The Role of Metabolic Disorders and Laboratory Abnormalities in Wound Healing and Recovery in Geriatric and Non-Geriatric Orthopedic Patients in Poland—Prospective Research
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Well-Being and Laboratory Results
3.2. Wound Healing and Laboratory Results
4. Discussion
4.1. Diabetes
4.2. Arterial Hypertension
4.3. Total Cholesterol
4.4. Fibrinogen
4.5. Platelets
4.6. Triglycerides
4.7. Hemoglobin
4.8. C-Reactive Protein
4.9. Albumin Level
4.10. Total Protein
4.11. Potassium
4.12. Erythrocytes and Hematocrit
4.13. Interleukin 6
4.14. Leukocytes
4.15. Urea
4.16. Glucose
4.17. Leptin
5. Conclusions
6. Limitations and Strengths
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hellwinkel, J.E.; Working, Z.M.; Certain, L.; García, A.J.; Wenke, J.C.; Bahney, C.S. The intersection of fracture healing and infection: Orthopaedics research society workshop 2021. J. Orthop. Res. 2022, 40, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Goyani, P.; Christodoulou, R.; Vassiliou, E. Immunosenescence: Aging and Immune System Decline. Vaccines 2024, 12, 1314. [Google Scholar] [CrossRef] [PubMed]
- Farabi, B.; Roster, K.; Hirani, R.; Tepper, K.; Atak, M.F.; Safai, B. The Efficacy of Stem Cells in Wound Healing: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 3006. [Google Scholar] [CrossRef] [PubMed]
- Cangelosi, G.; Sacchini, F.; Biondini, F.; Mancin, S.; Morales Palomares, S.; Ferrara, G.; Caggianelli, G.; Sguanci, M.; Petrelli, F. Nutritional Support in the Prevention and Treatment of Pressure Ulcers in Healthy Aging: A Systematic Review of Nursing Interventions in Community Care. Geriatrics 2025, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Mäki-Turja-Rostedt, S.; Stolt, M.; Leino-Kilpi, H.; Haavisto, E. Preventive interventions for pressure ulcers in long-term older people care facilities: A systematic review. J. Clin. Nurs. 2019, 28, 2420–2442. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.F.; Mu, J.X.; Zhang, J.; Zang, S.; Zhang, L.; Qi, J.H.; Ni, C.P.; Liu, Y. Interventions to promote the implementation of pressure injury prevention measures in nursing homes: A scoping review. J. Clin. Nurs. 2024, 33, 1709–1723. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef] [PubMed]
- Mojiri-Forushani, H. The role of calcium channel blockers in wound healing. Iran. J. Basic Med. Sci. 2018, 21, 1198–1199. [Google Scholar] [CrossRef] [PubMed]
- Nwomeh, B.C.; Liang, H.X.; Cohen, I.K.; Yager, D.R. MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J. Surg. Res. 1999, 81, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Muijs, L.T.; Racca, C.; de Wit, M.; Brouwer, A.; Wieringa, T.H.; de Vries, R.; Serné, E.H.; van Raalte, D.H.; Rutters, F.; Snoek, F.J. Glucose variability and mood in adults with diabetes: A systematic review. Endocrinol. Diabetes Metab. 2020, 4, e00152. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Muñoz, A.; Picón-César, M.J.; Tinahones, F.J.; Martínez-Montoro, J.I. Type 1 diabetes-related distress: Current implications in care. Eur. J. Intern. Med. 2024, 125, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Liew, J.Y.; Vanoh, D. Predictors Affecting Diabetes Related Distress Among Diabetes Patients. Malays. J. Med. Sci. 2022, 29, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Burgess, J.L.; Wyant, W.A.; Abdo Abujamra, B.; Kirsner, R.S.; Jozic, I. Diabetic Wound-Healing Science. Medicina 2021, 57, 1072. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, D. Autophagy Modulation in Endothelial Hyperglycemia-Induced Wound-Healing Impairment. J. Investig. Dermatol. 2024, 144, 929–930. [Google Scholar] [CrossRef] [PubMed]
- Kawabe, H.; Azegami, T.; Takeda, A.; Kanda, T.; Saito, I.; Saruta, T.; Hirose, H. Features of and preventive measures against hypertension in the young. Hypertens. Res. 2019, 42, 935–948. [Google Scholar] [CrossRef] [PubMed]
- Yano, Y.; Reis, J.P.; Colangelo, L.A.; Shimbo, D.; Viera, A.J.; Allen, N.B.; Gidding, S.S.; Bress, A.P.; Greenland, P.; Muntner, P.; et al. Association of Blood Pressure Classification in Young Adults Using the 2017 American College of Cardiology/American Heart Association Blood Pressure Guideline with Cardiovascular Events Later in Life. JAMA 2018, 320, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Carey, R.M.; Wright, J.T., Jr.; Taler, S.J.; Whelton, P.K. Guideline-Driven Management of Hypertension: An Evidence-Based Update. Circ. Res. 2021, 128, 827–846. [Google Scholar] [CrossRef] [PubMed]
- Ang, C.W.; Tan, M.M.; Bärnighausen, T.; Reininghaus, U.; Reidpath, D.; Su, T.T. Mental distress along the cascade of care in managing hypertension. Sci. Rep. 2022, 12, 15910. [Google Scholar] [CrossRef] [PubMed]
- Särnholm, J.; Kronish, I.M. Psychological Distress and Hypertension Diagnostic Testing: Is There Anything to Worry About? Am. J. Hypertens. 2024, 37, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Ouarné, M.; Pena, A.; Franco, C.A. From remodeling to quiescence: The transformation of the vascular network. Cells Dev. 2021, 168, 203735. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, R. The Most Current Algorithms for the Treatment and Prevention of Hypertrophic Scars and Keloids: A 2020 Update of the Algorithms Published 10 Years Ago. Plast. Reconstr. Surg. 2022, 149, 79e–94e. [Google Scholar] [CrossRef] [PubMed]
- Li, M.P.; Hao, Z.C.; Yan, M.Q.; Xia, C.L.; Wang, Z.H.; Feng, Y.Q. Possible causes of atherosclerosis: lncRNA COLCA1 induces oxidative stress in human coronary artery endothelial cells and impairs wound healing. Ann. Transl. Med. 2022, 10, 286. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.D.M.; Farooqui, S.; Kloiber, S.; Husain, M.O.; Mulsant, B.H.; Husain, M.I. Targeting Metabolic Dysfunction for the Treatment of Mood Disorders: Review of the Evidence. Life 2021, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Huang, J.; Sun, G.; He, S.; Luo, Z.; Zhang, L.; Li, L.; Yao, M.; Du, C.; Yu, W.; et al. Integrated multi-omics analysis reveals gut microbiota dysbiosis and systemic disturbance in major depressive disorder. Psychiatry Res. 2024, 334, 115804. [Google Scholar] [CrossRef] [PubMed]
- Croatto, G.; Vancampfort, D.; Miola, A.; Olivola, M.; Fiedorowicz, J.G.; Firth, J.; Alexinschi, O.; Gaina, M.A.; Makkai, V.; Soares, F.C.; et al. The impact of pharmacological and non-pharmacological interventions on physical health outcomes in people with mood disorders across the lifespan: An umbrella review of the evidence from randomised controlled trials. Mol. Psychiatry 2023, 28, 369–390. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Zhou, P.; Huang, Y.; Long, B.; Gao, R.; Zhang, S.; Zhu, B.; Li, Y.Q.; Li, Q. Upregulation of rate-limiting enzymes in cholesterol metabolism by PKCδ mediates endothelial apoptosis in diabetic wound healing. Cell Death Discov. 2024, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Yang, Q.; Tang, R.; Li, W.; Wang, J.; Yang, F.; Zhao, J.; Zhu, J.; Pang, W.; Li, N.; et al. DNA methyltransferase 1 deficiency improves macrophage motility and wound healing by ameliorating cholesterol accumulation. NPJ Regen. Med. 2023, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Farahi, L.; Sinha, S.K.; Lusis, A.J. Roles of Macrophages in Atherogenesis. Front. Pharmacol. 2021, 12, 785220. [Google Scholar] [CrossRef] [PubMed]
- Zuliani-Alvarez, L.; Midwood, K.S. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing. Adv. Wound Care 2015, 4, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Fancourt, D.; Steptoe, A. The longitudinal relationship between changes in wellbeing and inflammatory markers: Are associations independent of depression? Brain Behav. Immun. 2020, 83, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Golebiewska, E.M.; Poole, A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015, 29, 153–162. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Liu, H.; Liu, J.; Wang, X.; Wang, J.; Xu, H.; Liu, Z. Platelet function in mood disorders: Interplay, clinical implications, and future perspectives—A narrative review. Heart Mind. 2024, 8, 159–164. [Google Scholar] [CrossRef]
- Wei, B.; Dong, Q.; Ma, J.; Zhang, A. The association between triglyceride-glucose index and cognitive function in nondiabetic elderly: NHANES 2011–2014. Lipids Health Dis. 2023, 22, 188. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.N.; Packard, C.J.; Chapman, M.J.; Borén, J.; Aguilar-Salinas, C.A.; Averna, M.; Ference, B.A.; Gaudet, D.; Hegele, R.A.; Kersten, S.; et al. Triglyceride-rich lipoproteins and their remnants: Metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 2021, 42, 4791–4806. [Google Scholar] [CrossRef] [PubMed]
- Sara, J.D.S.; Rajai, N.; Breitinger, S.; Medina-Inojosa, B.; Lerman, L.O.; Lopez-Jimenez, F.; Lerman, A. Peripheral Endothelial Dysfunction Is Associated with Incident Major Depressive Disorder. J. Am. Heart Assoc. 2024, 13, e036812. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Mizoguchi, Y.; Monji, A.; Yakushiji, Y.; Takashima, Y.; Uchino, A.; Yuzuriha, T.; Hashimoto, M. Low-Grade Inflammation Is Associated with Apathy Indirectly via Deep White Matter Lesions in Community-Dwelling Older Adults: The Sefuri Study. Int. J. Mol. Sci. 2019, 20, 1905. [Google Scholar] [CrossRef] [PubMed]
- Haddad, B.I.; Hamdan, M.; Alshrouf, M.A.; Alzubi, A.; Khirsheh, A.; Al-Oleimat, A.; Aldabaibeh, M.; Al-Qaryouti, R.; Abulubbad, W.; Al-Saber, M.; et al. Preoperative hemoglobin levels and mortality outcomes after hip fracture patients. BMC Surg. 2023, 23, 266. [Google Scholar] [CrossRef] [PubMed]
- Elg, F.; Hunt, S. Hemoglobin spray as adjunct therapy in complex wounds: Meta-analysis versus standard care alone in pooled data by wound type across three retrospective cohort controlled evaluations. SAGE Open Med. 2018, 6, 2050312118784313. [Google Scholar] [CrossRef] [PubMed]
- Pinchuk, A.; Luchtmann, M.; Neyazi, B.; Dumitru, C.A.; Stein, K.P.; Sandalcioglu, I.E.; Rashidi, A. Is an Elevated Preoperative CRP Level a Predictive Factor for Wound Healing Disorders Following Lumbar Spine Surgery? J. Pers. Med. 2024, 14, 667. [Google Scholar] [CrossRef] [PubMed]
- Milton, D.C.; Ward, J.; Ward, E.; Lyall, D.M.; Strawbridge, R.J.; Smith, D.J.; Cullen, B. The association between C-reactive protein, mood disorder, and cognitive function in UK Biobank. Eur. Psychiatry 2021, 64, e14. [Google Scholar] [CrossRef] [PubMed]
- Al-Marwani, S.; Batieha, A.; Khader, Y.; El-Khateeb, M.; Jaddou, H.; Ajlouni, K. Association between albumin and depression: A population-based study. BMC Psychiatry 2023, 23, 780. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Wang, S.S.; Jia, W.P.; Yang, S.S.; Cao, W.Z.; Zhao, Y.L.; Zhu, Q.; Ning, C.X.; Liu, M.; He, Y. Association between serum albumin level and health-related quality of life in Hainan centenarians: A cross-sectional study. Zhonghua Liu Xing Bing Xue Za Zhi 2021, 42, 88–93. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Naga Rohith, V.; Arya, S.V.; Rani, A.; Chejara, R.K.; Sharma, A.; Arora, J.K.; Kalwaniya, D.S.; Tolat, A.; Pawan, G.; Singh, A. Preoperative Serum Albumin Level as a Predictor of Abdominal Wound-Related Complications After Emergency Exploratory Laparotomy. Cureus 2022, 14, e31980. [Google Scholar] [CrossRef] [PubMed]
- Son, B.; Kim, M.; Won, H.; Jung, A.; Kim, J.; Koo, Y.; Lee, N.K.; Baek, S.H.; Han, U.; Park, C.G.; et al. Secured delivery of basic fibroblast growth factor using human serum albumin-based protein nanoparticles for enhanced wound healing and regeneration. J. Nanobiotechnol. 2023, 21, 310. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.Y.; Cai, Y.; Zhu, Z.H.; Zhai, C.P.; Li, J.; Ji, C.F.; Chen, P.; Wang, J.; Wu, Y.M.; Chan, R.C.K.; et al. Associations of decreased serum total protein, albumin, and globulin with depressive severity of schizophrenia. Front. Psychiatry 2022, 13, 957671. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.J.; Nowson, C.A.; Worsley, A. Dietary electrolytes are related to mood. Br. J. Nutr. 2008, 100, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Alamin, A.A. The Role of Red Blood Cells in Hemostasis. Semin. Thromb. Hemost. 2021, 47, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Weisel, J.W.; Litvinov, R.I. Red blood cells: The forgotten player in hemostasis and thrombosis. J. Thromb. Haemost. 2019, 17, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Foley, É.M.; Slaney, C.; Donnelly, N.A.; Kaser, M.; Ziegler, L.; Khandaker, G.M. A novel biomarker of interleukin 6 activity and clinical and cognitive outcomes in depression. Psychoneuroendocrinology 2024, 164, 107008. [Google Scholar] [CrossRef] [PubMed]
- Lacina, L.; Kolář, M.; Pfeiferová, L.; Gál, P.; Smetana, K., Jr. Wound healing: Insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation. Front. Immunol. 2024, 15, 1403570. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, S.; Shang, Y.; Zhuang, W.; Yan, G.; Chen, Z.; Lyu, J. Associations between dietary and blood inflammatory indices and their effects on cognitive function in elderly Americans. Front. Neurosci. 2023, 17, 1117056. [Google Scholar] [CrossRef] [PubMed]
- Cioce, A.; Cavani, A.; Cattani, C.; Scopelliti, F. Role of the Skin Immune System in Wound Healing. Cells 2024, 13, 624. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Yang, S.; Ye, S.; Wan, C.; Wang, H.; You, J. Mediation of depressive symptoms in the association between blood urea nitrogen to creatinine ratio and cognition among middle-aged and elderly adults: Evidence from a national longitudinal cohort study. BMC Psychiatry 2024, 24, 515. [Google Scholar] [CrossRef] [PubMed]
- Maroz, N.; Simman, R. Wound Healing in Patients With Impaired Kidney Function. J. Am. Coll. Clin. Wound Spec. 2014, 5, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, B.S.; Salagre, E.; Enduru, N.; Grande, I.; Vieta, E.; Zhao, Z. Insulin resistance in depression: A large meta-analysis of metabolic parameters and variation. Neurosci. Biobehav. Rev. 2022, 139, 104758. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, G.; Jia, F.; Yuan, H.; Wang, Q.; Li, C.; Yang, R.; Yue, Y.; Zhang, X.; Ye, G.; et al. U-shaped association between fasting blood glucose and suicide attempts in Chinese patients with first-episode drug-naïve major depressive disorder. BMC Psychiatry 2024, 24, 382. [Google Scholar] [CrossRef] [PubMed]
- Geng, K.; Ma, X.; Jiang, Z.; Huang, W.; Gu, J.; Wang, P.; Luo, L.; Xu, Y.; Xu, Y. High glucose-induced STING activation inhibits diabetic wound healing through promoting M1 polarization of macrophages. Cell Death Discov. 2023, 9, 136. [Google Scholar] [CrossRef] [PubMed]
- Sharifiaghdam, M.; Shaabani, E.; Faridi-Majidi, R.; De Smedt, S.C.; Braeckmans, K.; Fraire, J.C. Macrophages as a therapeutic target to promote diabetic wound healing. Mol. Ther. 2022, 30, 2891–2908. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Chen, Y.; Brietzke, E.; Cha, D.; Shaukat, A.; Pan, Z.; Park, C.; Subramaniapillai, M.; Zuckerman, H.; Grant, K.; et al. Leptin and adiponectin levels in major depressive disorder: A systematic review and meta-analysis. J. Affect. Disord. 2018, 238, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhong, L.; Zhu, C.; Zhao, H.; Zhao, F.; Cui, R.; Gao, S.; Li, B. Role of Leptin in Mood Disorder and Neurodegenerative Disease. Front. Neurosci. 2019, 13, 378. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Liao, J.; Zheng, L.; Ding, L.; Teng, X.; Lin, X.; Wang, L. Current knowledge of leptin in wound healing: A collaborative review. Front. Pharmacol. 2022, 13, 968142. [Google Scholar] [CrossRef] [PubMed]
- Yiğittürk, G.; Önal, M.Ö.; Subaşı, E.; Subasi, E.; Dogan, B.; Turkmenoglu, M.; Kaplan, M.; Yasar, V.; Elbe, H.; Ozturk, F. Leptin Accelerates Endothelial Wound Healing: Role of Endothelial Nitric Oxide Synthase Expression. Anatol. J. Cardiol. 2022, 26, 750–756. [Google Scholar] [CrossRef] [PubMed]
Diagnosis | Study Group (n = 49) | Control Group (n = 18) |
---|---|---|
Distal radius fracture | 7 | 3 |
Intertrochanteric femoral fracture | 14 | 2 |
Femoral neck fracture | 14 | 1 |
Lower leg fracture (excluding lateral tibial condyle fracture) | 7 | 4 |
Lateral tibial condyle fracture | 6 | 2 |
Anterior cruciate ligament (ACL) injury | 0 | 4 |
Wrist bone fracture | 0 | 1 |
Phalangeal fracture | 0 | 1 |
Variable | Geriatric Patients (n = 49) | Younger Patients (n = 18) | MD (95% CI) | p |
---|---|---|---|---|
Age [years] | 80.00 ± 9.35 | 56.06 ± 10.58 | 23.94 (18.61; 29.28) | <0.001 1 |
Sex | ||||
Female | 30 (61.2) | 8 (44.4) | - | 0.342 2 |
Male | 19 (38.8) | 10 (55.6) | ||
Injury location | ||||
Leg | 42 (85.7) | 13 (72.2) | - | 0.281 3 |
Arm | 7 (14.3) | 5 (27.8) | ||
Height [cm] | 168.00 (163.00; 175.00) | 173.00 (168.00; 179.50) | −5.00 (−8.00; 0.00) | 0.106 |
Weight [kg] | 75.00 (70.00; 88.00) | 75.00 (70.00; 75.00) | 0.00 (−2.00; 10.00) | 0.183 |
Waist [cm] | 94.00 (86.00; 98.00) | 88.00 (86.00; 90.00) | 6.00 (0.00; 10.00) | 0.045 |
BMI | 26.57 (22.86; 33.12) | 25.06 (21.73; 26.57) | 1.51 (−3.71; 11.39) | <0.05 |
TyG-BMI | 248.37 (209.54; 269.53) | 206.74 (206.23; 234.81) | 41.63 (2.79; 42.35) | 0.018 |
Diabetes | ||||
Yes | 21 (42.9) | 4 (22.2) | - | 0.207 2 |
No | 28 (57.1) | 14 (77.8) | ||
Diabetes—type * | ||||
I | 7 (33.3) | 1 (25.0) | - | >0.999 3 |
II | 14 (6–6.7) | 3 (75.0) | ||
Nicotine | ||||
Yes | 23 (46.9) | 9 (50.0) | - | >0.999 2 |
No | 26 (53.1) | 9 (50.0) | ||
General well-being (patient) [1–10] | 2.00 (2.00; 4.00) | 5.00 (3.00; 6.00) | −3.00 (−3.00; −1.00) | 0.002 |
Healing assessment (doctor) [1–10] | 3.00 (2.00; 5.00) | 5.00 (3.00; 6.00) | −2.00 (−2.00; 0.00) | 0.021 |
Metabolic syndrome | ||||
Yes | 36 (73.5) | 10 (55.6) | - | 0.270 2 |
No | 13 (26.5) | 8 (44.4) | ||
SCORE [%] | 0.30 (0.20; 0.38) | 0.12 (0.10; 0.26) | 0.18 (0.05; 0.19) | 0.002 |
SCORE | ||||
High | 0 (0.0) | 4 (22.2) | - | 0.004 3 |
Very high | 49 (100.0) | 14 (77.8) |
Variable | Geriatric Patients (n = 49) | Younger Patients (n = 18) | MD (95% CI) | p |
---|---|---|---|---|
Glucose [mg/dL] | 100.00 (91.00; 123.00) | 90.00 (86.00; 100.00) | 10.00 (5.00; 22.00) | 0.007 |
HDL [mg/dL] | 46.34 ±14.71 | 54.00 ± 10.11 | −7.66 (−15.17; −0.14) | 0.046 1 |
LDL [mg/dL] | 85.00 (75.30; 103.00) | 73.20 (60.80; 83.80) | 11.80 (2.10; 21.00) | 0.010 |
Cholesterol [mg/dL] | 218.94 ± 30.05 | 200.11 ± 21.92 | 18.83 (3.33; 34.32) | 0.018 1 |
Triglycerides [mg/dL] | 158.00 (145.00; 165.00) | 160.00 (151.25; 171.00) | −2.00 (−15.00; 4.00) | 0.393 |
CRP [mg/L] | 9.60 (5.90; 12.10) | 1.75 (0.92; 6.77) | 7.85 (3.60; 8.80) | 0.001 |
Albumin [g/dL] | 4.60 (4.00; 5.00) | 5.00 (4.60; 5.10) | −0.40 (−0.60; 0.00) | 0.011 |
Protein [g/dL] | 6.90 (6.30; 6.90) | 6.90 (6.80; 6.97) | 0.00 (−0.20; 0.00) | 0.313 |
Creatinine [mg/dL] | 1.00 (0.80; 1.20) | 0.85 (0.80; 0.98) | 0.15 (0.00; 0.20) | 0.030 |
Fibrinogen [mg/dL] | 288.00 (253.00; 305.00) | 278.00 (253.00; 288.00) | 10.00 (−5.00; 35.00) | 0.122 |
Il-6 [pg/mL] | 16.20 (12.80; 41.35) | 6.90 (2.10; 12.88) | 9.30 (5.10; 16.16) | 0.001 |
Leptin [ng/dL] | 19.30 (13.20; 34.45) | 13.05 (9.80; 78.14) | 6.25 (−7.91; 9.00) | 0.399 |
Sodium [mmol/L] | 136.00 (135.00; 138.00) | 137.00 (136.00; 137.00) | −1.00 (−2.00; 0.00) | 0.110 |
Potassium [mmol/L] | 4.00 (3.30; 4.10) | 4.00 (3.70; 4.10) | 0.00 (−0.40; 0.10) | 0.567 |
Urea [mg/dL] | 40.00 (36.00; 58.00) | 35.00 (26.75; 41.00) | 5.00 (0.00; 15.00) | 0.038 |
Hemoglobin [g/dL] | 12.10 (10.20; 12.80) | 13.10 (12.83; 13.10) | −1.00 (−1.50; −0.30) | <0.001 |
RBC [×mln/µL] | 4.00 (3.30; 4.10) | 4.10 (4.00; 4.10) | −0.10 (−0.50; 0.00) | 0.116 |
Hematocrit [%] | 38.20 (32.30; 39.20) | 38.20 (31.20; 39.20) | 0.00 (−1.00; 1.10) | 0.670 |
WBC [×thsnd/μL] | 8.90 (8.00; 10.20) | 7.60 (6.80; 8.55) | 1.30 (0.60; 2.10) | 0.001 |
PLT [×thsnd/μL] | 273.00 (202.00; 293.00) | 298.00 (276.00; 302.00) | −25.00 (−40.00; −8.00) | <0.001 |
Variable | Geriatric Patients (n = 49) | Younger Patients (n = 18) | MD (95% CI) | p |
---|---|---|---|---|
General well-being (patient) [1–10] | 5.00 (5.00; 7.00) | 7.00 (5.00; 7.00) | −2.00 (−2.00; 0.00) | 0.119 |
Healing assessment (doctor) [1–10] | 7.00 (6.00; 7.00) | 7.00 (6.00; 8.00) | 0.00 (−1.00; 0.00) | 0.128 |
Glucose [mg/dL] | 93.00 (90.00; 100.00) | 82.00 (75.00; 90.75) | 11.00 (3.00; 16.00) | 0.006 |
HDL [mg/dL] | 42.00 (34.00; 58.00) | 50.00 (46.00; 56.00) | −8.00 (−12.00; 0.00) | 0.077 |
LDL [mg/dL] | 80.00 (78.20; 105.00) | 71.30 (65.00; 91.00) | 8.70 (6.80; 24.00) | 0.006 |
Cholesterol [mg/dL] | 208.00 (200.00; 232.00) | 200.00 (190.00; 205.00) | 8.00 (0.00; 26.00) | 0.034 |
Triglycerides [mg/dL] | 155.10 ± 23.15 | 152.28 ± 15.99 | 2.82 (−9.02; 14.67) | 0.635 1 |
CRP [mg/L] | 12.10 (7.20; 30.20) | 5.00 (4.10; 9.28) | 7.10 (2.20; 15.20) | 0.001 |
Albumin [g/dL] | 4.10 (3.90; 4.80) | 4.65 (4.20; 5.00) | −0.55 (−0.80; −0.20) | 0.003 |
Protein [g/dL] | 6.25 ± 0.38 | 6.64 ± 0.36 | −0.39 (−0.59; −0.18) | <0.001 1 |
Creatinine [mg/dL] | 0.80 (0.70; 1.00) | 0.70 (0.70; 0.80) | 0.10 (0.00; 0.20) | 0.055 |
Fibrinogen [mg/dL] | 319.51 ± 52.72 | 314.06 ± 53.25 | 5.45 (−23.64; 34.55) | 0.709 1 |
IL-6 [pg/mL] | 52.30 (19.30; 68.20) | 13.12 (9.92; 24.55) | 39.18 (5.47; 46.07) | <0.001 |
Leptin [ng/dL] | 23.20 (13.80; 70.30) | 39.75 (38.20; 88.32) | −16.55 (−26.40; 0.00) | 0.065 |
Sodium [mmol/L] | 137.00 (137.00; 138.00) | 138.50 (138.00; 139.00) | −1.50 (−2.00; 0.00) | 0.008 |
Potassium [mmol/L] | 3.93 ± 0.24 | 4.18 ± 0.43 | −0.25 (−0.41; −0.08) | 0.004 1 |
Urea [mg/dL] | 38.00 (38.00; 40.00) | 31.00 (28.50; 32.00) | 7.00 (6.00; 10.00) | 0.001 |
Hemoglobin [g/dL] | 11.60 (11.20; 12.10) | 12.85 (12.65; 13.10) | −1.25 (−1.60; −0.60) | 0.001 |
RBC [×mln/µL] | 3.80 (3.60; 3.90) | 3.90 (3.60; 4.07) | −0.10 (−0.30; 0.00) | 0.110 |
Hematocrit [%] | 35.20 (32.00; 38.20) | 39.20 (37.52; 39.88) | −4.00 (−4.90; −0.90) | 0.016 |
WBC [×thsnd/μL] | 9.34 ± 1.48 | 8.46 ± 1.45 | 0.88 (0.07; 1.69) | 0.033 1 |
PLT [×thsnd/μL] | 247.92 ± 50.42 | 268.78 ± 28.72 | −20.86 (−40.68; −1.04) | 0.040 2 |
Variable | Geriatric Patients | Younger Patients | ||||||
---|---|---|---|---|---|---|---|---|
Diabetes | MD (95% CI) | p | Diabetes | MD (95% CI) | p | |||
Yes (n = 21) | No (n = 28) | Yes (n = 4) | No (n = 14) | |||||
Visit 1 | ||||||||
General well-being (patient) [1–10] | 3.67 ± 1.28 | 2.61 ± 1.57 | 1.06 (0.22; 1.90) | 0.015 1 | 3.50 (2.00; 5.25) | 5.00 (3.25; 6.00) | −1.50 (−4.00; 1.00) | 0.380 |
Healing assessment (doctor) [1–10] | 5.00 (3.00; 6.00) | 3.00 (2.00; 4.00) | 2.00 (0.00; 2.00) | 0.0504 | 3.50 (2.00; 5.25) | 5.00 (3.25; 6.75) | −1.50 (−4.00; 1.00) | 0.194 |
Visit 2 | ||||||||
General well-being (patient) [1–10] | 5.00 (5.00; 7.00) | 5.00 (4.75; 7.00) | 0.00 (−1.00; 1.00) | 0.856 | 5.00 (5.00; 5.75) | 7.00 (5.25; 7.00) | −2.00 (−2.00; 1.00) | 0.731 |
Healing assessment (doctor) [1–10] | 6.76 ± 0.94 | 6.04 ± 1.35 | 0.73 (0.03; 1.42) | 0.040 1 | 6.50 (5.00; 8.00) | 7.00 (6.00; 8.00) | −0.50 (−3.00; 2.00) | 0.616 |
Variable | Geriatric Patients | Younger Patients | ||||||
---|---|---|---|---|---|---|---|---|
Hypertension | MD (95% CI) | p | Hypertension | MD (95% CI) | p | |||
Yes (n = 21) | No (n = 28) | Yes (n = 8) | No (n = 10) | |||||
Visit 1 | ||||||||
General well-being (patient) [1–10] | 4.00 (2.00; 5.00) | 2.00 (2.00; 4.00) | 2.00 (0.00; 2.00) | 0.092 | 3.00 (2.75; 4.25) | 6.00 (5.00; 6.00) | −3.00 (−3.00; −1.00) | 0.007 |
Healing assessment (doctor) [1–10] | 4.00 (2.00; 5.00) | 3.00 (2.00; 6.00) | 1.00 (−1.00; 1.00) | 0.909 | 3.50 ± 1.41 | 5.80 ± 1.32 | −2.30 (−3.67; −0.93) | 0.003 1 |
Visit 2 | ||||||||
General well-being (patient) [1–10] | 5.10 ± 1.04 | 5.71 ± 1.44 | −0.62 (−1.36; 0.13) | 0.102 1 | 5.00 (4.00; 5.25) | 7.00 (7.00; 7.00) | −2.00 (−3.00; −1.00) | 0.002 |
Healing assessment (doctor) [1–10] | 6.00 (5.00; 7.00) | 7.00 (6.00; 7.00) | −1.00 (−1.00; 0.00) | 0.348 | 6.12 ± 0.99 | 7.50 ± 0.71 | −1.38 (−2.22; −0.53) | 0.003 1 |
Variable | Correlation with General Well-Being (Patient) [1–10] | Correlation with Healing Assessment (Doctor) [1–10] | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Visit 1 | Visit 2 | Visit 1 | Visit 2 | |||||||||||||
Geriatric Patients | Younger Patients | Geriatric Patients | Younger Patients | Geriatric Patients | Younger Patients | Geriatric Patients | Younger Patients | |||||||||
rho | p | rho | p | rho | p | rho | p | rho | p | rho | p | rho | p | rho | p | |
Glucose [mg/dL] | 0.19 | 0.179 | −0.44 | 0.065 | 0.17 | 0.256 | −0.14 | 0.566 | 0.45 | 0.001 | −0.50 | 0.033 | 0.16 | 0.268 | −0.44 | 0.064 |
HDL [mg/dL] | −0.27 | 0.058 | −0.27 | 0.283 | 0.08 | 0.608 | −0.09 | 0.737 | −0.19 | 0.182 | −0.23 | 0.358 | 0.08 | 0.589 | −0.29 | 0.235 |
LDL [mg/dL] | 0.26 | 0.074 | −0.19 | 0.461 | 0.01 | 0.925 | −0.01 | 0.972 | 0.22 | 0.137 | −0.11 | 0.651 | 0.14 | 0.344 | 0.04 | 0.867 |
Cholesterol [mg/dL] | 0.42 | 0.003 | 0.49 | 0.040 | 0.01 | 0.954 | 0.28 | 0.262 | 0.27 | 0.064 | 0.59 | 0.010 | 0.09 | 0.553 | 0.32 | 0.196 |
Triglycerides [mg/dL] | 0.56 | <0.001 | 0.75 | <0.001 | 0.52 | <0.001 | 0.39 | 0.105 | 0.44 | 0.002 | 0.81 | <0.001 | 0.40 | 0.005 | 0.64 | 0.005 |
CRP [mg/L] | −0.35 | 0.013 | −0.76 | <0.001 | −0.13 | 0.383 | −0.52 | 0.027 | −0.35 | 0.013 | −0.83 | <0.001 | −0.12 | 0.415 | −0.44 | 0.064 |
Albumin [g/dL] | 0.29 | 0.044 | 0.09 | 0.711 | 0.46 | 0.001 | 0.18 | 0.470 | 0.35 | 0.015 | 0.02 | 0.929 | 0.59 | <0.001 | 0.52 | 0.026 |
Protein [g/dL] | 0.12 | 0.430 | −0.38 | 0.125 | 0.43 | 0.002 | 0.36 | 0.142 | 0.23 | 0.110 | −0.51 | 0.031 | 0.29 | 0.044 | 0.55 | 0.017 |
Creatinine [mg/dL] | −0.65 | <0.001 | −0.05 | 0.834 | −0.51 | <0.001 | −0.23 | 0.367 | −0.49 | <0.001 | −0.02 | 0.942 | −0.51 | <0.001 | −0.14 | 0.587 |
Fibrinogen [mg/dL] | 0.41 | 0.004 | 0.51 | 0.031 | 0.54 | <0.001 | 0.76 | <0.001 | 0.51 | <0.001 | 0.53 | 0.024 | 0.44 | 0.001 | 0.79 | <0.001 |
Il-6 [pg/mL] | −0.35 | 0.013 | −0.26 | 0.297 | 0.03 | 0.860 | −0.66 | 0.003 | −0.20 | 0.177 | −0.25 | 0.320 | 0.28 | 0.055 | −0.51 | 0.030 |
Leptin [ng/dL] | −0.10 | 0.480 | −0.81 | <0.001 | −0.04 | 0.807 | −0.71 | 0.001 | −0.50 | <0.001 | −0.79 | <0.001 | −0.15 | 0.294 | −0.67 | 0.002 |
Sodium [mmol/L] | 0.06 | 0.695 | 0.09 | 0.735 | 0.20 | 0.176 | −0.19 | 0.455 | 0.16 | 0.278 | 0.00 | 0.986 | −0.02 | 0.915 | −0.07 | 0.790 |
Potassium [mmol/L] | 0.70 | <0.001 | 0.18 | 0.475 | 0.59 | <0.001 | −0.11 | 0.664 | 0.80 | <0.001 | 0.11 | 0.670 | 0.42 | 0.003 | 0.11 | 0.652 |
Urea [mg/dL] | −0.62 | <0.001 | 0.06 | 0.798 | −0.52 | <0.001 | −0.12 | 0.624 | −0.60 | <0.001 | 0.24 | 0.343 | −0.46 | 0.001 | −0.17 | 0.511 |
Hemoglobin [g/dL] | 0.70 | <0.001 | 0.69 | 0.001 | 0.58 | <0.001 | 0.32 | 0.197 | 0.83 | <0.001 | 0.63 | 0.005 | 0.74 | <0.001 | 0.22 | 0.375 |
RBC [×mln/µL] | 0.76 | <0.001 | 0.17 | 0.511 | 0.63 | <0.001 | 0.01 | 0.958 | 0.81 | <0.001 | −0.05 | 0.846 | 0.70 | <0.001 | 0.09 | 0.713 |
Hematocrit [%] | 0.75 | <0.001 | 0.03 | 0.897 | 0.44 | 0.002 | 0.19 | 0.441 | 0.91 | <0.001 | −0.12 | 0.634 | 0.52 | <0.001 | 0.78 | <0.001 |
WBC [×thsnd/μL] | −0.54 | <0.001 | −0.45 | 0.061 | −0.04 | 0.766 | −0.38 | 0.116 | −0.56 | <0.001 | −0.46 | 0.058 | −0.15 | 0.320 | −0.64 | 0.005 |
PLT [×thsnd/μL] | 0.41 | 0.004 | 0.62 | 0.006 | 0.45 | 0.001 | −0.07 | 0.779 | 0.58 | <0.001 | 0.68 | 0.002 | 0.35 | 0.015 | 0.15 | 0.542 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Węgłowski, R.; Borowski, B.; Bronikowska, A.; Piech, P.; Staśkiewicz, G.; Jarecki, J. The Role of Metabolic Disorders and Laboratory Abnormalities in Wound Healing and Recovery in Geriatric and Non-Geriatric Orthopedic Patients in Poland—Prospective Research. J. Clin. Med. 2025, 14, 5317. https://doi.org/10.3390/jcm14155317
Węgłowski R, Borowski B, Bronikowska A, Piech P, Staśkiewicz G, Jarecki J. The Role of Metabolic Disorders and Laboratory Abnormalities in Wound Healing and Recovery in Geriatric and Non-Geriatric Orthopedic Patients in Poland—Prospective Research. Journal of Clinical Medicine. 2025; 14(15):5317. https://doi.org/10.3390/jcm14155317
Chicago/Turabian StyleWęgłowski, Robert, Bartosz Borowski, Anna Bronikowska, Piotr Piech, Grzegorz Staśkiewicz, and Jaromir Jarecki. 2025. "The Role of Metabolic Disorders and Laboratory Abnormalities in Wound Healing and Recovery in Geriatric and Non-Geriatric Orthopedic Patients in Poland—Prospective Research" Journal of Clinical Medicine 14, no. 15: 5317. https://doi.org/10.3390/jcm14155317
APA StyleWęgłowski, R., Borowski, B., Bronikowska, A., Piech, P., Staśkiewicz, G., & Jarecki, J. (2025). The Role of Metabolic Disorders and Laboratory Abnormalities in Wound Healing and Recovery in Geriatric and Non-Geriatric Orthopedic Patients in Poland—Prospective Research. Journal of Clinical Medicine, 14(15), 5317. https://doi.org/10.3390/jcm14155317