 34 | 0.81 | 0.70–0.95 | 0.29791 b | |
Sumatera | 203 | 0.78 | 0.65–0.92 | <0.0001 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marpaung, F.R.; Notobroto, H.B.; Prasetyo, R.V.; Santoso, D.; Cavalier, E.; Aryati, A. Determining Reference Intervals and Median Blood Creatinine Levels in Children from Three Different Regional Populations. J. Clin. Med. 2025, 14, 5373. https://doi.org/10.3390/jcm14155373
Marpaung FR, Notobroto HB, Prasetyo RV, Santoso D, Cavalier E, Aryati A. Determining Reference Intervals and Median Blood Creatinine Levels in Children from Three Different Regional Populations. Journal of Clinical Medicine. 2025; 14(15):5373. https://doi.org/10.3390/jcm14155373
Chicago/Turabian StyleMarpaung, Ferdy Royland, Hari Basuki Notobroto, Risky Vitria Prasetyo, Djoko Santoso, Etienne Cavalier, and Aryati Aryati. 2025. "Determining Reference Intervals and Median Blood Creatinine Levels in Children from Three Different Regional Populations" Journal of Clinical Medicine 14, no. 15: 5373. https://doi.org/10.3390/jcm14155373
APA StyleMarpaung, F. R., Notobroto, H. B., Prasetyo, R. V., Santoso, D., Cavalier, E., & Aryati, A. (2025). Determining Reference Intervals and Median Blood Creatinine Levels in Children from Three Different Regional Populations. Journal of Clinical Medicine, 14(15), 5373. https://doi.org/10.3390/jcm14155373