Application of Platelet-Rich Fibrin and Concentrated Growth Factors as Carriers for Antifungal Drugs—In Vitro Study
Abstract
1. Introduction
- To test whether the addition of antifungal drugs to APCs would result in prolonged drug release, which could indicate drug incorporation into the fibrin network.
- To assess whether autologous platelet concentrates allow for improved antifungal properties of fluconazole or voriconazole.
- Whether there is a significant difference between the use of PRF and CGF in terms of the duration of drug release and the incorporation of antifungal activity.
2. Materials and Methods
2.1. Population and Study Design
2.2. Phase One—Antifungal Properties of Specific APCs
2.2.1. Phase One Groups
- control group—sterile disk with saline;
- sterile disk with c-PRF (concentrated PRF);
- sterile disk with LPCGF;
- sterile disk with PRP (platelet-rich plasma);
- sterile disk with i-PRF;
- sterile disk with PPP (platelet-poor plasma).
2.2.2. Phase One APC Preparation
2.3. APC Preparation for Second Phase
2.3.1. Materials and Centrifugation Settings
2.3.2. Drug Incorporation into APCs
2.4. Fungal Strains
ATCC—American Type Culture Collection
2.5. Microbiological Analysis
2.6. Study Groups
2.7. Measurement of Inhibition Zones
2.8. Statistical Analysis
3. Results
3.1. Antifungal Properties of APC Without Drug Addition
3.2. Clot Formation After Addition of Drugs
3.3. Antifungal Effect of APCs as Carriers for Drugs
3.3.1. Fluconazole
3.3.2. Voriconazole
4. Discussion
4.1. General Results
4.2. Limitations
4.3. Future Implications
4.3.1. Periodontitis and Periimplantitis
4.3.2. Lichen Planus
4.3.3. Osteonecrosis of the Jaw
4.3.4. Diabetic Foot Ulcers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Żurek, J.; Niemczyk, W.; Dominiak, M.; Niemczyk, S.; Wiench, R.; Skaba, D. Gingival Augmentation Using Injectable Platelet-Rich Fibrin (i-PRF)—A Systematic Review of Randomized Controlled Trials. J. Clin. Med. 2024, 13, 5591. [Google Scholar] [CrossRef] [PubMed]
- Isobe, K.; Watanebe, T.; Kawabata, H.; Kitamura, Y.; Okudera, T.; Okudera, H.; Uematsu, K.; Okuda, K.; Nakata, K.; Tanaka, T.; et al. Mechanical and degradation properties of advanced platelet-rich fibrin (A-PRF), concentrated growth factors (CGF), and platelet-poor plasma-derived fibrin (PPTF). Int. J. Implant Dent. 2017, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Miron, R.J.; Fujioka-Kobayashi, M.; Hernandez, M.; Kandalam, U.; Zhang, Y.; Ghanaati, S.; Choukroun, J. Injectable platelet rich fibrin (i-PRF): Opportunities in regenerative dentistry? Clin. Oral Investig. 2017, 21, 2619–2627. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Du, X.; Fu, G.; Wang, L.; Huang, H.; Wu, X.; Xu, B. Efficacy of different forms of concentrated growth factors combined with deproteinized bovine bone minerals in guided bone regeneration: A randomized clinical trial. BMC Oral Health 2025, 25, 320. [Google Scholar] [CrossRef] [PubMed]
- Moraschini, V.; Miron, R.J.; Mourão, C.F.D.A.B.; Louro, R.S.; Sculean, A.; da Fonseca, L.A.M.; Calasans Maia, M.D.; Shibli, J.A. Antimicrobial effect of platelet-rich fibrin: A systematic review of in vitro evidence-based studies. Periodontol. 2000 2024, 94, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk, W.; Niemczyk, S.; Odrzywolska, O.; Doroz, P.; Hochuł, D.; Zawadzka, K. Application of i-PRF in dentistry. Wiad. Lek. 2024, 77, 2348–2352. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk, W.; Żurek, J.; Niemczyk, S.; Kępa, M.; Zięba, N.; Misiołek, M.; Wiench, R. Antibiotic-Loaded Platelet-Rich Fibrin (AL-PRF) as a New Carrier for Antimicrobials: A Systematic Review of In Vitro Studies. Int. J. Mol. Sci. 2025, 26, 2140. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.; Denning, D. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Elewski, B.; Joseph, W.S.; Lipner, S.R.; Daniel, C.R.; Tosti, A.; Guenin, E.; Ghannoum, M. Treatment of onychomycosis in an era of antifungal resistance: Role for antifungal stewardship and topical antifungal agents. Mycoses 2024, 67, e13683. [Google Scholar] [CrossRef] [PubMed]
- Waghule, T.; Sankar, S.; Rapalli, V.K.; Gorantla, S.; Dubey, S.K.; Chellappan, D.K.; Dua, K.; Singhvi, G. Emerging role of nanocarriers based topical delivery of anti-fungal agents in combating growing fungal infections. Dermatol. Ther. 2020, 33, e13905. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.B.; Kauffman, C.A. Voriconazole: A New Triazole Antifungal Agent. Clin. Infect. Dis. 2003, 36, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Miron, R.J.; Chai, J.; Zhang, P.; Li, Y.; Wang, Y.; Mourão, C.F.D.A.B.; Sculean, A.; Fujioka Kobayashi, M.; Zhang, Y. A novel method for harvesting concentrated platelet-rich fibrin (C-PRF) with a 10-fold increase in platelet and leukocyte yields. Clin. Oral Investig. 2020, 24, 2819–2828. [Google Scholar] [CrossRef] [PubMed]
- Prokurat, M.; Grudnik, K.; Niemczyk, W.; Niemczyk, S.; Migas, M.; Wągrowska, K.; Lau, K.; Kasperczyk, J. Platelet-Rich Plasma—A remedy present in every human being. History, functioning, and the benefits of therapy using it. Pol. Merkur. Lek. 2024, 52, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Selahi, D.; Spiegel, M.; Hadzik, J.; Pitułaj, A.; Michalak, F.; Kubasiewicz-Ross, P.; Dominiak, M. The Appliance of A-PRF and CGF in the Treatment of Impacted Mandibular Third Molar Extraction Sockets—Narrative Review. Appl. Sci. 2022, 13, 165. [Google Scholar] [CrossRef]
- Teixeira, M.M.; Carvalho, D.T.; Sousa, E.; Pinto, E. New Antifungal Agents with Azole Moieties. Pharmaceuticals 2022, 15, 1427. [Google Scholar] [CrossRef] [PubMed]
- Benitez, L.L.; Carver, P.L. Adverse Effects Associated with Long-Term Administration of Azole Antifungal Agents. Drugs 2019, 79, 833–853. [Google Scholar] [CrossRef] [PubMed]
- Benhamou, R.I.; Bibi, M.; Steinbuch, K.B.; Engel, H.; Levin, M.; Roichman, Y.; Berman, J.; Fridman, M. Real-Time Imaging of the Azole Class of Antifungal Drugs in Live Candida Cells. ACS Chem. Biol. 2017, 12, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; McLaren, A.; Pauken, C.; McLemore, R. Voriconazole Is Cytotoxic at Locally Delivered Concentrations: A Pilot Study. Clin. Orthop. Relat. Res. 2013, 471, 3165–3170. [Google Scholar] [CrossRef] [PubMed]
- Egle, K.; Skadins, I.; Grava, A.; Micko, L.; Dubniks, V.; Salma, I.; Dubnika, A. Injectable Platelet-Rich Fibrin as a Drug Carrier Increases the Antibacterial Susceptibility of Antibiotic—Clindamycin Phosphate. Int. J. Mol. Sci. 2022, 23, 7407. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.C.; Sanchez, C.J.; Niece, K.L.; Wenke, J.C.; Akers, K.S. Voriconazole Enhances the Osteogenic Activity of Human Osteoblasts In Vitro through a Fluoride-Independent Mechanism. Antimicrob. Agents Chemother. 2015, 59, 7205–7213. [Google Scholar] [CrossRef] [PubMed]
- Straub, A.; Utz, C.; Stapf, M.; Vollmer, A.; Kasper, S.; Kübler, A.C.; Brands, R.C.; Hartmann, S.; Lâm, T.-T. Investigation of three common centrifugation protocols for platelet-rich fibrin (PRF) as a bio-carrier for ampicillin/sulbactam: A prospective trial. Clin. Oral Investig. 2023, 27, 5991–5998. [Google Scholar] [CrossRef]
- Alhaffar, M.B.A.; Shibibe, L.A.; Soukkarieh, C.; Sulaiman, A.A. Modified Protocol to Use Platelet Rich Fibrin (PRF) as a local antibiotic delivery system—In Vitro study. Res. Sq. 2021. preprint. [Google Scholar] [CrossRef]
- Bennardo, F.; Gallelli, L.; Palleria, C.; Colosimo, M.; Fortunato, L.; De Sarro, G.; Giudice, A. Can platelet-rich fibrin act as a natural carrier for antibiotics delivery? A proof-of-concept study for oral surgical procedures. BMC Oral Health 2023, 23, 134. [Google Scholar] [CrossRef] [PubMed]
- Bilginaylar, K.; Melahat Donmezer, C.; Ozer Sehirli, A. In vitro studies support clinical trials showing platelet-rich fibrin-mediated local delivery of antibiotics improves outcomes in impacted mandibular third molar surgery. J. Drug Target. 2024, 33, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Donmezer, C.M.; Bilginaylar, K. Comparison of the Postoperative Effects of Local Antibiotic versus Systemic Antibiotic with the Use of Platelet-Rich Fibrin on Impacted Mandibular Third Molar Surgery: A Randomized Split-Mouth Study. BioMed Res. Int. 2021, 2021, 3040661. [Google Scholar] [CrossRef] [PubMed]
- Dubnika, A.; Egle, K.; Skrinda-Melne, M.; Skadins, I.; Rajadas, J.; Salma, I. Development of Vancomycin Delivery Systems Based on Autologous 3D Platelet-Rich Fibrin Matrices for Bone Tissue Engineering. Biomedicines 2021, 9, 814. [Google Scholar] [CrossRef] [PubMed]
- Ercan, E.; Suner, S.S.; Silan, C.; Yilmaz, S.; Siddikoglu, D.; Sahiner, N.; Tunali, M. Titanium platelet–rich fibrin (T-PRF) as high-capacity doxycycline delivery system. Clin. Oral Investig. 2022, 26, 5429–5438. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.; Kulloli, A.; Shetty, S.; Martande, S.; Nair, G.; Poulose, M.; Guruprasad, M.; Mehta, V. Comparative Evaluation of Efficacy of Antibiotics incorporated Platelet Rich Fibrin Versus Platelet Rich Fibrin alone in the Treatment of Intrabony Defects. J. Popul. Ther. Clin. Pharmacol. 2023, 30, 267–274. [Google Scholar] [CrossRef]
- Knafl, D.; Thalhammer, F.; Vossen, M.G. In-vitro release pharmacokinetics of amikacin, teicoplanin and polyhexanide in a platelet rich fibrin—Layer (PRF)—A laboratory evaluation of a modern, autologous wound treatment. PLoS ONE 2017, 12, e0181090. [Google Scholar] [CrossRef] [PubMed]
- Monika, F.; Syaify, A.; Lastianny, S.P. The influence of platelet concentrates with and without metronidazole incorporation pre-centrifuge towards periodontal ligament fibroblast proliferation. J. Dentomaxillofacial Sci. 2023, 8, 164–168. [Google Scholar] [CrossRef]
- Ozcan, M.; Kabaklı, S.C.; Alkaya, B.; Isler, S.C.; Turer, O.U.; Oksuz, H.; Haytac, M.C. The impact of local and systemic penicillin on antimicrobial properties and growth factor release in platelet-rich fibrin: In vitro study. Clin. Oral Investig. 2024, 28, 61. [Google Scholar] [CrossRef] [PubMed]
- Polak, D.; Clemer-Shamai, N.; Shapira, L. Incorporating antibiotics into platelet-rich fibrin: A novel antibiotics slow-release biological device. J. Clin. Periodontol. 2019, 46, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, A.; Memarpour, M.; Najibi, Y.; Khalvati, B.; Kianpour, S.; Morowvat, M.H. Antimicrobial Efficacy of a Novel Antibiotic-Eluting Injectable Platelet-Rich Fibrin Scaffold against a Dual-Species Biofilm in an Infected Immature Root Canal Model. BioMed Res. Int. 2020, 2020, 6623830. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, A.; Memarpour, M.; Taghvamanesh, S.; Karami, F.; Karami, S.; Morowvat, M.H. Drug Delivery Assessment of a Novel Triple Antibiotic-Eluting Injectable Platelet-Rich Fibrin Scaffold: An In Vitro Study. Curr. Pharm. Biotechnol. 2021, 22, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Siawasch, S.A.M.; Andrade, C.; Castro, A.B.; Teughels, W.; Temmerman, A.; Quirynen, M. Impact of local and systemic antimicrobials on leukocyte- and platelet rich fibrin: An in vitro study. Sci. Rep. 2022, 12, 2710. [Google Scholar] [CrossRef] [PubMed]
- Straub, A.; Stapf, M.; Utz, C.; Vollmer, A.; Flesch, J.; Kübler, A.; Scherf-Clavel, O.; Lâm, T.-T.; Hartmann, S. Antimicrobial effects of clindamycin-loaded platelet-rich fibrin (PRF). Clin. Oral Investig. 2024, 28, 144. [Google Scholar] [CrossRef] [PubMed]
- Straub, A.; Utz, C.; Stapf, M.; Vollmer, A.; Breitenbuecher, N.; Kübler, A.C.; Brands, R.C.; Hartmann, S.; Lâm, T.-T. Impact of aminopenicillin administration routes on antimicrobial effects of platelet-rich fibrin: An in-vitro investigation. J. Stomatol. Oral Maxillofac. Surg. 2024, 125, 101725. [Google Scholar] [CrossRef] [PubMed]
- Straub, A.; Vollmer, A.; Lâm, T.-T.; Brands, R.C.; Stapf, M.; Scherf-Clavel, O.; Bittrich, M.; Fuchs, A.; Kübler, A.C.; Hartmann, S. Evaluation of advanced platelet-rich fibrin (PRF) as a bio-carrier for ampicillin/sulbactam. Clin. Oral Investig. 2022, 26, 7033–7044. [Google Scholar] [CrossRef] [PubMed]
- Thamaraiselvan, M.; Jayakumar, N.D. Efficacy of injectable platelet rich fibrin (i-PRF) as novel vehicle for local drug delivery (LDD) in non-surgical periodontal pocket therapy—A randomised controlled clinical trial. J. Adv. Periodontol. Implant Dent. 2024, 16, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Walianto, A.P.; Lastianny, S.P.; Hendrawati, H. Bacteria inhibition of platelet concentrates with and without pre-centrifugation metronidazole incorporation on aggregatibacter actinomycetemcomitans. Odonto Dent. J. 2022, 9, 183–190. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Li, S.; Yang, J.; Tang, R.; Li, X.; Li, L.; Fei, J. Platelet-rich plasma loaded with antibiotics as an affiliated treatment for infected bone defect by combining wound healing property and antibacterial activity. Platelets 2021, 32, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Yusri, S.; Elbattawy, W.; Zaaya, S.; Mokhtar, M.; Ramzy, A.; Fawzy El-Sayed, K.M. Modified minimally invasive surgical technique with clindamycin-augmented or non-augmented platelet-rich fibrin in periodontal regeneration: A randomized clinical trial. J. Periodontal Res. 2024, 60, 326–339. [Google Scholar] [CrossRef]
- Serafini, G.; Mariano, A.; Lollobrigida, M.; Lamazza, L.; Mazzucchi, G.; Spigaglia, P.; Barbanti, F.; Scotto d’Abusco, A.; De Biase, A. Advanced Platelet-Rich Fibrin (A-PRF) as Antibiotics Delivery System: In-Vitro Proof-of-Concept Study. Materials 2025, 18, 570. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk, W.; Kępa, M.; Żurek, J.; Aboud, A.; Skaba, D.; Wiench, R. Comparative Evaluation of Platelet-Rich Fibrin (PRF) and Concentrated Growth Factor (CGF) as Carriers for Antibiotics—In Vitro Study. Int. J. Mol. Sci. 2025, 26, 4303. [Google Scholar] [CrossRef] [PubMed]
- Khorshidi, H.; Haddadi, P.; Raoofi, S.; Badiee, P.; Dehghani Nazhvani, A. Does Adding Silver Nanoparticles to Leukocyte- and Platelet-Rich Fibrin Improve Its Properties? BioMed Res. Int. 2018, 2018, 8515829. [Google Scholar] [CrossRef] [PubMed]
- Asher, R.; Oren, F.; Meir, T.; Shapira, L.; Assad, R.; Polak, D. Tranexamic acid integrated into platelet-rich fibrin produces a robust and resilient antihemorrhagic biological agent: A human cohort study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022, 134, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; He, F.; Cheng, X. Analysis of subgingival bacterial and fungal diversity in patients with peri-implantitis based on 16sRNA and internal transcribed spacer sequencing. Future Microbiol. 2024, 19, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Al-Zawawi, A.S. Contribution of fungi and viruses towards the etiopathogenesis peri-implantitis: A literature review of currently available evidence. Surg. Pract. Sci. 2020, 2, 100017. [Google Scholar] [CrossRef]
- Lafuente-Ibáñez De Mendoza, I.; Cayero-Garay, A.; Quindós-Andrés, G.; Aguirre-Urizar, J.M. A systematic review on the implication of Candida in peri-implantitis. Int. J. Implant Dent. 2021, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Suresh Unniachan, A.; Krishnavilasom Jayakumari, N.; Sethuraman, S. Association between Candida species and periodontal disease: A systematic review. Curr. Med. Mycol. 2020, 6, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ren, B.; Cheng, L.; Deng, S.; Chen, Q. Candida species in periodontitis: A new villain or a new target? J. Dent. 2024, 148, 105138. [Google Scholar] [CrossRef] [PubMed]
- Martin-Cabezas, R.; Davideau, J.; Tenenbaum, H.; Huck, O. Clinical efficacy of probiotics as an adjunctive therapy to non-surgical periodontal treatment of chronic periodontitis: A systematic review and meta-analysis. J. Clin. Periodontol. 2016, 43, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Pietrzko, M.M.; Pietrzko, M.; Niemczyk, W.; Skaba, D.; Wiench, R. Subgingival Delivery of Statins as an Adjunct in the Non-Surgical Treatment of Periodontitis: A Systematic Review. Biomedicines 2025, 13, 182. [Google Scholar] [CrossRef] [PubMed]
- Łopaciński, M.; Fiegler-Rudol, J.; Niemczyk, W.; Skaba, D.; Wiench, R. Riboflavin- and Hypericin-Mediated Antimicrobial Photodynamic Therapy as Alternative Treatments for Oral Candidiasis: A Systematic Review. Pharmaceutics 2025, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk, W.; Janik, K.; Żurek, J.; Skaba, D.; Wiench, R. Platelet-Rich Plasma and Injectable Platelet-Rich Fibrin (i-PRF) in the Non-Surgical Treatment of Periodontitis—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 6319. [Google Scholar] [CrossRef] [PubMed]
- Louisy, A.; Humbert, E.; Samimi, M. Oral Lichen Planus: An Update on Diagnosis and Management. Am. J. Clin. Dermatol. 2024, 25, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Bhargava, A.; Saigal, S.; Sharma, S.; Patel, M.; Prakash, O. Effectiveness of Injectable Platelet-Rich Fibrin in the Treatment of Oral Lichen Planus: A Systematic Review and Meta-Analysis. Cureus 2024, 16, 51626. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk, W.; Janik, K.; Niemczyk, S.; Żurek, J.; Lynch, E.; Parker, S.; Cronshaw, M.; Skaba, D.; Wiench, R. Use of platelet-rich plasma (PRP) and injectable platelet-rich fibrin (i-PRF) in oral lichen planus treatment: A systematic review of randomized controlled trials. BMC Oral Health 2025, 25, 832. [Google Scholar] [CrossRef]
- Rodriguez-Archilla, A.; Fernandez-Torralbo, S. Candida species colonization in oral lichen planus: A meta-analysis. Int. J. Health Sci. 2022, 16, 58–63. [Google Scholar]
- Parlatescu, I.; Nicolae, C.; Tovaru, S.; Radu, L.; Penes, O.; Varlas, V. The Implication of Candida Infection in Oral Lichen Planus Lesions. Maedica 2021, 16, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Dawiec, G.; Niemczyk, W.; Wiench, R.; Niemczyk, S.; Skaba, D. Introduction to Amniotic Membranes in Maxillofacial Surgery—A Scoping Review. Medicina 2024, 60, 663. [Google Scholar] [CrossRef]
- Ewald, F.; Wuesthoff, F.; Koehnke, R.; Friedrich, R.E.; Gosau, M.; Smeets, R.; Rohde, H.; Assaf, A.T. Retrospective analysis of bacterial colonization of necrotic bone and antibiotic resistance in 98 patients with medication-related osteonecrosis of the jaw (MRONJ). Clin. Oral Investig. 2021, 25, 2801–2809. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.; Kunkel, M.; Weber, A.; James Kirkpatrick, C. Osteonecrosis of the jaws in patients treated with bisphosphonates—Histomorphologic analysis in comparison with infected osteoradionecrosis. J. Oral Pathol. Med. 2006, 35, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.S.; Pien, F.D.; Suzuki, J.B. Identification and Treatment of Bisphosphonate-Associated Actinomycotic Osteonecrosis of the Jaws. Implant Dent. 2011, 20, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Sedghizadeh, P.P.; Kumar, S.K.S.; Gorur, A.; Schaudinn, C.; Shuler, C.F.; Costerton, J.W. Identification of Microbial Biofilms in Osteonecrosis of the Jaws Secondary to Bisphosphonate Therapy. J. Oral Maxillofac. Surg. 2008, 66, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.; Kunkel, M.; Springer, E.; Walter, C.; Weber, A.; Siegel, E.; Kirkpatrick, C.J. Actinomycosis of the jaws—Histopathological study of 45 patients shows significant involvement in bisphosphonate-associated osteonecrosis and infected osteoradionecrosis. Virchows Arch. 2007, 451, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Merigo, E.; Manfredi, M.; Meleti, M.; Corradi, D.; Vescovi, P. Jaw bone necrosis without previous dental extractions associated with the use of bisphosphonates (pamidronate and zoledronate): A four-case report. J. Oral Pathol. Med. 2005, 34, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Shahabudin, S.; Azmi, N.S.; Lani, M.N.; Mukhtar, M.; Hossain, M.S. Candida albicans skin infection in diabetic patients: An updated review of pathogenesis and management. Mycoses 2024, 67, e13753. [Google Scholar] [CrossRef] [PubMed]
- Chellan, G.; Neethu, K.; Varma, A.K.; Mangalanandan, T.S.; Shashikala, S.; Dinesh, K.R.; Sundaram, K.R.; Varma, N.; Jayakumar, R.V.; Bal, A.; et al. Targeted treatment of invasive fungal infections accelerates healing of foot wounds in patients with Type 2 diabetes. Diabet. Med. 2012, 29, e255–e262. [Google Scholar] [CrossRef] [PubMed]
- Kandregula, S.; Behura, A.; Behera, C.R.; Pattnaik, D.; Mishra, A.; Panda, B.; Mohanty, S. A Clinical Significance of Fungal Infections in Diabetic Foot Ulcers. Cureus 2022, 14, e26872. [Google Scholar] [CrossRef] [PubMed]
- Mlinari, E.; Kaleni, S.; Vukeli, M.; de Syo, D.; Belicza, M.; Vazi, V. Candida infections of diabetic foot ulcers. Diabetol. Croat. 2005, 34, 29–35. [Google Scholar]
- Yang, M.; Deng, B.; Hao, W.; Jiang, X.; Chen, Y.; Wang, M.; Yuan, Y.; Chen, M.; Wu, X.; Du, C.; et al. Platelet concentrates in diabetic foot ulcers: A comparative review of PRP, PRF, and CGF with case insights. Regen. Ther. 2025, 28, 625–632. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria: | Exclusion Criteria: |
---|---|
|
|
Fungal Strain | Culture Media | ATCC Number |
---|---|---|
Candida albicans | Sabouraud Dextrose Agar | 10231 |
Candida glabrata | Sabouraud Dextrose Agar | 15126 |
Candida krusei | Sabouraud Dextrose Agar | 14243 |
Drug Incorporated into APC | Amount of Drug Added per mL of APC (c-PRF/LPCGF) | Concentration of Drug in APC |
---|---|---|
Fluconazole (Fluconazole B. Braun) | 0.1 mL (0.2 mg) | 0.002 mg/mL |
0.25 mL (0.5 mg) | 0.004 mg/mL | |
Voriconazole (Voriconazole Genoprim ®) | 0.1 mL (1 mg) | 0.009 mg/mL |
0.25 mL (2.5 mg) | 0.02 mg/mL |
APC | Time of Measurement | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 |
---|---|---|---|---|---|---|---|
c-PRF | 20 h | - | 41.2 mm (±1.03 mm) | 44.55 mm (±1.14 mm) | - | 43.81 mm (±1.13 mm) | 45.89 mm (±0.67 mm) |
40 h | - | 14.82 mm (±0.12 mm) | 19.87 mm (±0.13 mm) | - | 15.31 mm (±0.1 mm) | 20.72 mm (±0.56 mm) | |
60 h | - | - | - | - | - | - | |
LPCGF | 20 h | - | 41.08 mm (±1.33 mm) | 46.59 mm (±1.06 mm) | - | 42.5 mm (±1.51 mm) | 47.22 mm (±0.79 mm) |
40 h | - | 12.27 mm (±0.52 mm) | 19.47 mm (±0.41 mm) | - | 13.66 mm (±0.47 mm) | 20.55 mm (±0.48 mm) | |
60 h | - | - | - | - | - | - |
Variable Under Test | p-Value | Conclusion |
---|---|---|
Low drug concentration tested at 20 h | 0.26 | No significant difference |
High drug concentration tested at 20 h | 0.038 | LPCGF superior |
Low drug concentration tested at 40 h | 0.019 | c-PRF superior |
High drug concentration tested at 40 h | 0.42 | No significant difference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niemczyk, W.; Kępa, M.; Żurek, J.; Aboud, A.; Skaba, D.; Wiench, R. Application of Platelet-Rich Fibrin and Concentrated Growth Factors as Carriers for Antifungal Drugs—In Vitro Study. J. Clin. Med. 2025, 14, 5111. https://doi.org/10.3390/jcm14145111
Niemczyk W, Kępa M, Żurek J, Aboud A, Skaba D, Wiench R. Application of Platelet-Rich Fibrin and Concentrated Growth Factors as Carriers for Antifungal Drugs—In Vitro Study. Journal of Clinical Medicine. 2025; 14(14):5111. https://doi.org/10.3390/jcm14145111
Chicago/Turabian StyleNiemczyk, Wojciech, Małgorzata Kępa, Jacek Żurek, Ali Aboud, Dariusz Skaba, and Rafał Wiench. 2025. "Application of Platelet-Rich Fibrin and Concentrated Growth Factors as Carriers for Antifungal Drugs—In Vitro Study" Journal of Clinical Medicine 14, no. 14: 5111. https://doi.org/10.3390/jcm14145111
APA StyleNiemczyk, W., Kępa, M., Żurek, J., Aboud, A., Skaba, D., & Wiench, R. (2025). Application of Platelet-Rich Fibrin and Concentrated Growth Factors as Carriers for Antifungal Drugs—In Vitro Study. Journal of Clinical Medicine, 14(14), 5111. https://doi.org/10.3390/jcm14145111