Decoding Treatment Failures in Metastatic Renal Cell Carcinoma: Predictors Across Immunotherapy and Targeted Therapies from a Retrospective Real-World Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
mRCC | Metastatic renal cell carcinoma |
ccRCC | Clear cell renal cell carcinoma |
IMDC | International mRCC Database Consortium |
ECOG | Eastern Cooperative Oncology Group |
BMI | Body Mass Index |
AST | Aspartate Aminotransaminase |
ALT | Alanine Aminotransaminase |
CRP | C-reactive protein |
CBC | Complete blood count |
TTF | Time to Treatment Failure |
PFS | Progression-free survival |
OS | Overall survival |
M1 oss | Bone metastases |
M1 hep | Hepatic metastases |
M1 pul | Lung metastases |
M1 lym | Lymph node metastases |
SD | Standard deviation |
N | Number |
References
- Homepage|ECIS–European Cancer Information System. Available online: https://ecis.jrc.ec.europa.eu (accessed on 2 June 2024).
- Znaor, A.; Lortet-Tieulent, J.; Laversanne, M.; Jemal, A.; Bray, F. International variations and trends in renal cell carcinoma incidence and mortality. Eur. Urol. 2015, 67, 519–530. [Google Scholar] [CrossRef]
- World Health Organization. WHO European Regional Obesity Report 2022. 2022. Available online: https://iris.who.int/bitstream/handle/10665/353747/9789289057738-eng.pdf?sequence=1 (accessed on 2 June 2024).
- MACROTRENDS. European Union Smoking Rate 2000–2025. Available online: https://www.macrotrends.net/global-metrics/countries/EUU/european-union/smoking-rate-statistics (accessed on 28 February 2025).
- Liu, X.; Sun, Q.; Hou, H.; Zhu, K.; Wang, Q.; Liu, H.; Zhang, Q.; Ji, L.; Li, D. The association between BMI and kidney cancer risk: An updated dose-response meta-analysis in accordance with PRISMA guideline. Medicine 2018, 97, e12860. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.D.; van der Hel, O.L.; McMillan, G.P.; Boffetta, P.; Brennan, P. Renal cell carcinoma in relation to cigarette smoking: Meta-analysis of 24 studies. Int. J. Cancer 2005, 114, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Seretis, A.; Cividini, S.; Markozannes, G.; Tseretopoulou, X.; Lopez, D.S.; Ntzani, E.E.; Tsilidis, K.K. Association between blood pressure and risk of cancer development: A systematic review and meta-analysis of observational studies. Sci. Rep. 2019, 9, 8565. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Sanchez, A.; Rojas-Munoz, J.; Garcia-Perdomo, H.A. Association Between Diabetes and the Risk of Kidney Cancer: Systematic Review and Meta-Analysis. Clin. Diabetes 2022, 40, 270–282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lowrance, W.T.; Ordoñez, J.; Udaltsova, N.; Russo, P.; Go, A.S. CKD and the Risk of Incident Cancer. J. Am. Soc. Nephrol. 2014, 25, 2327–2334. [Google Scholar] [CrossRef]
- Scelo, G.; Larose, T.L. Epidemiology and Risk Factors for Kidney Cancer. J. Clin. Oncol. 2018, 36, 3574–3581. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheungpasitporn, W.; Thongprayoon, C.; O’Corragain, O.A.; Edmonds, P.; Ungprasert, P.; Kittanamongkolchai, W.; Erickson, S. The risk of kidney cancer in patients with kidney stones: A systematic review and meta-analysis. QJM 2015, 108, 205–212. [Google Scholar] [CrossRef]
- Deckers, I.; van den Brandt, P.; van Engeland, M.; Soetekouw, P.M.M.B.; Baldewijns, M.M.L.L.; A Goldbohm, R.; Schouten, L.J. Long-term dietary sodium, potassium and fluid intake; exploring potential novel risk factors for renal cell cancer in the Netherlands Cohort Study on diet and cancer. Br. J. Cancer 2014, 110, 797–801. [Google Scholar] [CrossRef]
- Song, D.Y.; Song, S.; Song, Y.; Lee, J.E. Alcohol intake and renal cell cancer risk: A meta-analysis. Br. J. Cancer 2012, 106, 1881–1890. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maher, E.R. Hereditary renal cell carcinoma syndromes: Diagnosis, surveillance and management. World J. Urol. 2018, 36, 1891–1898. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013, 499, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Kaelin, W.G., Jr. Targeting the HIF2–VEGF axis in renal cell carcinoma. Nat. Med. 2020, 26, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.C.; Tretiakova, M. Renal Cell Carcinoma Overview. PathologyOutlines.Com Website. Available online: https://www.pathologyoutlines.com/topic/kidneytumormalignantrcc.html (accessed on 22 March 2025).
- Moch, H.; Amin, M.B.; Berney, D.M.; Compérat, E.M.; Gill, A.J.; Hartmann, A.; Menon, S.; Raspollini, M.R.; Rubin, M.A.; Srigley, J.R.; et al. The 2022 World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2022, 82, 458–468. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Kidney Cancer (Version 3.2025). 2025. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1440 (accessed on 14 June 2025).
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; et al. Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 115–124. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Davis, I.D.; Mardiak, J.; Szczylik, C.; Lee, E.; Wagstaff, J.; Barrios, C.H.; Salman, P.; Gladkov, O.A.; Kavina, A.; et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial. J. Clin. Oncol. 2010, 28, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Halabi, S.; Sanford, B.L.; Hahn, O.; Michaelson, M.D.; Walsh, M.K.; Feldman, D.R.; Olencki, T.; Picus, J.; Small, E.J.; et al. Cabozantinib versus Sunitinib as Initial Targeted Therapy for Patients with Metastatic Renal Cell Carcinoma of Intermediate or Poor Risk (CABOSUN): A Randomised, Open-Label, Phase 2 Trial. Lancet Oncol. 2016, 17, 917–927. [Google Scholar] [CrossRef]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. Lancet Oncol. 2019, 20, 1370–1380. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1305–1316. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.; Alekseev, B.; Rha, S.-Y.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Kopyltsov, E.; Méndez-Vidal, M.J.; et al. Lenvatinib Plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Hoeh, B.; Flammia, R.S.; Hohenhorst, L.; Sorce, G.; Panunzio, A.; Tappero, S.; Tian, Z.; Saad, F.; Gallucci, M.; Briganti, A.; et al. IO-IO vs. IO-TKI efficacy in metastatic kidney cancer patients: A structured systematic review over time. Semin. Oncol. 2022, 49, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Ohba, K.; Nakanishi, H.; Kawada, K.; Nakamura, Y.; Mitsunari, K.; Matsuo, T.; Mochizuki, Y.; Imamura, R. Predictive factors of nivolumab plus ipilimumab treatment efficacy in metastatic renal cell carcinoma patients. Jpn. J. Clin. Oncol. 2024, 54, 827–832. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, J.H.; Shin, S.J.; Bae, W.K. Real-world efficacy of first-line nivolumab plus ipilimumab and its practical predictive biomarkers in advanced renal cell carcinoma: First analysis from RENOIR study [KCSG GU22-13]. Ann. Oncol. 2024, 35, S1026. [Google Scholar] [CrossRef]
- Tachibana, H.; Nemoto, Y.; Ishihara, H.; Fukuda, H.; Yoshida, K.; Iizuka, J.; Hashimoto, Y.; Kondo, T.; Tanabe, K.; Takagi, T. Predictive Impact of Early Changes in Serum C-Reactive Protein Levels in Nivolumab Plus Ipilimumab Therapy for Metastatic Renal Cell Carcinoma. Clin. Genitourin. Cancer 2022, 20, e81–e88. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, L.; Manfredi, C.; Cirillo, L.; Fusco, G.M.; Passaro, F.; Abate, M.; La Rocca, R.; Mastrangelo, F.; Spirito, L.; Pandolfo, S.D.; et al. Cytoreductive nephrectomy and metastatic renal cell carcinoma: State of the art and future perspectives. Medicina 2023, 59, 767. [Google Scholar] [CrossRef]
- Wagener, N.; Edelmann, D.; Benner, A.; Zigeuner, R.; Borgmann, H.; Wolff, I.; Krabbe, L.M.; Musquera, M.; Dell’oGlio, P.; Capitanio, U.; et al. Outcome of papillary versus clear cell renal cell carcinoma varies significantly in non-metastatic disease. PLoS ONE 2017, 12, e0184173. [Google Scholar] [CrossRef]
- Takemura, K.; Yonekura, S.; Downey, L.E.; Evangelopoulos, D.; Heng, D.Y. Impact of Body Mass Index on Survival Outcomes of Patients with Metastatic Renal Cell Carcinoma in the Immuno-oncology Era: A Systematic Review and Meta-analysis. Eur. Urol. Open Sci. 2022, 39, 62–71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Çolak, R.; Gültürk, İ.; Dinç, G.; Akdağ, G.; Yıldırım, S.; Yılmaz, M.; Tural, D. The relationship between body mass index and survival in patients with renal cell carcinoma treated with nivolumab. J. Chemother. 2025, 23, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lien, Y.H. Looking for Sarcopenia Biomarkers. Am. J. Med. 2017, 130, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, Y.; Oya, R.; Takemoto, N.; Inohara, H. Predictive impact of sarcopenia in solid cancers treated with immune checkpoint inhibitors: A meta-analysis. J. Cachexia Sarcopenia Muscle 2021, 12, 1122–1135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Albiges, L.; Fléchon, A.; Chevreau, C.; Topart, D.; Gravis, G.; Oudard, S.; Tourani, J.M.; Geoffrois, L.; Meriaux, E.; Thiery-Vuillemin, A.; et al. Real-world evidence of cabozantinib in patients with metastatic renal cell carcinoma: Results from the CABOREAL Early Access Program. Eur. J. Cancer 2021, 142, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Santoni, M.; Massari, F.; Bracarda, S.; Procopio, G.; Milella, M.; De Giorgi, U.; Basso, U.; Aurilio, G.; Incorvaia, L.; Martignetti, A.; et al. Body mass index in patients treated with cabozantinib for advanced renal cell carcinoma: A new prognostic factor? Diagnostics 2021, 11, 138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Treatment | Comparator | Year of Publication | HR for PFS (95% CI) | HR for OS (95% CI) | % Grade ≥ 3 Adverse Reactions |
---|---|---|---|---|---|
Sunitinib, L1 [20] | Interferon alfa | 2007 | HR = 0.42 (0.32–0.54) | HR = 0.82 (0.66–1.00) | ~40% |
Pazopanib, L1 [21] | Placebo | 2010 | HR = 0.46 (0.34–0.62) | HR = 0.91 (0.66–1.25) | ~30% |
Nivolumab, ≥L2 [22] | Everolimus | 2015 | HR = 0.88 (0.75–1.03) | HR = 0.73 (0.57–0.93) | ~20% |
Ipilimumab + Nivolumab, L1 [23] | Sunitinib | 2018 | HR = 0.82 (0.66–1.02) | HR = 0.63 (0.44–0.89) | ~55% |
Cabozantinib, L1 [24] | Sunitinib | 2016 | HR = 0.66 (0.46–0.95) | HR = 0.80 (0.53–1.21) | ~60% |
Avelumab + Axitinib, L1 [25] | Sunitinib | 2019 | HR = 0.61 (0.47–0.79) | HR = 0.92 (0.70–1.21) | ~50% |
Cabozantinib + Nivolumab, L1 [26] | Sunitinib | 2021 | HR = 0.51 (0.41–0.64) | HR = 0.66 (0.53–0.83) | ~55% |
Lenvatinib + Pembrolizumab, L1 [27] | Sunitinib | 2021 | HR = 0.39 (0.28–0.55) | HR = 0.66 (0.49–0.88) | ~55% |
Line of Treatment | Average Age (Years) | Number of Patients | |
---|---|---|---|
Cabozantinib | L1 | 57.66 | 3 |
Ipilimumab + Nivolumab | L1 | 58.94 | 50 |
Pazopanib | L1 | 60.14 | 15 |
All medications L1 | L1 | 60.8 | 137 |
Sunitinib | L1 | 63.87 | 49 |
Axitinib + Avelumab | L1 | 65.94 | 17 |
Everolimus | L2–L3–L4 | 45.3 | 3 |
Cabozantinib | L2–L3–L4 | 58.5 | 27 |
All medications L2–L4 | L2–L3–L4 | 59.8 | 90 |
Axitinib | L2–L3–L4 | 60.9 | 12 |
Nivolumab | L2–L3–L4 | 61.7 | 46 |
First-Line Treatments | Number of Patients (n = 137) | Median TTF Days (Months) | Average TTF Days (Months) | Range Days (Months) |
---|---|---|---|---|
Ipilimumab + Nivolumab | 50 | 178 (5.9) | 286 (9.5) | 21–1159 (0.7–38.6) |
Sunitinib | 49 | 334 (11.1) | 616 (20.5) | 28–4017 (0.9–133.9) |
Avelumab + Axitinib | 17 | 215 (7.2) | 248 (8.3) | 14–691 (0.5–23.0) |
Pazopanib | 15 | 324 (10.8) | 508 (16.9) | 62–1400 (2.1–46.7) |
Cabozantinib | 3 | 242 (8.1) | 214 (7.1) | 153–248 (5.1–8.3) |
Tivozanib | 1 | 30 (1.0) | — | — |
Temsirolimus | 2 | 114 (3.8) | 231 (7.7) | 25-671 (0.83–22.3) |
Line 2 Treatments | Number of Patients (n = 65) | Median TTF Days (Months) | Average TTF Days (Months) | Range Days (Months) |
---|---|---|---|---|
Nivolumab | 32 | 277 (9.2) | 378 (12.6) | 16–1371 (0.5–45.7) |
Cabozantinib | 19 | 53 (1.8) | 105 (3.5) | 20–473 (0.7–15.8) |
Axitinib | 10 | 138 (4.6) | 392 (13.1) | 31–1584 (1.0–52.8) |
Everolimus | 1 | 61 (2.0) | — | — |
Sunitinib | 2 | 185 (6.2) | 185 (6.2) | 32–337 (1.1–11.2) |
Nivolumab + Axitinib | 1 | 823 (27.4) | — | — |
Line 3 Treatments | Number of Patients (n = 23) | Median TTF Days (Months) | Average TTF Days (Months) | Range Days (Months) |
---|---|---|---|---|
Nivolumab | 11 | 122 (4.1) | 355 (11.8) | 32–1208 (1.1–40.3) |
Cabozantinib | 8 | 100 (3.3) | 89 (3.0) | 35–123 (1.2–4.1) |
Axitinib | 2 | 265 (8.8) | 265 (8.8) | 257–274 (8.5–9.1) |
Everolimus | 2 | 122 (4.1) | 122 (4.1) | 92–153 (3.1–5.1) |
Line 4 Treatments | Number of Patients (n = 23) | Median TTF Days (Months) | Average TTF Days (Months) | Range Days (Months) |
---|---|---|---|---|
Nivolumab | 2 | 611 (20.3) | 611 (20.3) | 117–1106 (3.9–36.8) |
Parameter | Average | ±SD | n | RR | 95% Confidence Interval | p |
---|---|---|---|---|---|---|
AST | 24.6 | 27 | 45 | 1.01 | 1.0024–1.024 | 0.017 |
AST > 25 | 24% | 45 | 2.56 | 1.15–5.70 | 0.021 | |
AST + ALT | 54.4 | 61.7 | 44 | 1.01 | 1.0009–1.0115 | 0.022 |
Hb | 11.79 | 2.05 | 45 | 0.86 | 0.73–1.01 | 0.070 |
ALT | 29.6 | 38.1 | 44 | 1.01 | 0.999–1.015 | 0.075 |
Neutrophils | 6.24 | 2.94 | 45 | 1.07 | 0.96–1.18 | 0.21 |
Total bilirubin | 0.52 | 0.18 | 42 | 4.21 | 0.37–48 | 0.25 |
M1 lym | 0.84 | 0.366 | 50 | 0.6413 | 0.274–1.199 | 0.31 |
Leucocytes | 8.86 | 3.07 | 45 | 1.06 | 0.94–1.18 | 0.34 |
Body mass index kg/m2 | 26.2 | 6.8 | 33 | 0.96 | 0.89–1.04 | 0.35 |
Calcium (total) | 9.43 | 0.76 | 39 | 1.25 | 0.72–2.15 | 0.43 |
M1 oss | 0.22 | 0.414 | 50 | 0.707 | 0.294–1.67 | 0.43 |
Age | 58.9 | 12.8 | 50 | 0.99 | 0.96–1.01 | 0.59 |
M1 hep | 0.28 | 0.449 | 50 | 0.8133 | 0.348–1.897 | 0.63 |
Lymphocytes | 1.72 | 0.65 | 45 | 0.89 | 0.511–1.54 | 0.67 |
Creatinine | 1.06 | 0.52 | 44 | 1.12 | 0.55–2.31 | 0.74 |
Sex | 66% men | 50 | 1.13 | 0.52–2.42 | 0.75 | |
M1 pul | 0.68 | 0.4665 | 50 | 0.9056 | 0.433–1.895 | 0.79 |
Thrombocytes | 338.9 | 131 | 45 | 0.9996 | 0.997–1.003 | 0.80 |
Parameter | Average | ±SD | n | RR | 95% Confidence Interval | p |
---|---|---|---|---|---|---|
M1 lym | 0.117 | 0.322 | 17 | 11.98 | 1.657–86.63 | 0.014 |
Lymphocytes | 1.73 | 0.96 | 15 | 0.356 | 0.145–0.877 | 0.025 |
Creatinine mg/dL | 1.14 | 0.31 | 15 | 0.0573 | 0.004–0.87 | 0.039 |
BMI kg/m2 | 29.5 | 8.3 | 8 | 0.819 | 0.677–0.991 | 0.040 |
Hb g/dL | 13.3 | 2.9 | 15 | 0.738 | 0.551–0.997 | 0.041 |
Thrombocytes | 283.4 | 97.5 | 15 | 1.008 | 0.999–1.016 | 0.061 |
Neutrophils | 5.95 | 2.66 | 15 | 1.31 | 0.967–1.765 | 0.081 |
Sex | 76% men | 17 | 0.378 | 0.089–1.610 | 0.189 | |
M1 pul | 0.647 | 0.4779 | 17 | 0.4158 | 0.130–1.56 | 0.2098 |
M1 hep | 0.235 | 0.424 | 17 | 0.579 | 0.122–2.745 | 0.4919 |
Total bilirubin mg/dL | 0.54 | 0.15 | 15 | 0.261 | 0.005–14.08 | 0.509 |
M1 oss | 0.4118 | 0.4922 | 17 | 1.4075 | 0.403–4.916 | 0.5922 |
Leuccocytes | 8.42 | 2.64 | 15 | 1.066 | 0.772–1.472 | 0.698 |
ALT UI/L | 17.3 | 10.8 | 15 | 0.986 | 0.918–1.059 | 0.704 |
AST UI/L | 21.2 | 10.6 | 15 | 0.988 | 0.923–1.057 | 0.725 |
Age | 65.9 | 8.4 | 17 | 1.007 | 0.919–1.103 | 0.882 |
Total calcium mg/dL | 9.38 | 0.94 | 12 | 1.024 | 0.32–3.27 | 0.968 |
Parameter | Average | ±SD | n | RR | 95% Confidence Interval | p |
---|---|---|---|---|---|---|
Thrombocytes | 318.07 | 159.53 | 14 | 1.005 | 1.0007–1.009 | 0.0223 |
M1 hep | 29.60% | 27 | 2.904 | 1.088–7.74 | 0.0332 | |
TGP/ALT (U/L) | 31.64 | 27.88 | 14 | 1.0249 | 1.0002–1.05 | 0.0484 |
Neutrophils | 7.87 | 6.5 | 14 | 1.099 | 0.999–1.209 | 0.0512 |
Calcium total (mg/dL) | 9.12 | 0.71 | 13 | 2.675 | 0.93–7.67 | 0.067 |
K+ mmol/L | 4.66 | 0.64 | 8 | 7.63 | 0.863–67.5 | 0.0676 |
TGO/AST (U/L) | 46.73 | 65.47 | 14 | 1.0086 | 0.999–1.018 | 0.0768 |
BMI kg/m2 | 29.92 | 7.2 | 12 | 0.9313 | 0.854–1.015 | 0.1056 |
Hemoglobin (g/dL) | 12.27% | 1.61 | 14 | 0.804 | 0.54–1.17 | 0.261 |
Leucocytes | 12.27 | 1.6 | 14 | 0.8044 | 0.549–1.177 | 0.2631 |
Lymphocytes | 1.667 | 0.779 | 14 | 0.595 | 0.227–1.553 | 0.2891 |
M1 oss | 77.70% | 27 | 1.972 | 0.552–7.034 | 0.2954 | |
Creatinine (mg/dL) | 1.1 | 0.22 | 14 | 2.979 | 0.299–29.61 | 0.3156 |
sex | 74% males | 27 | 0.73 | 0.25–2.09 | 0.56 | |
age (y) | 58.5 | 11.61 | 27 | 1.0121 | 0.939–1.057 | 0.586 |
Btotal bilirubin (mg/dL) | 76.90% | 0.42 | 13 | 1.331 | 0.19–9.17 | 0.771 |
ECOG | 95.00% | 0.75 | 23 | 0.917 | 0.47–1.77 | 0.799 |
M1 pul | 66.60% | 27 | 1.107 | 0.39–3.13 | 0.848 | |
M1 lym | 66.60% | 27 | 1.073 | 0.402–2.86 | 0.887 |
Parameter | Average | ±SD | n | RR | 95% Confidence Interval | p |
---|---|---|---|---|---|---|
Thrombocytes | 268 | 124 | 26 | 1.0032 | 0.999–1.007 | 0.116 |
Calcium total, mg/dL | 9.52 | 0.72 | 20 | 0.576 | 0.258–1.282 | 0.177 |
Bilirubin total mg/dL | 0.62 | 0.22 | 24 | 4.66 | 0.459–47.4 | 0.193 |
Hb g/dL | 12.2 | 2.8 | 26 | 0.878 | 0.721–1.070 | 0.199 |
Sex | 75% males | 28 | 1.88 | 0.630–5.630 | 0.257 | |
Neutrophils | 5.1 | 4.5 | 26 | 1.0414 | 0.956–1.134 | 0.352 |
Age years | 62.4 | 7.4 | 28 | 1.025 | 0.957–1.097 | 0.481 |
TGO ASAT U/L | 23.4 | 14.5 | 25 | 0.989 | 0.958–1.020 | 0.499 |
Lymphocytes | 1.76 | 0.83 | 26 | 1.162 | 0.721–1.875 | 0.536 |
Leucocytes | 7.6 | 4.5 | 26 | 1.049 | 0.967–1.138 | 0.541 |
TGP SLAT U/L | 17% | 8.8 | 26 | 0.987 | 0.931–1.046 | 0.666 |
Creatinine mg/dL | 1.33 | 0.77 | 25 | 1.013 | 0.601–1.709 | 0.959 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saftescu, S.; Vornicu, V.-N.; Popovici, D.-I.; Dragomir, R.-D.; Nagy, D.-S.; Sandu, D.-L.; Dulan, A.; Negru, Ș.-M.; Negru, A.-G. Decoding Treatment Failures in Metastatic Renal Cell Carcinoma: Predictors Across Immunotherapy and Targeted Therapies from a Retrospective Real-World Analysis. J. Clin. Med. 2025, 14, 5271. https://doi.org/10.3390/jcm14155271
Saftescu S, Vornicu V-N, Popovici D-I, Dragomir R-D, Nagy D-S, Sandu D-L, Dulan A, Negru Ș-M, Negru A-G. Decoding Treatment Failures in Metastatic Renal Cell Carcinoma: Predictors Across Immunotherapy and Targeted Therapies from a Retrospective Real-World Analysis. Journal of Clinical Medicine. 2025; 14(15):5271. https://doi.org/10.3390/jcm14155271
Chicago/Turabian StyleSaftescu, Sorin, Vlad-Norin Vornicu, Dorel-Ionel Popovici, Radu-Dumitru Dragomir, Dana-Sonia Nagy, Daniela-Lidia Sandu, Ana Dulan, Șerban-Mircea Negru, and Alina-Gabriela Negru. 2025. "Decoding Treatment Failures in Metastatic Renal Cell Carcinoma: Predictors Across Immunotherapy and Targeted Therapies from a Retrospective Real-World Analysis" Journal of Clinical Medicine 14, no. 15: 5271. https://doi.org/10.3390/jcm14155271
APA StyleSaftescu, S., Vornicu, V.-N., Popovici, D.-I., Dragomir, R.-D., Nagy, D.-S., Sandu, D.-L., Dulan, A., Negru, Ș.-M., & Negru, A.-G. (2025). Decoding Treatment Failures in Metastatic Renal Cell Carcinoma: Predictors Across Immunotherapy and Targeted Therapies from a Retrospective Real-World Analysis. Journal of Clinical Medicine, 14(15), 5271. https://doi.org/10.3390/jcm14155271