Isolated Tricuspid Regurgitation: When Is Surgery Appropriate? A State-of-the-Art Narrative Review
Abstract
1. Introduction
2. Anatomy of Tricuspid Valve
Morphology of Tricuspid Valve
3. Tricuspid Valve Regurgitation
3.1. Classification of Tricuspid Regurgitation
3.2. Grading of Tricuspid Regurgitation
3.3. Clinical Implication
4. Indication for Surgery
5. Preoperative Management of Tricuspid Regurgitation
6. Treatment Options
6.1. Open Approach
6.2. Percutaneous Approach
7. Discussion
8. Gaps in Evidence
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | two-dimensional |
3D | three-dimensional |
AF | atrial fibrillation |
CCT | cardiac computed tomography |
CIED | cardiac implantable electronic device |
CMR | cardiac magnetic resonance |
EROA | effective regurgitant orifice area |
HF | heart failure |
NOAC | non-vitamin K antagonist oral anticoagulants |
PHT | pulmonary hypertension |
RA | right atrium |
RV | right ventricle |
SPAP | systolic pulmonary artery pressure |
STR | secondary tricuspid regurgitation |
TAPSE | tricuspid annular plane systolic excursion |
TEE | transesophageal echocardiography |
TR | tricuspid regurgitation |
TTE | transthoracic echocardiography |
T-TEER | tricuspid transcatheter edge-to-edge repair |
TTVI | transcatheter tricuspid valve intervention |
TTVR | transcatheter tricuspid valve replacement |
TV | tricuspid valve |
References
- Tagliari, A.P.; Perez-Camargo, D.; Taramasso, M. Tricuspid regurgitation: When is it time for surgery? Expert Rev. Cardiovasc. Ther. 2021, 19, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, F.; Kim, H.; Chaudary, B.; Bergman, R.; Matyal, R.; Gerstle, J.; Gorman, J.H.; Gorman, R.C.; Khabbaz, K.R. Tricuspid annular geometry: A three-dimensional transesophageal echocardiographic study. J. Cardiothorac. Vasc. Anesthesia 2013, 27, 639–646. [Google Scholar] [CrossRef]
- Ton-Nu, T.T.; Levine, R.A.; Handschumacher, M.D.; Dorer, D.J.; Yosefy, C.; Fan, D.; Hua, L.; Jiang, L.; Hung, J. Geometric determinants offunctional tricuspid regurgitation: Insights from 3-dimensional echocardiography. Circulation 2006, 114, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Irwin, R.B.; Luckie, M.; Khattar, R.S. Tricuspid regurgitation: Contemporary management of a neglected valvular lesion. Postgrad. Med J. 2010, 86, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.T.; Weckbach, L.T.; Noack, T.; Hamid, N.; Kitamura, M.; Bae, R.; Lurz, P.; Kodali, S.K.; Sorajja, P.; Hausleiter, J.; et al. Proposal for a Standard Echocardiographic Tricuspid Valve Nomenclature. JACC: Cardiovasc. Imaging 2021, 14, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Nath, J.; Foster, E.; Heidenreich, P.A. Impact of tricuspid regurgitation on long-term survival. J. Am. Coll. Cardiol. 2004, 43, 405–409. [Google Scholar] [CrossRef]
- Mutlak, D.; Lessick, J.; Reisner, S.A.; Aronson, D.; Dabbah, S.; Agmon, Y. Echocardiography-based spectrum of severe tricuspid regurgitation: The frequency of apparently idiopathic tricuspid regurgitation. J. Am. Soc. Echocardiogr. 2007, 20, 405–408. [Google Scholar] [CrossRef]
- Anwar, A.M.; Ten Cate, F.J.; Soliman, O.I. Clinical recognition of tricuspid valve disease. In Practical Manual of Tricuspid Valve Diseases; Soliman, O.I., Cate, F.J.T., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 32–40. [Google Scholar]
- Rogers, J.H.; Bolling, S.F. The tricuspid valve: Current perspective and evolving management of tricuspid regurgitation. Circulation 2009, 119, 2718–2725. [Google Scholar] [CrossRef]
- Topilsky, Y.; Khanna, A.; Le Tourneau, T.; Park, S.; Michelena, H.; Suri, R.; Mahoney, D.W.; Enriquez-Sarano, M. Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension. Circ. Cardiovasc. Imaging 2012, 5, 314–323. [Google Scholar] [CrossRef]
- Utsunomiya, H.; Itabashi, Y.; Mihara, H.; Berdejo, J.; Kobayashi, S.; Siegel, R.J.; Shiota, T. Functional Tricuspid Regurgitation Caused by Chronic Atrial Fibrillation: A Re-al-Time 3-Dimensional Transesophageal Echocardiography Study. Circ. Cardiovasc. Imaging 2017, 10, e004897. [Google Scholar] [CrossRef]
- Lancellotti, P.; Tribouilloy, C.; Hagendorff, A.; Popescu, B.A.; Edvardsen, T.; Pierard, L.A.; Badano, L.; Zamorano, J.L. Recommendations for the echocardiographic assessment of native valvular regurgitation: An executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 611–644. [Google Scholar] [CrossRef] [PubMed]
- American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Society of Cardiovascular Anesthesiologists; Society for Cardiovascular Angiography and Interventions; Society of Thoracic Surgeons; Bonow, R.O.; Carabello, B.A.; Kanu, C.; de Leon, A.C., Jr.; Faxon, D.P.; Freed, M.D. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients with Valvular Heart Disease). Circulation 2006, 114, 84–231. [Google Scholar]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS guidelines for the management of valvular heart disease. Eur. Heart J. 2021, 43, ehab395. [Google Scholar] [CrossRef]
- A Naser, J.; Kucuk, H.O.; O Ciobanu, A.; Jouni, H.; Oguz, D.; Thaden, J.J.; Pislaru, C.; A Pellikka, P.; A Foley, T.; Eleid, M.F.; et al. Atrial fibrillation is associated with large beat-to-beat variability in mitral and tricuspid annulus dimensions. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 1362–1373. [Google Scholar] [CrossRef]
- Antunes, M.J.; Rodriguez-Palomares, J.; Prendergast, B.; De Bonis, M.; Rosenhek, R.; Al-Attar, N.; on behalf of the ESC Working Groups of Cardiovascular Surgery and Valvular Heart Disease. Management of tricuspid valve regurgitation:Position statement of the European Society of Cardiology Working Groups of Cardiovascular Surgery and Valvular Heart Disease. Eur. J. Cardiothorac. Surg. 2017, 52, 1022–1030. [Google Scholar] [CrossRef]
- Topilsky, Y.; Nkomo, V.T.; Vatury, O.; Michelena, H.I.; Letourneau, T.; Suri, R.M.; Pislaru, S.; Park, S.; Mahoney, D.W.; Biner, S.; et al. Clinical outcome of isolated tricuspid regurgitation. JACC Cardiovasc. Imaging 2014, 7, 1185–1194. [Google Scholar] [CrossRef]
- Santoro, C.; Marco Del Castillo, A.; Gonzalez-Gomez, A.; Monteagudo, J.M.; Hinojar, R.; Lorente, A.; Abellás, M.; Vieitez, J.M.; Garcia Martìn, A.; Casas Rojo, E.; et al. Mid-term outcome of severe tricuspid regurgitation: Are there any differences according to mechanism and severity? Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1035–1042. [Google Scholar] [CrossRef]
- Taramasso, M.; Gavazzoni, M.; Pozzoli, A.; Dreyfus, G.D.; Bolling, S.F.; George, I.; Kapos, I.; Tanner, F.C.; Zuber, M.; Maisano, F.; et al. Tricuspid regurgitation: Predicting the need for intervention, procedural success, and recurrence of disease. JACC Cardiovasc. Imaging 2019, 12, 605–621. [Google Scholar] [CrossRef]
- Muraru, D.; Addetia, K.; Guta, A.C.; Ochoa-Jimenez, R.C.; Genovese, D.; Veronesi, F.; Basso, C.; Iliceto, S.; Badano, L.P.; Lang, R.M. Right atrial volume is a major determinant of tricuspid annulus area in functional tricuspid regurgitation: A three-dimensional echocardiographic study. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 660–669. [Google Scholar] [CrossRef]
- Ortiz-Leon, X.A.; Posada-Martinez, E.L.; Trejo-Paredes, M.C.; Ivey-Miranda, J.B.; Pereira, J.; Crandall, I.; DaSilva, P.; Bouman, E.; Brooks, A.; Gerardi, C.; et al. Understanding tricuspid valve remodelling in atrial fibrillation using three-dimensional echocardiography. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 747–755. [Google Scholar] [CrossRef]
- Muraru, D.; Caravita, S.; Guta, A.C.; Mihalcea, D.; Branzi, G.; Parati, G.; Badano, L.P. Functional tricuspid regurgitation and atrial fibrillation: Which comes first, the chicken or the egg? CASE 2020, 4, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: Executive summary: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2021, 77, 450–500. [Google Scholar] [CrossRef] [PubMed]
- Latib, A.; Grigioni, F.; Hahn, R.T. Tricuspid regurgitation: What is the real clinical impact and how often should it be treated? EuroIntervention 2018, 14, AB101–AB111. [Google Scholar] [CrossRef]
- Sala, A.; Lorusso, R.; Alfieri, O. Isolated tricuspid regurgitation: A plea for early correction. Int. J. Cardiol. 2022, 353, 80–85. [Google Scholar] [CrossRef]
- Zaidi, A.; Oxborough, D.; Augustine, D.X.; Bedair, R.; Harkness, A.; Rana, B.; Robinson, S.; Badano, L.P.; Education Committee of the British Society of Echocardiography. Echocardiographic assessment of the tricuspid and pulmonary valves: A practical guideline from the British Society of Echocardiography. Echo Res. Pr. 2020, 7, G95–G122. [Google Scholar] [CrossRef]
- Hahn, R.T. State-of-the-art review of echocardiographic imaging in the evaluation and treatment of functional tricuspid regurgitation. Circ. Cardiovasc. Imaging 2016, 9, e005332. [Google Scholar] [CrossRef]
- Muraru, D.; Hahn, R.T.; Soliman, O.I.; Faletra, F.F.; Basso, C.; Badano, L.P. 3-dimensional echocardiography in imaging the tricuspid valve. JACC Cardiovasc. Imaging 2019, 12, 500–515. [Google Scholar] [CrossRef]
- Dahou, A.; Ong, G.; Hamid, N.; Avenatti, E.; Yao, J.; Hahn, R.T. Quantifying tricuspid regurgitation severity: A comparison of proximal isovelocity surface area and novel quantitative Doppler methods. JACC Cardiovasc. Imaging 2019, 12, 560–562. [Google Scholar] [CrossRef]
- Kebed, K.Y.; Addetia, K.; Henry, M.; Yamat, M.; Weinert, L.; Besser, S.A.; Mor-Avi, V.; Lang, R.M. Refining severe tricuspid regurgitation definition by echocardiography with a new outcomes-based “Massive” grade. J. Am. Soc. Echocardiogr. 2020, 33, 1087–1094. [Google Scholar] [CrossRef]
- Muraru, D.; Previtero, M.; Ochoa-Jimenez, R.C.; Guta, A.C.; Figliozzi, S.; Gregori, D.; Bottigliengo, D.; Parati, G.; Badano, L.P. Prognostic validation of partition values for quantitative parameters to grade functional tricuspid regurgitation severity by conventional echocardiography. Eur. Heart J. Cardiovasc. Imaging 2020, 22, 155–165. [Google Scholar] [CrossRef]
- Badano, L.P.; Hahn, R.; Rodr ıguez-Zanella, H.; Araiza Garaygordobil, D.; Ochoa-Jimenez, R.C.; Muraru, D. Morphological assess-ment of the tricuspid apparatus and grading regurgitation severity in patients with functional tricuspid regurgitation: Thinking outside the box. JACC Cardiovasc. Imaging 2019, 12, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Caballero, A.; Hahn, R.T.; McKay, R.; Sun, W. Computational analysis of virtual echocardiographic assessment of functional mitral regurgitation for validation of proximal isovelocity surface area methods. J. Am. Soc. Echocardiogr. 2021, 34, 1211–1223. [Google Scholar] [CrossRef] [PubMed]
- Moraldo, M.; Cecaro, F.; Shun-Shin, M.; Pabari, P.A.; Davies, J.E.; Xu, X.Y.; Hughes, A.D.; Manisty, C.; Francis, D.P. Evidence-based recommendations for PISA measurements in mitral regurgitation: Systematic review, clinical and in-vitro study. Int. J. Cardiol. 2013, 168, 1220–1228. [Google Scholar] [CrossRef]
- Hahn, R.T.; Thomas, J.D.; Khalique, O.K.; Cavalcante, J.L.; Praz, F.; Zoghbi, W.A. Imaging assessment of tricuspid regurgitation severity. JACC Cardiovasc. Imaging 2019, 12, 469–490. [Google Scholar] [CrossRef]
- Sakai, K.; Nakamura, K.; Satomi, G.; Kondo, M.; Hirosawa, K. Evaluation of tricuspid regurgitation by blood flow pattern in the hepatic vein using pulsed Doppler technique. Am. Heart J. 1984, 108, 516–523. [Google Scholar] [CrossRef]
- Shapira, Y.; Porter, A.; Wurzel, M.; Vaturi, M.; Sagie, A. Evaluation of tricuspid regurgitation severity: Echocardiographic and clinical correlation. J. Am. Soc. Echocardiogr. 1998, 11, 652–659. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Genovese, D.; Mor-Avi, V.; Palermo, C.; Muraru, D.; Volpato, V.; Kruse, E.; Yamat, M.; Aruta, P.; Addetia, K.; Badano, L.P.; et al. Comparison between four-chamber and right ventricular–focused views for the quantitative evaluation of right ventricular size and function. J. Am. Soc. Echocardiogr. 2019, 32, 484–494. [Google Scholar] [CrossRef]
- Florescu, D.; Muraru, D.; Florescu, C.; Gavazzoni, M.; Volpato, V.; Caravita, S.; Tomaselli, M.; Balseanu, T.; Parati, G.; Badano, L. Right heart chambers geometry and function in patients with the atrial and the ventricular phenotypes of functional tricuspid regurgitation. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 930–940. [Google Scholar] [CrossRef]
- Dietz, M.F.; Prihadi, E.A.; van der Bijl, P.; Goedemans, L.; Mertens, B.J.; Gursoy, E.; van Genderen, O.S.; Marsan, N.A.; Delgado, V.; Bax, J.J. Prognostic implications of right ventricular remodeling and function in patients with significant secondary tricuspid regurgitation. Circulation 2019, 140, 836–845. [Google Scholar] [CrossRef]
- Prihadi, E.A.; van der Bijl, P.; Dietz, M.; Abou, R.; Vollema, E.M.; Marsan, N.A.; Delgado, V.; Bax, J.J. Prognostic implications of right ventricular free wall longitudinal strain in patients with significant functional tricuspid regurgitation. Circ. Cardiovasc. Imaging 2019, 12, e008666. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-B.; Lee, S.-P.; Lee, J.-H.; Yoon, Y.E.; Park, E.-A.; Kim, H.-K.; Lee, W.; Kim, Y.-J.; Cho, G.-Y.; Sohn, D.-W. Quantification of right ventricular volume and function using single-beat three-dimensional echocardiography: A validation study with cardiac magnetic resonance. J. Am. Soc. Echocardiogr. 2016, 29, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Fortuni, F.; Butcher, S.C.; Dietz, M.F.; van der Bijl, P.; Prihadi, E.A.; De Ferrari, G.M.; Marsan, N.A.; Bax, J.J.; Delgado, V. Right ventricular–pulmonary arterial coupling in secondary tricuspid regurgitation. Am. J. Cardiol. 2021, 148, 138–145. [Google Scholar] [CrossRef]
- Lurz, P.; Orban, M.; Besler, C.; Braun, D.; Schlotter, F.; Noack, T.; Desch, S.; Karam, N.; Kresoja, K.-P.; Hagl, C.; et al. Clinical characteristics, diagnosis, and risk stratification of pulmonary hypertension in severe tricuspid regurgitation and implications for transcatheter tricuspid valve repair. Eur. Heart J. 2020, 41, 2785–2795. [Google Scholar] [CrossRef]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Muñoz, D.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Fleisher, L.A.; Jneid, H.; Mack, M.J.; McLeod, C.J.; O’Gara, P.T.; et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2017, 70, 252–289. [Google Scholar] [CrossRef]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef]
- Peri, Y.; Sadeh, B.; Sherez, C.; Hochstadt, A.; Biner, S.; Aviram, G.; Ingbir, M.; Nachmany, I.; Topaz, G.; Flint, N.; et al. Quantitative assessment of effective regurgitant orifice: Impact on risk stratification, and cut-off for severe and torrential tricuspid regurgitation grade. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 768–776. [Google Scholar] [CrossRef]
- Fortuni, F.; Dietz, M.F.; Prihadi, E.A.; van der Bijl, P.; De Ferrari, G.M.; Knuuti, J.; Bax, J.J.; Delgado, V.; Marsan, N.A. Prognostic Implications of a Novel Algorithm to Grade Secondary Tricuspid Regurgitation. JACC Cardiovasc. Imaging 2021, 14, 1085–1095. [Google Scholar] [CrossRef]
- Hahn, R.T.; Zamorano, J.L. The need for a new tricuspid regurgitation grading scheme. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1342–1343. [Google Scholar] [CrossRef]
- Guazzi, M.; Dixon, D.; Labate, V.; Beussink-Nelson, L.; Bandera, F.; Cuttica, M.J.; Shah, S.J. RV Contractile Function and its Coupling to Pulmonary Circulation in Heart Failure with Preserved Ejection Fraction: Stratification of Clinical Phenotypes and Outcomes. JACC Cardiovasc. Imaging 2017, 10, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Tello, K.; Wan, J.; Dalmer, A.; Vanderpool, R.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Mohajerani, E.; Seeger, W.; Herberg, U.; et al. Validation of the Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio for the Assessment of Right Ventricular-Arterial Coupling in Severe Pulmonary Hypertension. Circ. Cardiovasc. Imaging 2019, 12, e009047. [Google Scholar] [CrossRef] [PubMed]
- Schlotter, F.; Miura, M.; Kresoja, K.-P.; Alushi, B.; Alessandrini, H.; Attinger-Toller, A.; Besler, C.; Biasco, L.; Braun, D.; Brochet, E.; et al. Outcomes of transcatheter tricuspid valve intervention by right ventricular function: A multicentre propensity-matched analysis. EuroIntervention 2021, 17, e343–e352. [Google Scholar] [CrossRef] [PubMed]
- Tsukashita, M.; Takayama, H.; Takeda, K.; Han, J.; Colombo, P.C.; Yuzefpolskaya, M.; Topkara, V.K.; Garan, A.R.; Mancini, D.M.; Kurlansky, P.A.; et al. Effect of pulmonary vascular resistance before left ventricular assist device implantation on short- and long-term post-transplant survival. J. Thorac. Cardiovasc. Surg. 2015, 150, 1352–1361.e2. [Google Scholar] [CrossRef]
- Kang, G.; Ha, R.; Banerjee, D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J. Heart Lung Transplant. 2016, 35, 67–73. [Google Scholar] [CrossRef]
- LaPar, D.J.; Likosky, D.S.; Zhang, M.; Theurer, P.; Fonner, C.E.; Kern, J.A.; Bolling, S.F.; Drake, D.H.; Speir, A.M.; Rich, J.B.; et al. Development of a Risk Prediction Model and Clinical Risk Score for Isolated Tricuspid Valve Surgery. Ann. Thorac. Surg. 2018, 106, 129–136. [Google Scholar] [CrossRef]
- Dreyfus, J.; Audureau, E.; Bohbot, Y.; Coisne, A.; Lavie-Badie, Y.; Bouchery, M.; Flagiello, M.; Bazire, B.; Eggenspieler, F.; Viau, F.; et al. TRI-SCORE: A new risk score for in-hospital mortality prediction after isolated tricuspid valve surgery. Eur. Heart J. 2022, 43, 654–662. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, T.K.M.; Griffin, B.P.; Miyasaka, R.; Xu, B.; Popovic, Z.B.; Pettersson, G.B.; Gillinov, A.M.; Desai, M.Y. Isolated surgical tricuspid repair versus replacement: Meta-analysis of 15 069 patients. Open Heart 2020, 7, e001227. [Google Scholar] [CrossRef]
- Dreyfus, J.; Galloo, X.; Taramasso, M.; Heitzinger, G.; Benfari, G.; Kresoja, K.-P.; Juarez-Casso, F.; Omran, H.; Bohbot, Y.; Iliadis, C.; et al. TRI-SCORE and benefit of intervention in patients with severe tricuspid regurgitation. Eur. Heart J. 2024, 45, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Adamo, M.; Russo, G.; Pagnesi, M.; Pancaldi, E.; Alessandrini, H.; Andreas, M.; Badano, L.P.; Braun, D.; Connelly, K.A.; Denti, P.; et al. Prediction of Mortality and Heart Failure Hospitalization After Transcatheter Tricuspid Valve Interventions. JACC: Cardiovasc. Interv. 2024, 17, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Rodes-Cabau, J.; Hahn, R.T.; Latib, A.; Laule, M.; Lauten, A.; Maisano, F.; Schofer, J.; Campelo-Parada, F.; Puri, R.; Vahanian, A. Transcatheter therapies for treating tricuspid regurgitation. J. Am. Coll. Cardiol. 2016, 67, 1829–1845. [Google Scholar] [CrossRef] [PubMed]
- Taramasso, M.; Maisano, F. Transcatheter tricuspid valve intervention: State of the art. EuroIntervention 2017, 13, AA40–AA50. [Google Scholar] [CrossRef] [PubMed]
- Volpato, V.; Badano, L.P.; Figliozzi, S.; Florescu, D.R.; Parati, G.; Muraru, D. Multimodality cardiac imaging and new display options to broaden our understanding of the tricuspid valve. Curr. Opin. Cardiol. 2021, 36, 513–524. [Google Scholar] [CrossRef]
- Caravita, S.; Figliozzi, S.; Florescu, D.-R.; Volpato, V.; Oliverio, G.; Tomaselli, M.; Torlasco, C.; Muscogiuri, G.; Cernigliaro, F.; Parati, G.; et al. Recent advances in multimodality imaging of the tricuspid valve. Expert Rev. Med Devices 2021, 18, 1069–1081. [Google Scholar] [CrossRef]
- Alfieri, O.; De Bonis, M.; Lapenna, E.; Agricola, E.; Quarti, A.; Maisano, F. The “clover technique” as a novel approach for correction of post-traumatic tricuspid regurgitation. J. Thorac. Cardiovasc. Surg. 2003, 126, 75–79. [Google Scholar] [CrossRef]
- Lapenna, E.; De Bonis, M.; Verzini, A.; La Canna, G.; Ferrara, D.; Calabrese, M.C.; Taramasso, M.; Alfieri, O. The clover technique for the treatment of complex tricuspid valve insufficiency: Midterm clinical and echocardiographic results in 66 patients. Eur. J. Cardio-Thoracic Surg. 2010, 37, 1297–1303. [Google Scholar] [CrossRef]
- Gammie, J.S.; Chu, M.W.; Falk, V.; Overbey, J.R.; Moskowitz, A.J.; Gillinov, M.; Mack, M.J.; Voisine, P.; Krane, M.; Yerokun, B.; et al. Concomitant tricuspid repair in patients with degenerative mitral regurgitation. New Engl. J. Med. 2021, 386, 327–339. [Google Scholar] [CrossRef]
- Hahn, R.T.; Abraham, T.; Adams, M.S.; Bruce, C.J.; Glas, K.E.; Lang, R.M.; Reeves, S.T.; Shanewise, J.S.; Siu, S.C.; Stewart, W.; et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: Recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J. Am. Soc. Echocardiogr. 2013, 26, 921–964. [Google Scholar] [CrossRef]
- Wang, P.; Huang, Y.; Sun, L.; Han, Z. Surgical Treatment Strategy of Functional Tricuspid Regurgitation. Rev. Cardiovasc. Med. 2024, 25, 182. [Google Scholar] [CrossRef]
- Türkmen, U.; Bozkurt, T.; Özyalçın, S.; Günaydın, I.; Kaplan, S. Tricuspid repair: Short and long-term results of suture annuloplasty techniques and rigid and flexible ring annuloplasty techniques. J. Cardiothorac. Surg. 2024, 19, 158. [Google Scholar] [CrossRef]
- Scotti, A.; Sturla, M.; Granada, J.F.; Kodali, S.K.; Coisne, A.; Mangieri, A.; Godino, C.; Ho, E.; Goldberg, Y.; Chau, M.; et al. Outcomes of isolated tricuspid valve replacement: A systematic review and meta-analysis of 5,316 patients from 35 studies. EuroIntervention 2022, 18, 840–851. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lurz, J.; Rommel, K.-P.; Unterhuber, M.; Besler, C.; Noack, T.; Borger, M.; Richter, S.; Hindricks, G.; Thiele, H.; Lurz, P. Safety and efficacy of transcatheter edge-to-edge repair of the tricuspid valve in patients with cardiac implantable electronic device leads. JACC Cardiovasc. Interv. 2019, 12, 2114–2116. [Google Scholar] [CrossRef]
- Kresoja, K.P.; Rommel, K.P.; Lücke, C.; Unterhuber, M.; Besler, C.; von Roeder, M.; Schöber, A.R.; Noack, T.; Gutberlet, M.; Thiele, H.; et al. Right ventricular contraction patterns in patients undergoing transcatheter tricuspid valve repair for severe tricuspid regurgitation. JACC Cardiovasc. Interv. 2021, 14, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Kundi, H.; Popma, J.J.; Cohen, D.J.; Liu, D.C.; Laham, R.J.; Pinto, D.S.; Chu, L.M.; Strom, J.B.; Shen, C.; Yeh, R.W. Prevalence and Outcomes of Isolated Tricuspid Valve Surgery Among Medicare Beneficiaries. Am. J. Cardiol. 2019, 123, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Blasco-Turrión, S.; Briedis, K.; Estévez-Loureiro, R.; Sánchez-Recalde, A.; Cruz-González, I.; Pascual, I.; Mascherbauer, J.; Altisent, O.A.-J.; Nombela-Franco, L.; Pan, M.; et al. Bicaval TricValve Implantation in Patients With Severe Symptomatic Tricuspid Regurgitation: 1-Year Follow-Up Outcomes. JACC Cardiovasc. Interv. 2024, 17, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Weiss, T.; Villadsen, P.R.; Jensen, J.K.; Lehnert, P.; Nielsen, P.H.; Modrau, I.S. Outcomes of isolated tricuspid valve surgery in contemporary practice. Eur. J. Cardio-Thoracic Surg. 2022, 62, ezac077. [Google Scholar] [CrossRef] [PubMed]
- Taramasso, M.; Alessandrini, H.; Latib, A.; Asami, M.; Attinger-Toller, A.; Biasco, L.; Braun, D.; Brochet, E.; Connelly, K.A.; Denti, P.; et al. Outcomes after current transcatheter tri-cuspid valve intervention: Mid-term results from the international trivalve registry. JACC Cardiovasc. Interv. 2019, 12, 155–165. [Google Scholar] [CrossRef]
- Kitamura, M.; Kresoja, K.-P.; Besler, C.; Leontyev, S.; Kiefer, P.; Rommel, K.-P.; Otto, W.; Forner, A.F.; Ender, J.; Holzhey, D.M.; et al. Impact of tricuspid valve morphology on clinical outcomes after transcatheter edge-to-edge repair. JACC Cardiovasc. Interv. 2021, 14, 1616–1618. [Google Scholar] [CrossRef]
- Kodali, S.K.; Hahn, R.T.; Davidson, C.J.; Narang, A.; Greenbaum, A.; Gleason, P.; Kapadia, S.; Miyasaka, R.; Zahr, F.; Chadderdon, S.; et al. 1-Year Outcomes of Transcatheter Tricuspid Valve Repair. J. Am. Coll. Cardiol. 2023, 81, 1766–1776. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, A.; Tanaka, T.; Kavsur, R.; Öztürk, C.; Vogelhuber, J.; Wilde, N.; Becher, M.U.; Zimmer, S.; Nickenig, G.; Weber, M. configuration and residual tricuspid regurgitation after transcatheter edge-to-edge tricuspid repair. JACC Cardiovasc. Interv. 2021, 14, 2260–2270. [Google Scholar] [CrossRef]
- Axtell, A.L.; Bhambhani, V.; Moonsamy, P.; Healy, E.W.; Picard, M.H.; Sundt, T.M.; Wasfy, J.H. Surgery does not improve survival in patients with isolated severe tricuspid regurgitation. J. Am. Coll. Cardiol. 2019, 74, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Ruf, T.F.; Hahn, R.T.; Kreidel, F.; Beiras-Fernandez, A.; Hell, M.; Gerdes, P.; Silva, J.G.d.R.e.; Vosseler, M.; Geyer, M.; Tamm, A.; et al. Short-term clinical outcomes of transcatheter tricuspid valve repair with the third-generation MitraClip XTR system. JACC Cardiovasc. Interv. 2021, 14, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Besler, C.; Orban, M.; Rommel, K.-P.; Braun, D.; Patel, M.; Hagl, C.; Borger, M.; Nabauer, M.; Massberg, S.; Thiele, H.; et al. Predictors of procedural and clinical outcomes in patients with symptomatic tricuspid regurgitation undergoing transcatheter edge-to-edge repair. JACC Cardiovasc. Interv. 2018, 11, 1119–1128. [Google Scholar] [CrossRef]
- Mehr, M.; Taramasso, M.; Besler, C.; Ruf, T.; Connelly, K.A.; Weber, M.; Yzeiraj, E.; Schiavi, D.; Mangieri, A.; Vaskelyte, L.; et al. 1-year outcomes after edge-to-edge valve repair for symptomatic tricuspid regurgitation: Results from the trivalve registry. JACC Cardiovasc. Interv. 2019, 12, 1451–1461. [Google Scholar] [CrossRef]
- Gatti, G.; Dell’angela, L.; Fiore, A.; Singh, S.S.A.; Couétil, J.-P.; Folliguet, T.; Sinagra, G.; Mazzaro, E.; Nappi, F. Basic pathophysiology and options of treatment for surgical management of functional tricuspid regurgitation: A systematic review. J. Thorac. Dis. 2022, 14, 4521–4544. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dreyfus, J.; Dreyfus, G.D.; Taramasso, M. Tricuspid valve replacement: The old and the new. Prog. Cardiovasc. Dis. 2022, 72, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Chick, W.; Alkhalil, M.; Egred, M.; Gorog, D.A.; Edwards, R.; Das, R.; Abdeldayem, T.; Ibrahim, O.; Malik, I.; Mikhail, G.; et al. A Systematic Review and Meta-Analysis of the Clinical Outcomes of Isolated Tricuspid Valve Surgery. Am. J. Cardiol. 2023, 203, 414–426. [Google Scholar] [CrossRef] [PubMed]
- Pahwa, S.; Saran, N.; Pochettino, A.; Schaff, H.; Stulak, J.; Greason, K.; Daly, R.; Crestanello, J.; King, K.; Dearani, J. Outcomes of tricuspid valve surgery in patients with functional tricuspid regurgitation. Eur. J. Cardio-Thoracic Surg. 2021, 59, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.Y.; Wales, K.M.; Zhao, D.F.; Seco, M.; Celermajer, D.S.; Bannon, P.G. Repair of Less Than Severe Tricuspid Regurgitation During Left-Sided Valve Surgery: A Meta-Analysis. Ann. Thorac. Surg. 2019, 109, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Orban, M.; Wolff, S.; Braun, D.; Stolz, L.; Higuchi, S.; Stark, K.; Mehr, M.; Stocker, T.J.; Dischl, D.; Scherer, C.; et al. Right ventricular function in transcatheter edge-to-edge tricuspid valve repair. JACC Cardiovasc. Imaging 2021, 14, 2477–2479. [Google Scholar] [CrossRef]
- Webb, J.G.; Chuang, A.-Y.; Meier, D.; von Bardeleben, R.S.; Kodali, S.K.; Smith, R.L.; Hausleiter, J.; Ong, G.; Boone, R.; Ruf, T.; et al. Transcatheter Tricuspid Valve Replacement With the EVOQUE System: 1-Year Outcomes of a Multicenter, First-in-Human Experience. JACC Cardiovasc. Interv. 2022, 15, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Lurz, P.; von Bardeleben, R.S.; Weber, M.; Sitges, M.; Sorajja, P.; Hausleiter, J.; Denti, P.; Trochu, J.-N.; Nabauer, M.; Tang, G.H.; et al. Transcatheter edge-to-edge repair for treatment of tricuspid regurgitation. J. Am. Coll. Cardiol. 2021, 77, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Di Mauro, M.; Saitto, G.; Lio, A.; Berretta, P.; Taramasso, M.; Scrofani, R.; Della Corte, A.; Sponga, S.; Greco, E.; et al. Beating Versus Arrested Heart Isolated Tricuspid Valve Surgery: Long-term Outcomes. Ann. Thorac. Surg. 2022, 113, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ma, W.; Ming, Y.; Wang, W.; Liu, S.; Yang, Y.; Lin, Y.; Wei, L.; Wang, C. Minimally Invasive Valve Replacement for Late Tricuspid Regurgitation After Left-Sided Valve Surgery. Ann. Thorac. Surg. 2021, 111, e381–e383. [Google Scholar] [CrossRef] [PubMed]
- Ricci, D.; Boffini, M.; Barbero, C.; El Qarra, S.; Marchetto, G.; Rinaldi, M. Minimally invasive tricuspid valve surgery in patients at high risk. J. Thorac. Cardiovasc. Surg. 2014, 147, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Sauvé, J.-A.; Wu, Y.-S.; Ghatanatti, R.; Zacharias, J. Minimal Access Tricuspid Valve Surgery. J. Cardiovasc. Dev. Dis. 2023, 10, 118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sadeghpour, A.; Hassanzadeh, M.; Kyavar, M.; Bakhshandeh, H.; Naderi, N.; Ghadrdoost, B.; Haghighat Talab, A. Impact of severe tricuspid regurgitation on long term survival. Res. Cardiovasc. Med. 2013, 2, 121–126. [Google Scholar] [CrossRef]
- Vassileva, C.M.; Shabosky, J.; Boley, T.; Markwell, S.; Hazelrigg, S. Tricuspid valve surgery: The past 10 years from the Nationwide Inpatient Sample (NIS) database. J. Thorac. Cardiovasc. Surg. 2012, 143, 1043–1049. [Google Scholar] [CrossRef]
- Zack, C.J.; Fender, E.A.; Chandrashekar, P.; Reddy, Y.N.; Bennett, C.E.; Stulak, J.M.; Miller, V.M.; Nishimura, R.A. National trends and outcomes in isolated tricuspid valve surgery. J. Am. Coll. Cardiol. 2017, 70, 2953–2960. [Google Scholar] [CrossRef]
- Kang, D.H.; Park, S.J.; Lee, S.A.; Lee, S.; Kim, D.H.; Kim, H.K.; Yun, S.-C.; Hong, G.-R.; Song, J.-M.; Chung, C.-H.; et al. Early surgery or conservative care for asymptomatic aortic stenosis. N. Engl. J. Med. 2020, 382, 111–119. [Google Scholar] [CrossRef]
- O’Brien, S.M.; Feng, L.; He, X.; Xian, Y.; Jacobs, J.P.; Badhwar, V.; Kurlansky, P.A.; Furnary, A.P.; Cleveland, J.C., Jr.; Lobdell, K.W.; et al. The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models, part 2: Statistical methods and results. Ann. Thorac. Surg. 2018, 105, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of diet in renal disease study group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Enriquez-Sarano, M.; Tajik, A.J.; Schaff, H.V.; Orszulak, T.A.; Bailey, K.R.; Frye, R.L. Echocardiographic prediction of survival after surgical correction of organic mitral regurgitation. Circulation 1994, 90, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Sambola, A.; Tornos, P.; Ferreira-Gonzalez, I.; Evangelista, A. Prognostic value of preoperative indexed end-systolic left ventricle diameter in the outcome after surgery in patients with chronic aortic regurgitation. Am. Heart J. 2008, 155, 1114–1120. [Google Scholar] [CrossRef]
- Choi, J.W.; Jang, M.-J.; Kim, K.H.; Hwang, H.Y. Repair versus replacement for the surgical correction of tricuspid regurgitation: A meta-analysis. Eur. J. Cardio-Thoracic Surg. 2017, 53, 748–755. [Google Scholar] [CrossRef]
RV Size Parameter | Mean +/− SD | Normal Range |
---|---|---|
RV basal diameter, mm | 33 +/− 4 | 25–41 |
RV mid diameter, mm | 27 +/− 4 | 19–35 |
RV longitudinal diameter, mm | 71 +/− 6 | 59–83 |
RVOT PLAX diameter, mm | 25 +/−2.5 | 20–30 |
RVOT proximal diameter, mm | 28 +/− 3.5 | 21–35 |
RVOT distal diameter, mm | 22 +/− 2.5 | 17–27 |
RV EDV, mL/mÇ | ||
Men | 61 +/− 13 | 35–87 |
Women | 53 +/− 10.5 | 32–74 |
RV ESV, mL/mÇ | ||
Men | 27 +/− 8.5 | 10–44 |
Women | 22 +/− 7 | 8–36 |
RV Function Parameter | Normal Range | Abnormal |
TAPSE, mm | 24 +/− 3.5 | <17 |
DTI S’, cm/s | 14.1 +/− 2.3 | <9.5 |
Free wall LS, % | −29 +/− 4.5 | >-20 |
RIMP (PW Doppler) | 0.25 +/− 0.085 | >0.43 |
RIMP (DTI) | 0.38 +/− 0.08 | >0.54 |
FAC, % | 49 +/− 7 | <35 |
RVEF, % | 58 +/− 6.5 | <45 |
Classification | Etiologies |
---|---|
Primary TR | |
Degenerative Disease |
|
Congenital |
|
Acquired |
|
Functional TR | |
Ventricular secondary TR |
|
Atrial secondary TR |
|
Cardiac tumors |
|
Cardiac implantable electronic device (CIED) induced TR (~5% of patients) | |
Primary CIEDinduced TR |
|
Secondary CIEDinduced TR |
|
Parameter | Atrial FTR | Ventricular FTR | CIED Related | Primary TR Prolapse (I) RHD (IIIA) |
---|---|---|---|---|
Leaflet tethering | − | +++ | ++ | − − |
Leaflet restriction | − | Systole | Systole/Diastole | − Diastole |
RA/TA dilatation | +++ | ++ | +/− | ++ ++ |
RV dilatation | +/− | +++ | +/− | +/− +/− |
RV dysfunction | +/− | +++ | +/− | +/− +/− |
Parameters | Mild | Moderate | Significant/ Moderate-Severe | Severe | Massive | Torrential |
---|---|---|---|---|---|---|
Vena contracta | <3 mm | 3–6.9 mm | 6–6.9 mm | 7–13 mm | 14–20 mm | ≥21 mm |
EROA | 20 mm2 | 20–29 mm2 | 30–39 mm2 | 40–59 mm2 | 60–79 mm2 | ≥80 mm2 |
Regurgitant volume | <15 mL | 15–29 mL | 30–44 mL | 45–59 mL | 60–74 mL | ≥75 mL |
Score | EuroScore II | Tri-Score |
---|---|---|
Patients anamnesi |
CCS LV function Recency and size of last myocardial infarct Systolic PA pressure Active endocarditis
Cross-clamp Deep hypothermic arrest Selective cerebral perfusion |
|
In-Hospital Mortality | 2-Year Survival Rate | 2-Year Survival Rate, Pooled Comparison | AHR 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
SURGERY 9.6% | TTVR 1 2.5% | CONSERVATIVE 1217 Patients 327 Events 71% | SURGERY 551 Patients 111 Events 77% | TTVR 645 Patients 118 Events 69% | UNADJUSTED | ADJUSTED 2 | SURGERY | TTVR | |
LOW TRI-SCORE (≤3) N = 764 | 2.7% | 0.7% | 433 patients 79% | 183 patients 93% | 148 patients 87% | p < 0.001 | p = 0.006 | 0.35 [0.18–0.69] p = 0.002 | 0.65 [0.32–1.31] p = 0.23 |
INTERMEDIATE TRI-SCORE (4–5) N = 800 | 185 9.2% | 256 2% | 359 patients 71% | 185 patients 80% | 256 patients 71% | p = 0.13 | p = 0.15 | 0.73 [0.47–1.15] p = 0.14 | 0.69 [0.44–1.09] p = 0.11 |
HIGH TRI-SCORE (≥6) N = 849 | 183 16.9% | 241 4.3% | 425 patients 61% | 183 patients 58% | 241 patients 56% | p = 0.66 | p = 0.48 | 1.21 [0.87–1.70] p = 0.26 | 0.98 [0.68–1.43] p = 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbato, R.; Loreni, F.; Ferrisi, C.; Mastroianni, C.; D’Ascoli, R.; Nenna, A.; Bergonzini, M.; Jawabra, M.; Strumia, A.; Carassiti, M.; et al. Isolated Tricuspid Regurgitation: When Is Surgery Appropriate? A State-of-the-Art Narrative Review. J. Clin. Med. 2025, 14, 5063. https://doi.org/10.3390/jcm14145063
Barbato R, Loreni F, Ferrisi C, Mastroianni C, D’Ascoli R, Nenna A, Bergonzini M, Jawabra M, Strumia A, Carassiti M, et al. Isolated Tricuspid Regurgitation: When Is Surgery Appropriate? A State-of-the-Art Narrative Review. Journal of Clinical Medicine. 2025; 14(14):5063. https://doi.org/10.3390/jcm14145063
Chicago/Turabian StyleBarbato, Raffaele, Francesco Loreni, Chiara Ferrisi, Ciro Mastroianni, Riccardo D’Ascoli, Antonio Nenna, Marcello Bergonzini, Mohamad Jawabra, Alessandro Strumia, Massimiliano Carassiti, and et al. 2025. "Isolated Tricuspid Regurgitation: When Is Surgery Appropriate? A State-of-the-Art Narrative Review" Journal of Clinical Medicine 14, no. 14: 5063. https://doi.org/10.3390/jcm14145063
APA StyleBarbato, R., Loreni, F., Ferrisi, C., Mastroianni, C., D’Ascoli, R., Nenna, A., Bergonzini, M., Jawabra, M., Strumia, A., Carassiti, M., Agrò, F., Chello, M., & Lusini, M. (2025). Isolated Tricuspid Regurgitation: When Is Surgery Appropriate? A State-of-the-Art Narrative Review. Journal of Clinical Medicine, 14(14), 5063. https://doi.org/10.3390/jcm14145063