Gut Microbiome Correlations in Hidradenitis Suppurativa Patients
Abstract
1. Introduction
2. Materials and Methods
- Forward primer (341F): 5′-CCTACGGGNGGCWGCAG-3′;
- Reverse primer (785R): 5′-GACTACHVGGGTATCTAATCC-3′.
- Forward read truncation length (trunc-len-f): 240 bp;
- Reverse read truncation length (trunc-len-r): 200 bp;
- Trimming at start (trim-left-f/r): 0 bp;
- Maximum expected errors (maxEE): 2 for forward, 5 for reverse reads;
- Truncation quality score (truncQ): 2;
- Minimum overlap for merging: 12 bp;
- Chimera detection method: consensus (removeBimeraDenovo).
3. Results
- An increase in the DLQI score was associated with a decreased probability of encountering Agathobacter and the [Eubacterium] eligens group, with odds ratios of 0.878 and 0.789, respectively;
- Conversely, a higher DLQI score correlated with an increased probability of Comamonas presence, with an odds ratio of 1.166.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HS | Hidradenitis suppurativa |
HC | Healthy controls |
OR | Odds Ratio |
PCR | Polymerase Chain Reaction |
DLQI | Dermatology Life Quality Index |
DNA | Deoxyribonucleic acid |
BMI | Body Mass Index |
TNF | Tumor Necrosis Factor |
IBD | Inflammatory Bowel Disease |
RA | Rheumatoid Arthritis |
References
- Zouboulis, C.C.; Desai, N.; Emtestam, L.; Hunger, R.E.; Ioannides, D.; Juhász, I.; Lapins, J.; Matusiak, L.; Prens, E.P.; Revuz, J.; et al. European S1 guideline for the treatment of hidradenitis suppurativa/acne inversa. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 619–644. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, M.; Megna, M.; Timoshchuk, E.A.; Patruno, C.; Balato, N.; Fabbrocini, G.; Monfrecola, G. Hidradenitis suppurativa: From pathogenesis to diagnosis and treatment. Clin. Cosmet. Investig. Dermatol. 2017, 10, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Perez Perez, G.I.; Gao, Z.; Jourdain, R.; Ramirez, J.; Gany, F.; Clavaud, C.; Demaude, J.; Breton, L.; Blaser, M.J. Body site is a more determinant factor than human population diversity in the healthy skin microbiome. PLoS ONE 2016, 11, e0151990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, D.; Jia, H.; Feng, Q.; Wang, D.; Liang, D.; Wu, X.; Li, J.; Tang, L.; Li, Y.; et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 2015, 21, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Drago, L.; De Grandi, R.; Altomare, G.; Pigatto, P.; Rossi, O.; Toscano, M. Skin microbiota of first cousins affected by psoriasis and atopic dermatitis. Clin. Mol. Allergy 2016, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Egeberg, A.; Weinstock, L.B.; Thyssen, E.P.; Gislason, G.H.; Thyssen, J.P. Rosacea and gastrointestinal disorders: A population-based cohort study. Br. J. Dermatol. 2017, 176, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Ring, H.C.; Thorsen, J.; Saunte, D.M.; Lilje, B.; Bay, L.; Riis, P.T.; Larsen, N.; Andersen, L.O.B.; Nielsen, H.V.; Miller, I.M.; et al. The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls. JAMA Dermatol. 2017, 153, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Vekic, D.A.; Frew, J.; Cains, G.D. Hidradenitis suppurativa, a review of pathogenesis, associations and management. Part 1. Australas. J. Dermatol. 2018, 59, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Hurley, H. Axillary hyperhidrosis, apocrine bromhidrosis, hidradenitis suppurativa, and familial benign pemphigus: Surgical approach. Dermatol. Surg. 1989, 15, 729–739. [Google Scholar]
- Zouboulis, C.C.; Tzellos, T.; Kyrgidis, A.; Jemec, G.B.E.; Bechara, F.G.; Giamarellos-Bourboulis, E.J.; Ingram, J.R.; Kanni, T.; Karagiannidis, I.; Martorell, A.; et al. Development and validation of the International Hidradenitis Suppurativa Severity Score System (IHS4), a novel dynamic scoring system to assess HS severity. Br. J. Dermatol. 2017, 177, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Finlay, A.Y.; Khan, G.K. Dermatology Life Quality Index (DLQI)—A simple practical measure for routine clinical use. Clin. Exp. Dermatol. 1994, 19, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Szepietowski, J.C.; Salomon, J.; Finlay, A.Y.; Klepacki, A.; Chodynicka, B.; Marionneau, N.; Taieb, C.; Myon, E. Dermatology Life Quality Index (DLQI): Polish version. Dermatol. Klin. 2004, 6, 63–70. [Google Scholar]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 3. [Google Scholar] [CrossRef]
- McDonald, D.; Clemente, J.C.; Kuczynski, J.; Rideout, J.R.; Stombaugh, J.; Wendel, D.; Wilke, A.; Huse, S.; Hufnagle, J.; Meyer, F.; et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. Gigascience 2012, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- McKinney, W. Data structures for statistical computing in Python. SciPy 2010, 445, 51–56. [Google Scholar]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 21 April 2025).
- Świerczewska, Z.; Lewandowski, M.; Surowiecka, A.; Barańska-Rybak, W. Microbiome in hidradenitis suppurativa—What we know and where we are heading. Microorganisms 2022, 10, 11280. [Google Scholar] [CrossRef] [PubMed]
- Kam, S.; Collard, M.; Lam, J.; Alani, R.M. Gut microbiome perturbations in patients with hidradenitis suppurativa: A case series. J. Investig. Dermatol. 2021, 141, 225–228.e2. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, S.; Barrett, M.; Kirthi, S.; Pellanda, P.; Vlckova, K.; Tobin, A.M.; Murphy, M.; Shanahan, F.; O’Toole, P.W. Altered skin and gut microbiome in hidradenitis suppurativa. J. Investig. Dermatol. 2022, 142, 459–468.e15. [Google Scholar] [CrossRef] [PubMed]
- Collard, M.; Grbic, N.; Mumber, H.; Wyant, W.A.; Shen, L.; Alani, R.M. Gut Microbiome in Adult and Pediatric Patients With Hidradenitis Suppurativa. In JAMA Dermatology; JAMA Network: Chicago, IL, USA, 2025. [Google Scholar]
- Öğüt, N.D.; Hasçelik, G.; Atakan, N. Alterations of the Human Gut Microbiome in Patients With Hidradenitis Suppurativa: A Case-control Study and Review of the Literature. Dermatol. Pract. Concept. 2022, 12, e2022191. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.B.; Carroll-Portillo, A.; Lin, H.C. Desulfovibrio in the gut: The enemy within? Microorganisms 2023, 11, 1772. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [PubMed]
- Liu, C.; Liu, X.; Li, X. Causal relationship between gut microbiota and hidradenitis suppurativa: A two-sample Mendelian randomization study. Front. Microbiol. 2024, 15, 1302822. [Google Scholar] [CrossRef] [PubMed]
- Eppinga, H.; Sperna Weiland, C.J.; Thio, H.B.; van der Woude, C.J.; Nijsten, T.E.; Peppelenbosch, M.P.; Konstantinov, S.R. Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease, but not in hidradenitis suppurativa. J. Crohns Colitis 2016, 10, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Nagalingam, N.A.; Kao, J.Y.; Young, V.B. Microbial ecology of the murine gut associated with the development of dextran sodium sulfate-induced colitis. Inflamm. Bowel Dis. 2011, 17, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.B.; Yassour, M.; Sauk, J.; Garner, A.; Jiang, X.; Arthur, T.; Lagoudas, G.K.; Vatanen, T.; Fornelos, N.; Wilson, R.; et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Cronin, P.; McCarthy, S.; Hurley, C.; Ghosh, T.S.; Cooney, J.C.; Tobin, A.M.; Murphy, M.; O’Connor, E.M.; Shanahan, F.; O’Toole, P.W. Comparative diet–gut microbiome analysis in Crohn’s disease and hidradenitis suppurativa. Front. Microbiol. 2023, 14, 1289374. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wright, K.; Davis, J.M.; Jeraldo, P.; Marietta, E.V.; Murray, J.; Nelson, H.; Matteson, E.L.; Taneja, V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Tatian, A.; Bordbar, S.; Sarkissian, S.D.; Woods, J.A.; Cains, G.D.; Chong, C.W.; Mariño, E.; Frew, J.W. Adalimumab therapy is associated with increased fecal short chain fatty acids in hidradenitis suppurativa. Exp. Dermatol. 2022, 31, 1872–1880. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Chang, L.-C.; Chang, Y.-C.; Chung, W.-H.; Yang, S.-F.; Su, S.-C. Compositional Alteration of Gut Microbiota in Psoriasis Treated with IL-23 and IL-17 Inhibitors. Int. J. Mol. Sci. 2023, 24, 4568. [Google Scholar] [CrossRef] [PubMed]
- Manasson, J.; Wallach, D.S.; Guggino, G.; Stapylton, M.; Badri, M.H.; Solomon, G.; Reddy, S.M.; Coras, R.; Aksenov, A.A.; Jones, D.R.; et al. Interleukin-17 Inhibition in Spondyloarthritis Is Associated With Subclinical Gut Microbiome Perturbations and a Distinctive Interleukin-25-Driven Intestinal Inflammation. Arthritis Rheumatol. 2020, 72, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.X.; Li, W.W.; Huang, L.Z.; Lai, S.; Qiu, Z.K. Risk of new-onset inflammatory bowel disease in psoriasis patients treated with five different interleukin inhibitors: A systematic review and meta-analysis. Front. Immunol. 2025, 16, 1594998. [Google Scholar] [CrossRef] [PubMed]
- Ring, H.C.; Thorsen, J.; Fuursted, K.; Bjarnsholt, T.; Bay, L.; Saunte, D.M.; Thomsen, S.F.; Jemec, G.B. Probiotics in hidradenitis suppurativa: A potential treatment option? Clin. Exp. Dermatol. 2021, 46, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Carucci, L.; Nocerino, R.; Paparo, L.; De Filippis, F.; Coppola, S.; Giglio, V.; Cozzolino, T.; Valentino, V.; Sequino, G.; Bedogni, G.; et al. Therapeutic effects elicited by the probiotic Lacticaseibacillus rhamnosus GG in children with atopic dermatitis. The results of the ProPAD trial. Pediatr. Allergy Immunol. 2022, 33, e13836. [Google Scholar] [CrossRef] [PubMed]
- Eguren, C.; Navarro-Blasco, A.; Corral-Forteza, M.; Reolid-Perez, A.; Seto-Torrent, N.; Garcia-Navarro, A.; Prieto-Merino, D.; Nunez-Delegido, E.; Sanchez-Pellicer, P.; Navarro-Lopez, V. A Randomized Clinical Trial to Evaluate the Efficacy of an Oral Probiotic in Acne Vulgaris. Acta Derm. Venereol. 2024, 104, 33206. [Google Scholar] [CrossRef] [PubMed]
Parameter | Group | p | ||
---|---|---|---|---|
Study Group (N 1 = 40) | Control Group (N = 40) | |||
Age [years] | mean ± SD 2 | 39.02 ± 11.69 | 43.23 ± 18.18 | p = 0.494 |
median | 40 | 39.5 | ||
quartiles | 32–46 | 27–60.25 | ||
BMI 3 [kg/m2] | mean ± SD | 30.36 ± 6.77 | 25.05 ± 4.77 | p < 0.001 * |
median | 28.73 | 24.75 | ||
quartiles | 25.66–32 | 20.59–28.83 | ||
WHR 4 | mean ± SD | 0.87 ± 0.11 | 0.81 ± 0.09 | p = 0.004 * |
median | 0.86 | 0.81 | ||
quartiles | 0.79–0.89 | 0.74–0.85 | ||
Gender | Female | 18 (45.00%) | 27 (67.50%) | p = 0.071 |
Male | 22 (55.00%) | 13 (32.50%) | ||
Residence | Rural | 11 (27.50%) | 8 (20.00%) | p = 0.599 |
Urban | 29 (72.50%) | 32 (80.00%) | ||
Education | Primary | 2 (5.00%) | 1 (2.50%) | p = 0.005 * |
Vocational | 8 (20.00%) | 2 (5.00%) | ||
Secondary | 18 (45.00%) | 10 (25.00%) | ||
Higher | 12 (30.00%) | 27 (67.50%) | ||
Occupational status | Student | 5 (12.50%) | 2 (5.00%) | p = 0.003 * |
Employed | 28 (70.00%) | 30 (75.00%) | ||
Unemployed | 6 (15.00%) | 0 (0.00%) | ||
Retired | 1 (2.50%) | 8 (20.00%) | ||
Tobacco smoking | No | 17 (42.50%) | 33 (82.50%) | p = 0.001 * |
Yes | 23 (57.50%) | 7 (17.50%) | ||
Alcohol consumption | No | 12 (30.00%) | 10 (25.00%) | p = 0.773 |
Yes | 5 (12.50%) | 7 (17.50%) | ||
Occasionally | 23 (57.50%) | 23 (57.50%) | ||
Drug use | Never | 29 (72.50%) | 36 (90.00%) | p = 0.165 |
Occasionally | 4 (10.00%) | 1 (2.50%) | ||
In the past | 7 (17.50%) | 3 (7.50%) | ||
Diet | No | 19 (47.50%) | 23 (57.50%) | p = 0.502 |
Yes | 21 (52.50%) | 17 (42.50%) | ||
Physical activity | Sedentary | 8 (20.00%) | 3 (7.50%) | p = 0.041 * |
Low | 13 (32.50%) | 11 (27.50%) | ||
Moderate | 13 (32.50%) | 12 (30.00%) | ||
Active | 6 (15.00%) | 7 (17.50%) | ||
Very active | 0 (0.00%) | 7 (17.50%) | ||
Duration of the disease [months] | mean ± SD median quartiles | 93.92 ± 70.94 72 54.25–99 | - - - | |
Biologic treatment | Adalimumab Bimekizumab other | 013 (32.5%) 0 | 0 0 0 | |
IHS4 5 [points] | mean ± SD median quartiles | 21.52 ± 16.3 18 11–25.25 | - - - | |
DLQI 6 [points] | mean ± SD median quartiles | 6.7 ± 5.82 5.5 2–8.25 | - - - | |
Hurley Staging | Stage II Stage III | 30 (75%) 10 (25%) | - - |
Order | Parameter | 95% CI 1 | p | |
---|---|---|---|---|
Desulfovibrionales | 102,907 | 1681 | 204,133 | 0.05 * |
Clostridia | 6021 | 1753 | 10,289 | 0.007 * |
Opitutales | −20,408 | −37,498 | −3319 | 0.022 * |
Genus | OR 1 | 95% CI 2 | p | |
---|---|---|---|---|
Chloroplast | 5.778 | 1.014 | 32.928 | 0.048 |
Dielma | 5.75 | 1.218 | 27.138 | 0.027 |
Eisenbergiella | 5.75 | 1.218 | 27.138 | 0.027 |
Paludicola | 5.778 | 1.014 | 32.928 | 0.048 |
Genus | OR 1 | 95% CI 2 | p | |
---|---|---|---|---|
Enterorhabdus | 0.703 | 0.547 | 0.904 | 0.006 |
Senegalimassilia | 4.181 | 1.318 | 13.261 | 0.015 |
Dielma | 0.868 | 0.763 | 0.987 | 0.03 |
Coprobacter | 0.833 | 0.728 | 0.953 | 0.007 |
Gastranaerophilales | 0.863 | 0.763 | 0.976 | 0.019 |
Desulfovibrio | 0.83 | 0.714 | 0.965 | 0.015 |
Candidatus Stoquefichus | 0.847 | 0.72 | 0.995 | 0.043 |
Erysipelatoclostridiaceae | 0.775 | 0.635 | 0.945 | 0.012 |
Erysipelatoclostridium | 0.891 | 0.795 | 1 | 0.049 |
Holdemanella | 0.831 | 0.722 | 0.957 | 0.01 |
Christensenellaceae R-7 group | 0.874 | 0.769 | 0.993 | 0.039 |
Ruminiclostridium | 0.775 | 0.635 | 0.945 | 0.012 |
UCG-002 | 0.872 | 0.771 | 0.986 | 0.029 |
Anaerotruncus | 0.887 | 0.789 | 0.997 | 0.044 |
Candidatus Soleaferrea | 0.873 | 0.766 | 0.995 | 0.042 |
DTU089 | 0.867 | 0.768 | 0.979 | 0.021 |
[Eubacterium] siraeum group | 0.814 | 0.701 | 0.945 | 0.007 |
UCG-010 | 0.863 | 0.766 | 0.973 | 0.016 |
[Clostridium] methylpentosum group | 0.849 | 0.741 | 0.973 | 0.019 |
Phascolarctobacterium | 0.883 | 0.79 | 0.988 | 0.03 |
Family XIII UCG-001 | 0.896 | 0.803 | 1 | 0.049 |
Comamonas | 0.737 | 0.582 | 0.934 | 0.011 |
Merdibacter | 1.122 | 1.006 | 1.251 | 0.039 |
Lactobacillus | 1.224 | 1.052 | 1.425 | 0.009 |
Gemella | 1.261 | 1.001 | 1.587 | 0.049 |
Dialister | 1.126 | 1.008 | 1.257 | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lelonek, E.; Krajewski, P.K.; Szepietowski, J.C. Gut Microbiome Correlations in Hidradenitis Suppurativa Patients. J. Clin. Med. 2025, 14, 5074. https://doi.org/10.3390/jcm14145074
Lelonek E, Krajewski PK, Szepietowski JC. Gut Microbiome Correlations in Hidradenitis Suppurativa Patients. Journal of Clinical Medicine. 2025; 14(14):5074. https://doi.org/10.3390/jcm14145074
Chicago/Turabian StyleLelonek, Edyta, Piotr K. Krajewski, and Jacek C. Szepietowski. 2025. "Gut Microbiome Correlations in Hidradenitis Suppurativa Patients" Journal of Clinical Medicine 14, no. 14: 5074. https://doi.org/10.3390/jcm14145074
APA StyleLelonek, E., Krajewski, P. K., & Szepietowski, J. C. (2025). Gut Microbiome Correlations in Hidradenitis Suppurativa Patients. Journal of Clinical Medicine, 14(14), 5074. https://doi.org/10.3390/jcm14145074