Effects of Air Splints on Sensorimotor Disturbances of the Affected Upper Extremity and Trunk Control in Adult Post-Stroke Patients
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Subjects
2.3. Eligibility Criteria
2.4. Intervention
2.4.1. Experimental Group
2.4.2. Control Group
2.5. Outcome Measures
2.6. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.1.1. Comparative Analysis of Independent Measurements
3.1.2. Amadeo®
3.1.3. Armeo Spring®
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carey, L.M.; Matyas, T.A.; Baum, C. Effects of somatosensory impairment on participation after stroke. Am. J. Occup. Ther. 2018, 72, 7203205100p1–7203205100p10. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, Y.; Lou, T.; Shen, X. Correlation between proprioceptive impairment and motor deficits after stroke: A meta-analysis review. Front. Neurol. 2022, 12, 688616. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.E.; Hurley, D.; Hedman, L.D. Afferent stimulation provided by glove electrode during task-specific arm exercise following stroke. Clin. Rehabil. 2012, 26, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Thielman, G. Rehabilitation of reaching poststroke: A randomized pilot investigation of tactile versus auditory feedback for trunk control. J. Neurol. Phys. Ther. 2010, 34, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Cambier, D.C.; De Corte, E.; Danneels, L.A.; Witvrouw, E.E. Treating sensory impairments in the post-stroke upper limb with intermittent pneumatic compression: Results of a preliminary trial. Clin. Rehabil. 2003, 17, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Feys, H.; De Weerdt, W.; Verbeke, G.; Steck, G.C.; Capiau, C.; Kiekens, C.; Dejaeger, E.; Van Hoydonck, G.; Vermeersch, G.; Cras, P. Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: A 5-year follow-up study of a randomized trial. Stroke 2004, 35, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Cox-Steck, G.A. Theorical Framework and CLINICAL MANAGEMENT of PANat-Gail. User Guide for Information and Instructions to Familiarize Application and Handling of the Urias® Johnstone Air Splints Used in PANat; Rehabilitation Centre, Bürgerspital: Solothurn, Switzerland, 2009. [Google Scholar]
- Duarte, E.; Marco, E.; Muniesa, J.M.; Belmonte, R.; Diaz, P.; Tejero, M.A.; Escalada, F. Trunk control test as a functional predictor in stroke patients. J. Rehabil. Med. 2002, 34, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Wälder, F. Neurotherapeutische Rehabilitation mit den Johnstone Luftpolsterschienen nach PANat. In Ergotherapie im Arbeitsfeld Neurologie, 2nd ed.; Habermann, C., Kolster, F., Eds.; Thieme: Teningen, Germany, 2009; Volume 2, pp. 747–783. [Google Scholar]
- Dell’Uomo, D.; Morone, G.; Centrella, A.; Paolucci, S.; Caltagirone, C.; Grasso, M.G.; Traballesi, M.; Iosa, M. Effects of scapulohumeral rehabilitation protocol on trunk control recovery in patients with subacute stroke: A pilot randomized controlled trial. NeuroRehabilitation 2017, 40, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, J.W. Motor learning: Its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 2006, 19, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Thorsén, A.M.; Holmqvist, L.W.; de Pedro-Cuesta, J.; von Koch, L. A randomized controlled trial of early supported discharge and continued rehabilitation at home after stroke: Five-year follow-up of patient outcome. Stroke 2005, 36, 297–303. [Google Scholar] [CrossRef] [PubMed]
- De Weerdt, W.; Selz, B.; Nuyens, G.; Staes, F.; Swinnen, D.; Winckel, A.V.D.; Nieuwboer, A.; Lysens, R.; Feys, H. Time use of stroke patients in an intensive rehabilitation unit: A comparison between a Belgian and a Swiss setting. Disabil. Rehabil. 2000, 22, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.; Wrisley, D.; Frank, J. The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Phys. Ther. 2009, 89, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Collin, C.; Wade, D. Assessing motor impairment after stroke: A pilot reliability study. J. Neurol. Neurosurg. Psychiatry 1990, 53, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, S.; Bravini, E.; Vercelli, S.; Massazza, G.; Ferriero, G. The Mini-BESTest: A review of psychometric properties. Int. J. Rehabil. Res. 2016, 39, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Meseguer-Henarejos, A.B.; Sánchez-Meca, J.; López-Pina, J.A.; Carles-Hernández, R. Inter- and intra-rater reliability of the Modified Ashworth Scale: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2018, 54, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Smith, M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Sánchez, A.; Cuesta-Gómez, A. Effectiveness of the Armeo® device in the rehabilitation of the upper limb of stroke’s patients: A review of the literature. Rev. Neurol. 2020, 70, 93–102. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, G.; Kollen, B.J.; Krebs, H.I. Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabilit. Neural Repair 2008, 22, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Rudhe, C.; Albisser, U.; Starkey, M.L.; Curt, A.; Bolliger, M. Reliability of movement workspace measurements in a passive arm orthosis used in spinal cord injury rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Sundjaja, J.H.; Shrestha, R.; Krishan, K. McNemar and Mann-Whitney U tests. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Rosner, B.; Grove, D. Use of the Mann-Whitney U-test for clustered data. Stat. Med. 1999, 18, 1387–1400. [Google Scholar] [CrossRef]
- Whitney, J. Testing for differences with the nonparametric Mann-Whitney U test. J. Wound Ostomy Cont. Nurs. 1997, 24, 12. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, M.R.; Schiller, J.; Srinivasan, R.A. Análisis de la varianza. Probabilidad y Estadística. Schaum, 2nd ed.; McGraw-Hill: Mexico City, Mexico, 2007; pp. 335–371. [Google Scholar]
- Sale, P.; Franceschini, M.; Mazzoleni, S.; Palma, E.; Agosti, M.; Posteraro, F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J. Neuroeng. Rehabil. 2014, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Masiero, S.; Armani, M.; Rosati, G. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: Focused review and results of new randomized controlled trial. J. Rehabil. Res. Dev. 2011, 48, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Lindmark, B. Evaluation of functional capacity after stroke with special emphasis on motor function and activities of daily living. Scand J. Rehabil. Med. Suppl. 1988, 21, 1–40. [Google Scholar] [PubMed]
- Sanford, J.; Moreland, J.; Swanson, L.R.; Stratford, P.W.; Gowland, C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys. Ther. 1993, 73, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Van Cranenburgh, B. Inleiding in de Toegepasteneurowetenschappen 2: Herstel na Hersenletsel; De Tijdstroom: Lochem, The Netherlands, 1987. [Google Scholar]
- Johnstone, M. Restoration of Motor Function in the Stroke Patient: A Physiotherapist’s Approach; Churchill Livingstone: Edinburgh, UK, 1987. [Google Scholar]
- Obituary—Margaret Johnstone 2007. Available online: www.PANat.info (accessed on 5 May 2023).
- Johnstone, M. Restoration of Normal Movement After Stroke; Churchill Livingstone: London, UK, 1995. [Google Scholar]
- Johnstone, M. Home Care for the Stroke Patient; Churchill Livingstone: London, UK, 1996. [Google Scholar]
- Kerem, M.; Livanelioglu, A.; Topcu, M. Effects of Johnstone pressure splints combined with neurodevelopmental therapy on spasticity and cutaneous sensory inputs in spastic cerebral palsy. Dev. Med. Child. Neurol. 2001, 43, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, G.; Kollen, B.J.; Wagenaar, R.C. Long term effects of intensity of upper and lower limb training after stroke: A randomised trial. J. Neurol. Neurosurg. Psychiatry 2002, 72, 473–479. [Google Scholar] [PubMed]
- Schmidt, R.A. Motor Control and Learning: A Behavioural Emphasis, 2nd ed.; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Majsak, M.J. Application of motor learning principles to the stroke population. Top. Stroke Rehabil. 1996, 3, 37–59. [Google Scholar] [CrossRef] [PubMed]
- Phillips, W.E.; Audet, M. Use of serial casting in the management of knee joint contractures in an adolescent with cerebral palsy. Phys. Ther. 1990, 70, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Robson, P. Inflate splint used for cerebral palsied patients. Phys. Ther. 1967, 47, 219. [Google Scholar] [CrossRef]
- Lanning, N.; Cusick, A.; McCluskey, A. Effects of splinting on wrist contracture after stroke: A randomized controlled trial. Stroke 2017, 38, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Serrada, I.; Hordacre, B.; Hillier, S.L. Does sensory retraining improve sensation and sensorimotor function following stroke: A systematic review and meta-analysis. Front. Neurosci. 2019, 13, 402. [Google Scholar] [CrossRef] [PubMed]
- Pollock, A.; Farmer, S.E.; Brady, M.C.; Langhorne, P.; Mead, G.E.; Mehrholz, J.; Van Wijck, F. Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 2014, 11, CD010820. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.E.; Eng, J.J.; Miller, W.C.; Dawson, A.S. A self-administered graded repetitive arm supplementary program (GRASP) improves arm function and health-related quality of life after stroke: A multicenter randomized trial. Stroke 2009, 40, 2123–2128. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-C.; Chen, Y.-A.; Huang, P.-C.; Sheu, C.-F.; Hsieh, C.-L. Minimal clinically important differences for the Wolf Motor Function Test in patients with stroke. Neurorehabil. Neural Repair 2009, 23, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Rabadi, M.H.; Schleret, T.R.; Krebs, H.I. A randomized controlled trial of therapy dose in chronic stroke: The effect of therapist-supervised versus robotic training. Neurorehabil. Neural Repair 2009, 23, 445–452. [Google Scholar]
- Belda-Lois, J.M.; Mena-del Horno, S.; Bermejo-Bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos, A.; et al. Rehabilitation of gait after stroke: A review towards a top-down approach. J. Neuroeng. Rehabil. 2011, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Boian, R.; Erhan, E.; Nicolini-Panisson, R.; Adamovich, S.V. Robot-assisted therapy in upper extremity hemiparesis: Overview of an evidence-based approach. J. Rehabil. Res. Dev. 2003, 40, xi–xxii. [Google Scholar]
- Cirstea, M.C.; Levin, M.F. Compensatory strategies for reaching in stroke. Brain 2000, 123 Pt 5, 940–953. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.F.; Kleim, J.A.; Wolf, S.L. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair 2009, 23, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Winstein, C.J. Sensory and motor recovery after stroke: Time for a paradigm shift. Neurorehabil. Neural Repair 2009, 23, 373–382. [Google Scholar]
- Sullivan, J.E. Rehabilitation of reaching after stroke: Comparing proprioceptive, visual and auditory feedback. Neurorehabil. Neural Repair 2012, 26, 494–503. [Google Scholar]
CG (n = 10) | EG (n = 9) | p | |
---|---|---|---|
Age (years) | 58 [53.7–63.7] | 67 [58.5–79] | 0.06 |
Laterality | L: 6/R: 4 | L: 5/R: 4 | 0.84 |
Left hemiparesis (frequency) | 6 | 5 | |
Right hemiparesis (frequency) | 4 | 4 |
Variables | CG | EG | p Values | Z-Value | ||
---|---|---|---|---|---|---|
Pre Median [Range] | Post Median [Range] | Pre Median [Range] | Post Median [Range] | |||
Clinical variables. CG (n = 10); EG (n = 9) | ||||||
FM motor | 28.5 [8–38.5] | 34 [9.5–44] | 8 [6.5–44] | 16 [8.5–51.5] | 0.806 | −0.245 |
FM sensitivity | 6 [3.7–10] | 8.5 [5.5–10] | 10 [3–12] | 12 [8.5–12] | 0.029 * | −2.185 |
FM passive | 19 [13.5–20] | 18.5 [15.7–22.2] | 17 [14.5–19.5] | 20 [18.5–20.5] | 0.651 | −0.452 |
FM pain | 24 [21–24] | 24 [23–24] | 23 [17–24] | 24 [21.5–24] | 0.728 | −0.347 |
TCT | 80.5 [58.7–100] | 100 [71–100] | 74 [62–100] | 100 [81–100] | 0.741 | −0.330 |
MBT | 9 [4.7–18.5] | 13 [6–23.5] | 0 [0–10.5] | 6 [1.5–14] | 0.175 | −1.357 |
Amadeo® GC (n = 10); GE (n = 9) | ||||||
Hand flexion strength (kg) | 1.58 [0.95–3.71] | 2.76 [0.9–4.4] | 2.6 [0.7–4.5] | 2.8 [1.5–5.3] | 0.870 | −0.163 |
Hand extension strength (kg) | 0.08 [0.02–0.31] | 0.17 [0.03–0.65] | 0.01 [0.0–0.6] | 0.19 [0.02–1.08] | 0.902 | −0.123 |
Amplitude (% of total passive mobility) | 7.5 [1.7–20.6] | 13 [3–51.5] | 2.1 [0.1–75] | 10 [0.3–85.5] | 0.567 | −0.572 |
Armeo® GC (n = 10); GE (n = 9) | ||||||
Active motion (frontal) | 27 [17.7–52.7] | 45.5 [37–60.5] | 52.5 [35–71.5] | 75 [73.5–83.5] | 0.069 | −1.818 |
Active motion (sagittal) | 25.5 [13.7–36] | 34 [30.7–41.7] | 28.5 [23.2–37.5] | 43.5 [36.7–46.5] | 0.108 | −1.609 |
Active motion (transversal) | 37 [18.7–60.5] | 65 [57.5–74] | 56.5 [45.5–69] | 74 [72.2–78.7] | 0.109 | −1.604 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Useros-Olmo, A.I.; Cano-de-la-Cuerda, R.; Rodríguez-Herranz, J.; Gil-Martínez, A.; Hernando-Rosado, A. Effects of Air Splints on Sensorimotor Disturbances of the Affected Upper Extremity and Trunk Control in Adult Post-Stroke Patients. J. Clin. Med. 2025, 14, 5185. https://doi.org/10.3390/jcm14155185
Useros-Olmo AI, Cano-de-la-Cuerda R, Rodríguez-Herranz J, Gil-Martínez A, Hernando-Rosado A. Effects of Air Splints on Sensorimotor Disturbances of the Affected Upper Extremity and Trunk Control in Adult Post-Stroke Patients. Journal of Clinical Medicine. 2025; 14(15):5185. https://doi.org/10.3390/jcm14155185
Chicago/Turabian StyleUseros-Olmo, Ana Isabel, Roberto Cano-de-la-Cuerda, Jesús Rodríguez-Herranz, Alfonso Gil-Martínez, and Alicia Hernando-Rosado. 2025. "Effects of Air Splints on Sensorimotor Disturbances of the Affected Upper Extremity and Trunk Control in Adult Post-Stroke Patients" Journal of Clinical Medicine 14, no. 15: 5185. https://doi.org/10.3390/jcm14155185
APA StyleUseros-Olmo, A. I., Cano-de-la-Cuerda, R., Rodríguez-Herranz, J., Gil-Martínez, A., & Hernando-Rosado, A. (2025). Effects of Air Splints on Sensorimotor Disturbances of the Affected Upper Extremity and Trunk Control in Adult Post-Stroke Patients. Journal of Clinical Medicine, 14(15), 5185. https://doi.org/10.3390/jcm14155185