MicroRNA Profiles Distinguishing Metastatic from Non-Metastatic Salivary Mucoepidermoid Carcinoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Samples
2.2. RNA Isolation
2.3. Real Time RT-PCR (qPCR): miRNA Expression
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MEC | mucoepidermoid carcinoma |
miRNA | microRNA |
RT-PCR | reverse transcription–polymerase chain reaction |
SGT | salivary gland tumor |
References
- Ellis, G.L.; Auclair, P.L. Tumours of the Salivary Glands. In Atlas of Tumour Pathology; Armed Forces Institute of Pathology: Washington, DC, USA, 1996; pp. 1–37. [Google Scholar]
- Speight, P.M.; Barret, A.W. Salivary Gland Tumours. Oral Dis. 2002, 8, 229–240. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.H.; Roberts, D.B.; El-Naggar, A.K.; Hanna, E.Y.; Garden, A.S.; Kies, M.S.; Weber, R.S.; Kupferman, M.E. Prognostic factors in mucoepidermoid carcinoma of the salivary glands. Cancer 2012, 118, 3928–3936. [Google Scholar] [CrossRef] [PubMed]
- Brandwein, M.S.; Ivanov, K.; Wallace, D.I.; Hille, J.J.; Wang, B.; Fahmy, A.; Bodian, C.; Urken, M.L.; Gnepp, D.R.; Huvos, A.; et al. Mucoepidermoid carcinoma: A clinicopathologic study of 80 patients with special reference to histological grading. Am. J. Surg. Pathol. 2001, 25, 835–845. [Google Scholar] [CrossRef]
- Katabi, N.; Ghossein, R.; Ali, S.; Dogan, S.; Klimstra, D.; Ganly, I. Prognostic features in mucoepidermoid carcinoma of major salivary glands with emphasis on tumour histologic grading. Histopathology 2014, 65, 793–804. [Google Scholar] [CrossRef]
- Luna, M.A. Salivary mucoepidermoid carcinoma: Revisited. Adv. Anat. Pathol. 2006, 13, 293–307. [Google Scholar] [CrossRef]
- Chen, M.M.; Roman, S.A.; Sosa, J.A.; Judson, B.L. Histologic grade as prognostic indicator for mucoepidermoid carcinoma: A population level analysis of 2400 patients. Head Neck 2013, 36, 158–163. [Google Scholar] [CrossRef]
- Bradley, P.J. Distant metastases from salivary glands cancer. ORL 2001, 63, 233–242. [Google Scholar] [CrossRef]
- Mariano, F.V.; Silva, S.D.; Chulan, T.C.; Almeida, O.P.; Kowalski, L.P. Clinicopathological factors are predictors of distant metastasis from major salivary gland carcinomas. J. Oral Maxillofac. Surg. 2011, 40, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Bryant, R.; Palmer, F.L.; DiLorenzo, M.; Shah, J.P.; Patel, S.G.; Ganly, I. Distant Metastases in Patients with Carcinoma of the Major Salivary Glands. Ann. Surg. Oncol. 2015, 22, 4014–4019. [Google Scholar] [CrossRef]
- Pagoni, M.; Cava, C.; Sideris, D.C.; Avgeris, M.; Zoumpourlis, V.; Michalopoulos, I.; Drakoulis, N. miRNA-Based Technologies in Cancer Therapy. J. Pers. Med. 2023, 13, 1586. [Google Scholar] [CrossRef]
- Zhang, W.; Dahlberg, J.E.; Tam, W. MicroRNAs in tumorigenesis: A primer. Am. J. Pathol. 2007, 171, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Yu, H.; Zhang, L.; Li, X.; Feng, Y.; Xin, H. MicroRNAs used as novel biomarkers for detecting cancer metastasis. Tumour Biol. 2014, 36, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, E.S.; Normando, A.G.C.; Scarini, J.F.; Crescencio, L.R.; de Lima-Souza, R.A.; Mariano, F.V.; Leme, A.F.P. Diagnostic and prognostic value of miRNAs on salivary gland tumors: A systematic review and meta-analysis. Oral Maxillofac. Surg. 2021, 25, 445–456. [Google Scholar] [CrossRef]
- El-Husseiny, A.A.; Abdelmaksoud, N.M.; Mageed, S.S.A.; Salman, A.; Zaki, M.B.; El-Mahdy, H.A.; Ismail, A.; Abd-Elmawla, M.A.; El-Husseiny, H.M.; Abulsoud, A.I.; et al. miRNAs orchestration of salivary gland cancer—Particular emphasis on diagnosis, progression, and drug resistance. Pathol. Res. Pract. 2023, 248, 154590. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- Turchan, W.T.; Korpics, M.C.; Rooney, M.; Koshy, M.; Spiotto, M.T. Impact of anatomic site of distant metastasis on survival in salivary gland cancers. Head Neck 2021, 43, 2589–2601. [Google Scholar] [CrossRef]
- Jegadeesh, N.; Liu, Y.; Prabhu, R.S.; Magliocca, K.R.; Marcus, D.M.; Higgins, K.A.; Vainshtein, J.M.; Trad Wadsworth, J.; Beitler, J.J. Outcomes and prognostic factors in modern era management of major salivary gland cancer. Oral Oncol. 2015, 51, 770–777. [Google Scholar] [CrossRef]
- Sung, M.W.; Kim, K.H.; Kim, J.W.; Min, Y.G.; Seong, W.J.; Roh, J.L.; Lee, S.J.; Kwon, T.K.; Park, S.W. Clinicopathologic predictors and impact of distant metastasis from adenoid cystic carcinoma of the head and neck. Arch. Otolaryngol. Head Neck Surg. 2003, 129, 1193–1197. [Google Scholar] [CrossRef]
- Fonseca, F.P.; Sena Filho, M.; Altemani, A.; Speight, P.M.; Vargas, P.A. Molecular signature of salivary gland tumors: Potential use as diagnostic and prognostic marker. J. Oral Pathol. Med. 2016, 45, 101–110. [Google Scholar] [CrossRef]
- Popovtzer, A.; Sarfaty, M.; Limon, D.; Marshack, G.; Perlow, E.; Dvir, A.; Soussan-Gutman, L.; Stemmer, S.M. Metastatic Salivary Gland Tumors: A Single-Center Study Demonstrating the Feasibility and Potential Clinical Benefit of Molecular-Profiling-Guided Therapy. Biomed. Res. Int. 2015, 2015, 614845. [Google Scholar] [CrossRef] [PubMed]
- Chiosea, S.I.; Barnes, E.L.; Lai, S.Y.; Egloff, A.M.; Sargent, R.L.; Hunt, J.L.; Seethala, R.R. Mucoepidermoid carcinoma of upper aerodigestive tract: Clinicopathologic study of 78 cases with immunohistochemical analysis of Dicer expression. Virchows Arch. 2008, 452, 629–635. [Google Scholar] [CrossRef]
- Zhang, X.; Cairns, M.; Rose, B.; O’Brien, C.; Shannon, K.; Clark, J.; Gamble, J.; Tran, N. Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int. J. Cancer 2009, 124, 2855–2863. [Google Scholar] [CrossRef] [PubMed]
- Mitani, Y.; Roberts, D.B.; Fatani, H.; Weber, R.S.; Kies, M.S.; Lippman, S.M.; El-Naggar, A.K. MicroRNA profiling of salivary adenoid cystic carcinoma: Association of miR-17-92 upregulation with poor outcome. PLoS ONE 2013, 8, e66778. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hu, Y.; Fu, J.; Yang, X.; Zhang, Z. MicroRNA155 in the growth and invasion of salivary adenoid cystic carcinoma. J. Oral Pathol. Med. 2013, 42, 140–147. [Google Scholar] [CrossRef]
- Matse, J.H.; Yoshizawa, J.; Wang, X.; Elashoff, D.; Bolscher, J.G.; Veerman, E.C.; Bloemena, E.; Wong, D.T. Discovery and prevalidation of salivary extracellular microRNA biomarkers panel for the noninvasive detection of benign and malignant parotid gland tumors. Clin. Cancer Res. 2013, 19, 3032–3038. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, X.; Dong, Z.; Cao, G.; Zhang, S. Identification of microRNA profiles in salivary adenoid cystic carcinoma cells during metastatic progression. Oncol. Lett. 2014, 7, 2029–2034. [Google Scholar] [CrossRef]
- Flores, B.C.; Lourenço, S.V.; Damascena, A.S.; Kowaslki, L.P.; Soares, F.A.; Coutinho-Camillo, C.M. Altered expression of apoptosis-regulating miRNAs in salivary gland tumors suggests their involvement in salivary gland tumorigenesis. Virchows Arch. 2017, 470, 291–299. [Google Scholar] [CrossRef]
- Andreasen, S.; Agander, T.K.; Bjørndal, K.; Erentaite, D.; Heegaard, S.; Larsen, S.R.; Melchior, L.C.; Tan, Q.; Ulhøi, B.P.; Wessel, I.; et al. Genetic rearrangements, hotspot mutations, and microRNA expression in the progression of metastatic adenoid cystic carcinoma of the salivary gland. Oncotarget 2018, 9, 19675–19687. [Google Scholar] [CrossRef]
- Han, N.; Lu, H.; Zhang, Z.; Ruan, M.; Yang, W.; Zhang, C. Comprehensive and in-depth analysis of microRNA and mRNA expression profile in salivary adenoid cystic carcinoma. Gene 2018, 678, 349–360. [Google Scholar] [CrossRef]
- Kerche, L.E.; de Sousa, E.A.; Squarize, C.H.; Oliveira, K.K.; Marchi, F.A.; Bettim, B.B.; Kowalski, L.P.; Soares, F.A.; Lourenço, S.V.; Coutinho-Camillo, C.M. EMT in salivary gland tumors: The expression of microRNAs miR-155 and miR-200c is associated with clinical-pathological parameters. Mol. Biol. Rep. 2022, 49, 2157–2167. [Google Scholar] [CrossRef]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef]
- Matse, J.H.; Yoshizawa, J.; Wang, X.; Elashoff, D.; Bolscher, J.G.; Veerman, E.C.; Leemans, C.R.; Pegtel, D.M.; Wong, D.T.; Bloemena, E. Human Salivary Micro-RNA in Patients with Parotid Salivary Gland Neoplasms. PLoS ONE 2015, 10, e0142264. [Google Scholar] [CrossRef] [PubMed]
- Shademan, B.; Karamad, V.; Nourazarian, A.; Masjedi, S.; Isazadeh, A.; Sogutlu, F.; Avcı, C.B. MicroRNAs as Targets for Cancer Diagnosis: Interests and Limitations. Adv. Pharm. Bull. 2023, 13, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Binmadi, N.O.; Basile, J.R.; Perez, P.; Gallo, A.; Tandon, M.; Elias, W.; Jang, S.I.; Alevizos, I. miRNA expression profile of mucoepidermoid carcinoma. Oral Dis. 2018, 24, 537–543. [Google Scholar] [CrossRef]
- Naakka, E.; Barros-Filho, M.C.; Adnan-Awad, S.; Al-Samadi, A.; Marchi, F.A.; Kuasne, H.; Korelin, K.; Suleymanova, I.; Brown, A.L.; Scapulatempo-Neto, C.; et al. miR-22 and miR-205 Drive Tumor Aggressiveness of Mucoepidermoid Carcinomas of Salivary Glands. Front. Oncol. 2022, 11, 786150. [Google Scholar] [CrossRef] [PubMed]
- Denaro, M.; Navari, E.; Ugolini, C.; Seccia, V.; Donati, V.; Casani, A.P.; Basolo, F. A microRNA signature for the differential diagnosis of salivary gland tumors. PLoS ONE 2019, 14, e0210968. [Google Scholar] [CrossRef]
- Lu, H.; Han, N.; Xu, W.; Zhu, Y.; Liu, L.; Liu, S.; Yang, W. Screening and bioinformatics analysis of mRNA, long non-coding RNA and circular RNA expression profiles in mucoepidermoid carcinoma of salivary gland. Biochem. Biophys. Res. Commun. 2019, 508, 66–71. [Google Scholar] [CrossRef]
- Li, Y.; Gu, F.; He, Y.; Xiang, J.; Huang, X.; Wang, Y.; Chen, R. MicroRNA in adenoid cystic carcinoma (Review). Int. J. Oncol. 2023, 62, 17. [Google Scholar] [CrossRef]
- Zanon, M.F.; Scapulatempo-Neto, C.; Gama, R.R.; Marques, M.M.C.; Reis, R.M.; Evangelista, A.F. Identification of MicroRNA Expression Profiles Related to the Aggressiveness of Salivary Gland Adenoid Cystic Carcinomas. Genes 2023, 14, 1220. [Google Scholar] [CrossRef]
- Kiss, O.; Tőkés, A.M.; Vranic, S.; Gatalica, Z.; Vass, L.; Udvarhelyi, N.; Szász, A.M.; Kulka, J. Expression of miRNAs in adenoid cystic carcinomas of the breast and salivary glands. Virchows Arch. 2015, 467, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Abdolrahmani, A.; Kardouni Khoozestani, N.; Azmoudeh-Ardalan, F.; Shamshiri, A.R. Prognostic impact of MUC1 and potential regulatory miR-145 and miR-21 expression in salivary mucoepidermoid carcinoma. Head Neck Pathol. 2022, 16, 1134–1145. [Google Scholar] [CrossRef]
- Su, B.; Xu, T.; Bruce, J.P.; Yip, K.W.; Zhang, N.; Huang, Z.; Zhang, G.; Liu, F.F.; Liang, J.; Yang, H.; et al. hsa-miR-24 suppresses metastasis in nasopharyngeal carcinoma by regulating the c-Myc/epithelial-mesenchymal transition axis. Oncol. Rep. 2018, 40, 2536–2546. [Google Scholar] [CrossRef] [PubMed]
- Haghi, M.; Taha, M.F.; Javeri, A. Suppressive effect of exogenous miR-16 and miR-34a on tumorigenesis of breast cancer cells. J. Cell Biochem. 2019, 120, 13342–13353. [Google Scholar] [CrossRef]
- Li, Z.Y.; Xie, Y.; Deng, M.; Zhu, L.; Wu, X.; Li, G.; Shi, N.X.; Wen, C.; Huang, W.; Duan, Y.; et al. c-Myc-activated intronic miR-210 and lncRNA MIR210HG synergistically promote the metastasis of gastric cancer. Cancer Lett. 2022, 526, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, X.; Wen, C.; Yang, X.; Song, M.; Chen, J.; Wang, C.; Zhang, B.; Wang, L.; Iwamoto, A.; et al. Hsa-miR-19a is associated with lymph metastasis and mediates the TNF-α induced epithelial-to-mesenchymal transition in colorectal cancer. Sci. Rep. 2015, 5, 13350. [Google Scholar] [CrossRef]
- Jin, S.; Liu, M.D.; Wu, H.; Pang, P.; Wang, S.; Li, Z.N.; Sun, C.F.; Liu, F.Y. Overexpression of hsa-miR-125a-5p enhances proliferation, migration and invasion of head and neck squamous cell carcinoma cell lines by upregulating C-C chemokine receptor type 7. Oncol. Lett. 2018, 15, 9703–9710. [Google Scholar] [CrossRef]
- Lee, D.; Tang, W.; Dorsey, T.H.; Ambs, S. miR-484 is associated with disease recurrence and promotes migration in prostate cancer. Biosci. Rep. 2020, 40, BSR20191028. [Google Scholar] [CrossRef]
- Li, S.; Qiao, S.; Li, N.; Zhu, X. MiR-744 Functions as an Oncogene Through Direct Binding to c-Fos Promoter and Facilitates Non-small Cell Lung Cancer Progression. Ann. Surg. Oncol. 2022, 29, 1465–1475. [Google Scholar] [CrossRef]
ID | Age (Years) | Sex | Race | Tumor | Histological Grade | Tumor Site | Vascular Invasion | Perineural Invasion | Lymph Node |
---|---|---|---|---|---|---|---|---|---|
MEC9 | 49 | Male | White | Non-metastatic MEC | Low | Parotid | No | No | No |
MEC10 | 15 | Female | Non-white | Non-metastatic MEC | Intermediate | Parotid | No | Yes | No |
MEC11 | 11 | Female | Non-white | Non-metastatic MEC | Low | Parotid | - | - | No |
MEC16 | 72 | Male | White | Non-metastatic MEC | High | Parotid | No | No | No |
MEC8 | 53 | Male | White | Lymph node metastatic MEC | High | Parotid | No | No | Yes |
MEC14 | 12 | Male | Non-white | Lymph node metastatic MEC | - | Parotid | - | - | Yes |
MEC15 | 68 | Male | - | Lymph node metastatic MEC | High | Parotid | No | No | Yes |
MEC7 | 30 | Female | White | Distant metastatic MEC | Intermediate | Parotid | Yes | Yes | Yes |
MEC12 | - | Male | - | Distant metastatic MEC | - | Parotid | - | - | - |
MEC13 | 60 | Male | White | Distant metastatic MEC | High | Parotid | No | Yes | Yes |
Non-Neoplastic × Non-Metastatic MEC | ||
microRNA | Fold Change | p-Value |
hsa-miR-28-3p | 3.97 | 0.000 |
hsa-miR-145 | 16.83 | 0.003 |
hsa-miR-19a | 39.24 | 0.003 |
hsa-miR-186 | 3.11 | 0.010 |
hsa-miR-375 | 67.85 | 0.021 |
hsa-miR-125a-5p | −2.91 | 0.001 |
hsa-miR-27a | −3.59 | 0.002 |
hsa-miR-191 | −2.12 | 0.018 |
hsa-miR-199a-3p | −2.47 | 0.028 |
hsa-miR-103 | −1.56 | 0.035 |
hsa-miR-196b | −31.70 | 0.038 |
hsa-miR-454 | −11.35 | 0.040 |
Non-neoplastic × lymph node metastatic MEC | ||
microRNA | Fold change | p-value |
hsa-miR-328 | 3.41 | 0.017 |
hsa-miR-191 | 3.78 | 0.017 |
hsa-miR-133a | 118.23 | 0.030 |
hsa-miR-200b | 9.21 | 0.032 |
hsa-miR-590-5p | 10.31 | 0.032 |
hsa-miR-886-3p | 13.62 | 0.040 |
hsa-miR-339-3p | 2.13 | 0.041 |
hsa-miR-671-3p | 6.24 | 0.043 |
hsa-miR-324-5p | −1.53 | 0.021 |
hsa-miR-224 | −3.54 | 0.030 |
Non-neoplastic × distant metastatic MEC | ||
microRNA | Fold change | p-value |
hsa-miR-19b | 4.57 | 0.004 |
hsa-miR-494 | 6.96 | 0.021 |
hsa-miR-134-5p | −4.55 | 0.024 |
Non-metastatic MEC × lymph node metastatic MEC | ||
microRNA | Fold change | p-value |
hsa-miR-191 | 7.99 | 0.000 |
hsa-miR-125a-5p | 3.23 | 0.002 |
hsa-miR-27a | 4.55 | 0.002 |
hsa-miR-16 | 6.77 | 0.004 |
hsa-miR-339-3p | 3.84 | 0.005 |
hsa-miR-590-5p | 8.53 | 0.010 |
hsa-miR-671-3p | 5.41 | 0.018 |
hsa-miR-886-3p | 20.25 | 0.019 |
hsa-miR-484 | 4.64 | 0.022 |
hsa-miR-24 | 2.06 | 0.025 |
hsa-miR-374b-5p | 8.88 | 0.026 |
hsa-miR-324-3p | 3.43 | 0.030 |
hsa-miR-210 | 8.21 | 0.032 |
hsa-miR-744 | 2.38 | 0.032 |
hsa-miR-886-5p | 4.58 | 0.033 |
hsa-miR-106a | 2.97 | 0.037 |
hsa-miR-106b | 6.87 | 0.047 |
Non-metastatic × distant metastatic MEC | ||
microRNA | Fold change | p-value |
hsa-miR-27a | 6.00 | 0.004 |
hsa-miR-24 | 3.13 | 0.048 |
Lymph node metastatic MEC × distant metastatic MEC | ||
microRNA | Fold change | p-value |
hsa-miR-134-5p | −18.52 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trevizani, M.E.S.; Marchi, F.A.; Bizinelli, D.; Oliveira, K.K.; Mariano, F.V.; Nagano, C.P.; Costa, F.D.; Pinto, C.A.L.; Kowalski, L.P.; Lourenço, S.V.; et al. MicroRNA Profiles Distinguishing Metastatic from Non-Metastatic Salivary Mucoepidermoid Carcinoma. J. Clin. Med. 2025, 14, 4957. https://doi.org/10.3390/jcm14144957
Trevizani MES, Marchi FA, Bizinelli D, Oliveira KK, Mariano FV, Nagano CP, Costa FD, Pinto CAL, Kowalski LP, Lourenço SV, et al. MicroRNA Profiles Distinguishing Metastatic from Non-Metastatic Salivary Mucoepidermoid Carcinoma. Journal of Clinical Medicine. 2025; 14(14):4957. https://doi.org/10.3390/jcm14144957
Chicago/Turabian StyleTrevizani, Maria Eduarda Salles, Fabio Albuquerque Marchi, Daniela Bizinelli, Katia Klug Oliveira, Fernanda Viviane Mariano, Cibele Pidorodeski Nagano, Felipe D’Almeida Costa, Clóvis Antonio Lopes Pinto, Luiz Paulo Kowalski, Silvia Vanessa Lourenço, and et al. 2025. "MicroRNA Profiles Distinguishing Metastatic from Non-Metastatic Salivary Mucoepidermoid Carcinoma" Journal of Clinical Medicine 14, no. 14: 4957. https://doi.org/10.3390/jcm14144957
APA StyleTrevizani, M. E. S., Marchi, F. A., Bizinelli, D., Oliveira, K. K., Mariano, F. V., Nagano, C. P., Costa, F. D., Pinto, C. A. L., Kowalski, L. P., Lourenço, S. V., & Coutinho-Camillo, C. M. (2025). MicroRNA Profiles Distinguishing Metastatic from Non-Metastatic Salivary Mucoepidermoid Carcinoma. Journal of Clinical Medicine, 14(14), 4957. https://doi.org/10.3390/jcm14144957