Evaluating the Effects of Perioperative Ketorolac Use on Uncemented Total Hip Arthroplasty Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Patient Population
2.3. Demographics
2.4. Index Event and Outcome Analysis
2.5. Statistical Tools, Data Analysis, and Propensity Score Matching
3. Results
3.1. Demographic Characteristics
3.2. Thirty-Day Outcomes
3.3. One-Year Outcomes
3.4. Five-Year Outcomes
3.5. Subgroup Analysis: Renal and Revision Surgery Outcomes in High-Risk Populations
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
THA | Total Hip Arthroplasty |
RR | Risk Ratio |
SSI | Surgical Site Infection |
NSAID | Nonsteroidal Anti-Inflammatory |
HCO | Healthcare Organization |
HER | Electronic Health Record |
CPT | Current Procedural Terminology |
ICD-9 | International Classification of Diseases, 9th Revision |
ICD-10 | International Classification of Diseases, 10th Revision |
eGFR | Estimated Glomerular Filtration Rate |
MI | Myocardial Infarction |
ARF | Acute Renal Failure |
PE | Pulmonary Embolism |
DVT | Deep Vein Thrombosis |
PJI | Periprosthetic Joint Infection |
AR | Absolute Risk |
Ci | Confidence Interval |
HIPAA | Health Insurance Portability and Accountability Act |
IRB | Institutional Review Board |
Appendix A
Code | Description |
---|---|
UMLS:ICD10PCS:0SR90JA | Replacement of Right Hip Joint with Synthetic Substitute, Uncemented, Open Approach |
UMLS:ICD10PCS:0SRB0JA | Replacement of Left Hip Joint with Synthetic Substitute, Uncemented, Open Approach |
UMLS:ICD10PCS:0SR902A | Replacement of Right Hip Joint with Metal on Polyethylene Synthetic Substitute, Uncemented, Open Approach |
UMLS:ICD10PCS:0SR903A | Replacement of Right Hip Joint with Ceramic Synthetic Substitute, Uncemented, Open Approach |
UMLS:ICD10PCS:0SR901A | Replacement of Right Hip Joint with Metal Synthetic Substitute, Uncemented, Open Approach |
UMLS:ICD10PCS:0SR904A | Replacement of Right Hip Joint with Ceramic on Polyethylene Synthetic Substitute, Uncemented, Open Approach |
UMLS:ICD10PCS:0SR906A | Replacement of Right Hip Joint with Oxidized Zirconium on Polyethylene Synthetic Substitute, Uncemented, Open Approach |
UMLS:ICD10PCS:0SRB06A | Replacement of Left Hip Joint with Oxidized Zirconium on Polyethylene Synthetic Substitute, Uncemented, Open Approach |
UMLS:ICD10PCS:0SRB01A | Replacement of Left Hip Joint with Metal Synthetic Substitute, Uncemented, Open Approach |
UMLS:ICD10PCS:0SRB02A | Replacement of Left Hip Joint with Metal on Polyethylene Synthetic Substitute, Uncemented, Open Approach |
UMLS:ICD10PCS:0SRB03A | Replacement of Left Hip Joint with Ceramic Synthetic Substitute, Uncemented, Open Approach |
UMLS:ICD10PCS:0SRB04A | Replacement of Left Hip Joint with Ceramic on Polyethylene Synthetic Substitute, Uncemented, Open Approach |
NLM:RXNORM:35827 | ketorolac |
Code | Description |
---|---|
UMLS:ICD10PCS:30233N1 | Transfusion |
UMLS:ICD10CM:I21 | Myocardial Infarction |
UMLS:ICD10CM:I26 | Pulmonary Embolism |
UMLS:ICD10CM:I82.4 | Deep Vein Thrombosis |
UMLS:ICD10CM:M79.81 | Hematoma |
UMLS:ICD10CM:T84.5 | Periprosthetic Joint Infection |
UMLS:ICD10CM:N17 | Acute Renal Failure |
UMLS:ICD10CM:D62 | Acute Posthemorrhagic Anemia |
UMLS:ICD10CM:T81.30XA; UMLS:ICD10CM:T81.31XA; UMLS:ICD10CM:T81.32XA. | Wound Dehiscence |
UMLS:ICD10CM:T81.42 | Deep SSI |
UMLS:ICD10CM:T81.41 | Superficial SSI |
UMLS:ICD10CM:T84.09 | Periprosthetic Mechanical Complication |
UMLS:ICD10CM:T84.02 | Periprosthetic Dislocation |
UMLS:ICD10CM:T84.01; UMLS:ICD10CM:M96.6; UMLS:ICD10CM:M97.0 | Periprosthetic Fracture |
UMLS:ICD10CM:I46; or UMLS:ICD10CM:I97.12. | Cardiac Arrest |
References
- Gademan, M.G.J.; Hofstede, S.N.; Vlieland, T.P.M.V.; Nelissen, R.G.H.H.; Marang-van de Mheen, P.J. Indication Criteria for Total Hip or Knee Arthroplasty in Osteoarthritis: A State-of-the-Science Overview. BMC Musculoskelet. Disord. 2016, 17, 463. [Google Scholar] [CrossRef]
- Luzzi, A.J.; Fleischman, A.N.; Matthews, C.N.; Crizer, M.P.; Wilsman, J.; Parvizi, J. The “Bundle Busters”: Incidence and Costs of Postacute Complications Following Total Joint Arthroplasty. J. Arthroplast. 2018, 33, 2734–2739. [Google Scholar] [CrossRef]
- Fillingham, Y.A.; Hannon, C.P.; Roberts, K.C.; Mullen, K.; Casambre, F.; Riley, C.; Hamilton, W.G.; Valle, C.J.D. The Efficacy and Safety of Nonsteroidal Anti-Inflammatory Drugs in Total Joint Arthroplasty: Systematic Review and Direct Meta-Analysis. J. Arthroplast. 2020, 35, 2739–2758. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.R.; Dragoo, J.L. The Effect of Nonsteroidal Anti-Inflammatory Drugs on Tissue Healing. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2013, 21, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Nakata, H.; Shelby, T.; Wang, J.C.; Bouz, G.J.; Mayfield, C.K.; Oakes, D.A.; Lieberman, J.R.; Christ, A.B.; Heckmann, N.D. Postoperative Complications Associated with Non-Steroidal Anti-Inflammatory Combinations Used Status-Post Total Hip and Knee Arthroplasty. J. Clin. Med. 2023, 12, 6969. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.R.; Mir, H.; Wally, M.K.; Seymour, R.B.; Orthopaedic Trauma Association Musculoskeletal Pain Task Force. Clinical Practice Guidelines for Pain Management in Acute Musculoskeletal Injury. J. Orthop. Trauma 2019, 33, e158–e182. [Google Scholar] [CrossRef]
- Borgeat, A.; Ofner, C.; Saporito, A.; Farshad, M.; Aguirre, J. The Effect of Nonsteroidal Anti-Inflammatory Drugs on Bone Healing in Humans: A Qualitative, Systematic Review. J. Clin. Anesth. 2018, 49, 92–100. [Google Scholar] [CrossRef]
- Pountos, I.; Georgouli, T.; Calori, G.M.; Giannoudis, P.V. Do Nonsteroidal Anti-Inflammatory Drugs Affect Bone Healing? A Critical Analysis. Sci. World J. 2012, 2012, 606404. [Google Scholar] [CrossRef]
- Warth, L.C.; Noiseux, N.O.; Hogue, M.H.; Klaassen, A.L.; Liu, S.S.; Callaghan, J.J. Risk of Acute Kidney Injury After Primary and Revision Total Hip Arthroplasty and Total Knee Arthroplasty Using a Multimodal Approach to Perioperative Pain Control Including Ketorolac and Celecoxib. J. Arthroplast. 2016, 31, 253–255. [Google Scholar] [CrossRef]
- McNicol, E.D.; Ferguson, M.C.; Schumann, R. Single-Dose Intravenous Ketorolac for Acute Postoperative Pain in Adults. Cochrane Database Syst. Rev. 2021, 5, CD013263. [Google Scholar] [CrossRef]
- Abdulkarim, A.; Ellanti, P.; Motterlini, N.; Fahey, T.; O’Byrne, J.M. Cemented versus Uncemented Fixation in Total Hip Replacement: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Orthop. Rev. 2013, 5, e8. [Google Scholar] [CrossRef]
- Raisz, L.G. Potential Impact of Selective Cyclooxygenase-2 Inhibitors on Bone Metabolism in Health and Disease. Am. J. Med. 2001, 110 (Suppl. 3A), 43S–45S. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.M.; Manigrasso, M.B.; O’Connor, J.P. Cyclo-Oxygenase 2 Function Is Essential for Bone Fracture Healing. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2002, 17, 963–976. [Google Scholar] [CrossRef] [PubMed]
- Linked EHR and Claims. Available online: https://trinetx.com/real-world-data/linked/ (accessed on 1 July 2024).
- Pereira, D.E.; Ford, C.; Mittal, M.M.; Lee, T.M.; Joseph, K.; Madrigal, S.C.; Momtaz, D.; Torres-Izquierdo, B.; Hosseinzadeh, P. Effect of Ketorolac Administration on the Rate of Nonunion of Operatively Treated Pediatric Long-Bone Fractures: A Matched Cohort Analysis. J. Bone Jt. Surg. Am. 2024, 107, 66–72. [Google Scholar] [CrossRef]
- McGettigan, P.; Henry, D. Cardiovascular Risk with Non-Steroidal Anti-Inflammatory Drugs: Systematic Review of Population-Based Controlled Observational Studies. PLoS Med. 2011, 8, e1001098. [Google Scholar] [CrossRef]
- Kearney, P.M.; Baigent, C.; Godwin, J.; Halls, H.; Emberson, J.R.; Patrono, C. Do Selective Cyclo-Oxygenase-2 Inhibitors and Traditional Non-Steroidal Anti-Inflammatory Drugs Increase the Risk of Atherothrombosis? Meta-Analysis of Randomised Trials. BMJ 2006, 332, 1302–1308. [Google Scholar] [CrossRef]
- Cozowicz, C.; Olson, A.; Poeran, J.; Mörwald, E.E.; Zubizarreta, N.; Girardi, F.P.; Hughes, A.P.; Mazumdar, M.; Memtsoudis, S.G. Opioid Prescription Levels and Postoperative Outcomes in Orthopedic Surgery. Pain 2017, 158, 2422–2430. [Google Scholar] [CrossRef]
- Schwinghammer, A.J.; Isaacs, A.N.; Benner, R.W.; Freeman, H.; O’Sullivan, J.A.; Nisly, S.A. Continuous Infusion Ketorolac for Postoperative Analgesia Following Unilateral Total Knee Arthroplasty. Ann. Pharmacother. 2017, 51, 451–456. [Google Scholar] [CrossRef]
- Conrad, K.A.; Fagan, T.C.; Mackie, M.J.; Mayshar, P.V. Effects of Ketorolac Tromethamine on Hemostasis in Volunteers. Clin. Pharmacol. Ther. 1988, 43, 542–546. [Google Scholar] [CrossRef]
- Greer, I.A. Effects of Ketorolac Tromethamine on Hemostasis. Pharmacotherapy 1990, 10, 71S–76S. [Google Scholar] [CrossRef]
- Cheng, H.; Huang, H.; Guo, Z.; Chang, Y.; Li, Z. Role of Prostaglandin E2 in Tissue Repair and Regeneration. Theranostics 2021, 11, 8836–8854. [Google Scholar] [CrossRef]
- Solaiman, R.H.; Dirnberger, J.; Kennedy, N.I.; DePhillipo, N.N.; Tagliero, A.J.; Malinowski, K.; Dimmen, S.; LaPrade, R.F. The Effect of Nonsteroidal Anti-Inflammatory Drug Use on Soft Tissue and Bone Healing in the Knee: A Systematic Review. Ann. Jt. 2024, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.K.; Wang, H.; Peskar, B.M.; Levin, E.; Itani, R.M.; Sarfeh, I.J.; Tarnawski, A.S. Inhibition of Angiogenesis by Nonsteroidal Anti-Inflammatory Drugs: Insight into Mechanisms and Implications for Cancer Growth and Ulcer Healing. Nat. Med. 1999, 5, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Krischak, G.D.; Augat, P.; Claes, L.; Kinzl, L.; Beck, A. The Effects of Non-Steroidal Anti-Inflammatory Drug Application on Incisional Wound Healing in Rats. J. Wound Care 2007, 16, 76–78. [Google Scholar] [CrossRef]
- Su, B.; O’Connor, J.P. NSAID Therapy Effects on Healing of Bone, Tendon, and the Enthesis. J. Appl. Physiol. 2013, 115, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Malahias, M.-A.; Loucas, R.; Loucas, M.; Denti, M.; Sculco, P.K.; Greenberg, A. Preoperative Opioid Use Is Associated With Higher Revision Rates in Total Joint Arthroplasty: A Systematic Review. J. Arthroplast. 2021, 36, 3814–3821. [Google Scholar] [CrossRef]
- Weick, J.; Bawa, H.; Dirschl, D.R.; Luu, H.H. Preoperative Opioid Use Is Associated with Higher Readmission and Revision Rates in Total Knee and Total Hip Arthroplasty. J. Bone Jt. Surg. Am. 2018, 100, 1171–1176. [Google Scholar] [CrossRef]
+Ketorolac | −Ketorolac | ||
---|---|---|---|
Characteristic | N (Mean or %) | N (Mean or %) | p |
Age at Index | 51,297 (62.5 ± 11.4) | 78,268 (63.2 ± 11.2) | <0.01 |
Sex | |||
Men | 23,187 (45%) | 35,321 (45%) | 0.80 |
Women | 27,303 (53%) | 41,218 (53%) | 0.05 |
Race and Ethnicity | |||
Hispanic or Latino | 1637 (3%) | 1557 (2%) | <0.01 |
Asian | 1439 (3%) | 3524 (5%) | <0.01 |
Black or African American | 4871 (9%) | 7293 (9%) | 0.28 |
White | 41,253 (80%) | 58,868 (75%) | <0.01 |
Other Race | 895 (2%) | 1157 (1%) | <0.01 |
Diagnosis | |||
Tobacco Use | 1662 (3%) | 1596 (2%) | <0.01 |
Diabetes Mellitus | 6429 (13%) | 10,447 (13%) | <0.01 |
Primary Hypertension | 22,292 (43%) | 32,829 (42%) | <0.01 |
Hyperlipidemia | 18,217 (36%) | 26,895 (34%) | <0.01 |
Chronic Ischemic Heart Disease | 5072 (10%) | 8144 (10%) | <0.01 |
Chronic Lower Respiratory Disease | 7644 (15%) | 11,035 (14%) | <0.01 |
Body Mass Index | |||
Mean Body Mass Index | 30.1 ± 6.37 | 29.9 ± 6.37 | <0.01 |
eGFR | |||
At least 90 mL/min/1.73 m2 | 21,283 (41%) | 26,724 (34%) | <0.01 |
60–90 mL/min/1.73 m2 | 30,918 (60%) | 42,865 (55%) | <0.01 |
45–60 mL/min/1.73 m2 | 10,540 (21%) | 17,026 (22%) | <0.01 |
30–45 mL/min/1.73 m2 | 3658 (7%) | 7273 (9%) | <0.01 |
15–30 mL/min/1.73 m2 | 1067 (2%) | 2641 (3%) | <0.01 |
At most 15 mL/min/1.73 m2 | 456 (1%) | 2067 (3%) | <0.01 |
+Ketorolac | −Ketorolac | ||
---|---|---|---|
Characteristic | N (Mean or %) | N (Mean or %) | p |
Age at Index | 51,050 (62.6 ± 11.4) | 51,050 (62.4 ± 11.3) | 0.03 |
Sex | |||
Men | 23,066 (45%) | 23,130 (45%) | 0.69 |
Women | 27,177 (53%) | 27,130 (53%) | 0.77 |
Race and Ethnicity | |||
Hispanic or Latino | 1631 (3%) | 1088 (2%) | <0.01 |
Asian | 1438 (3%) | 2439 (5%) | <0.01 |
Black or African American | 4827 (9%) | 4812 (9%) | 0.87 |
White | 41,064 (80%) | 38,666 (76%) | <0.01 |
Other Race | 890 (2%) | 778 (2%) | <0.01 |
Diagnosis | |||
Tobacco Use | 1421 (3%) | 1391 (3%) | 0.57 |
Diabetes Mellitus | 6396 (13%) | 5984 (12%) | <0.01 |
Primary Hypertension | 22,120 (43%) | 21,432 (42%) | <0.01 |
Hyperlipidemia | 18,074 (35%) | 17,452 (34%) | <0.01 |
Chronic Ischemic Heart Disease | 5035 (10%) | 4716 (9%) | <0.01 |
Chronic Lower Respiratory Disease | 7534 (15%) | 7084 (14%) | <0.01 |
Body Mass Index | |||
Mean Body Mass Index | 30.1 ± 6.37 | 30 ± 6.28 | 0.05 |
eGFR | |||
At least 90 mL/min/1.73 m2 | 21,055 (41%) | 20,926 (41%) | 0.41 |
60–90 mL/min/1.73 m2 | 30,702 (60%) | 30,711 (60%) | 0.95 |
45–60 mL/min/1.73 m2 | 10,475 (21%) | 10,095 (20%) | <0.01 |
30–45 mL/min/1.73 m2 | 3653 (7%) | 3330 (7%) | <0.01 |
15–30 mL/min/1.73 m2 | 1067 (2%) | 1023 (2%) | 0.33 |
At most 15 mL/min/1.73 m2 | 456 (1%) | 496 (1%) | 0.19 |
Measure | +Ketorolac Proportion | −Ketorolac Proportion | Risk Ratio | 95% CI | p |
---|---|---|---|---|---|
Cardiovascular Outcomes | |||||
Myocardial Infarction | 0.3% | 0.3% | 0.9 | (0.7, 1.2) | 0.60 |
Cardiac Arrest | 0.1% | 0.1% | 1.5 | (0.9, 2.4) | 0.17 |
Death | 0.1% | 0.2% | 0.8 | (0.6, 1.1) | 0.29 |
Renal, Vascular and Hematologic Outcomes | |||||
Transfusion | 2.7% | 4.4% | 0.6 | (0.6, 0.7) | <0.01 |
Pulmonary Embolism | 0.6% | 0.5% | 1.2 | (1.0, 1.4) | 0.11 |
Deep Vein Thrombosis (Lower Extremity) | 0.9% | 0.9% | 0.9 | (0.8, 1.1) | 0.41 |
Acute Posthemorrhagic Anemia | 7.7% | 6.6% | 1.2 | (1.1, 1.2) | <0.01 |
Hematoma | 0.0% | 0.0% | 1.0 | (0.6, 1.7) | 1.00 |
Acute Renal Failure | 1.3% | 1.2% | 1.1 | (1.0, 1.2) | 0.29 |
Infectious Outcomes | |||||
Deep Surgical Site Infection | 0.0% | 0.0% | 1.9 | (0.9, 4.0) | 0.11 |
Superficial Surgical Site Infection | 0.1% | 0.1% | 1.5 | (1.0, 2.3) | 0.05 |
Periprosthetic Joint Infection | 1.4% | 1.3% | 1.1 | (1.0, 1.2) | 0.07 |
Surgical and Mechanical Outcomes | |||||
Wound Dehiscence | 0.5% | 0.4% | 1.2 | (1.0, 1.5) | 0.06 |
Periprosthetic Mechanical Complication | 0.4% | 0.4% | 1.1 | (0.9, 1.3) | 0.45 |
Periprosthetic Dislocation | 0.9% | 0.8% | 1.1 | (1.0, 1.2) | 0.24 |
Periprosthetic Fracture | 1.1% | 0.8% | 1.4 | (1.2, 1.6) | <0.01 |
Revision Surgery | 0.7% | 0.7% | 1.0 | (0.9, 1.2) | 0.94 |
Measure | +Ketorolac Proportion | −Ketorolac Proportion | Risk Ratio | 95% CI | p |
---|---|---|---|---|---|
Cardiovascular Outcomes | |||||
Myocardial Infarction | 0.9% | 0.9% | 1.0 | (0.9, 1.1) | 0.82 |
Cardiac Arrest | 0.2% | 0.2% | 1.0 | (0.8, 1.3) | 0.94 |
Death | 0.8% | 1.0% | 0.8 | (0.7, 0.9) | <0.01 |
Renal, Vascular and Hematologic Outcomes | |||||
Transfusion | 3.7% | 5.5% | 0.7 | (0.6, 0.7) | <0.01 |
Pulmonary Embolism | 1.2% | 1.1% | 1.1 | (1.0, 1.2) | 0.21 |
Deep Vein Thrombosis (Lower Extremity) | 2.0% | 2.0% | 1.0 | (0.9, 1.1) | 0.70 |
Acute Posthemorrhagic Anemia | 10.3% | 8.8% | 1.2 | (1.1, 1.2) | <0.01 |
Hematoma | 0.1% | 0.1% | 1.0 | (0.7, 1.4) | 0.93 |
Acute Renal Failure | 2.9% | 2.7% | 1.1 | (1.0, 1.2) | 0.06 |
Infectious Outcomes | |||||
Deep Superficial Surgical Site Infection | 0.1% | 0.1% | 1.8 | (1.2, 2.7) | 0.01 |
Superficial Surgical Site Infection | 0.3% | 0.2% | 1.9 | (1.5, 2.4) | <0.01 |
Periprosthetic Joint Infection | 2.8% | 2.5% | 1.1 | (1.0, 1.2) | <0.01 |
Surgical and Mechanical Outcomes | |||||
Wound Dehiscence | 1.1% | 0.9% | 1.2 | (1.1, 1.4) | <0.01 |
Periprosthetic Mechanical Complication | 1.2% | 1.0% | 1.2 | (1.1, 1.4) | <0.01 |
Periprosthetic Dislocation | 2.0% | 1.9% | 1.1 | (1.0, 1.2) | 0.12 |
Periprosthetic Fracture | 2.4% | 1.6% | 1.5 | (1.4, 1.6) | <0.01 |
Revision Surgery | 1.9% | 1.9% | 1.0 | (0.9, 1.1) | 0.69 |
Subgroup Analysis | |||||
30-Day Renal Failure (Patients > 75 with Diabetes Mellitus) | 5.7% | 5.5% | 1.0 | (0.7, 1.4) | 0.93 |
1-Year Revision Surgery (Patients > 70 and Body Mass Index > 25) | 1.7% | 2.0% | 0.9 | (0.7, 1.1) | 0.21 |
5-Year Revision Surgery (Patients > 70 and Body Mass Index > 25) | 4.9% | 5.8% | 0.8 | (0.7, 1.0) | 0.01 |
5-Year Revision Surgery | 2.9% | 3.0% | 1.0 | (0.9, 1.0) | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mittal, M.M.; Edwards, D.; Chen, A.F.; Mounasamy, V.; Sambandam, S.N. Evaluating the Effects of Perioperative Ketorolac Use on Uncemented Total Hip Arthroplasty Outcomes. J. Clin. Med. 2025, 14, 4956. https://doi.org/10.3390/jcm14144956
Mittal MM, Edwards D, Chen AF, Mounasamy V, Sambandam SN. Evaluating the Effects of Perioperative Ketorolac Use on Uncemented Total Hip Arthroplasty Outcomes. Journal of Clinical Medicine. 2025; 14(14):4956. https://doi.org/10.3390/jcm14144956
Chicago/Turabian StyleMittal, Mehul M., David Edwards, Antonia F. Chen, Varatharaj Mounasamy, and Senthil N. Sambandam. 2025. "Evaluating the Effects of Perioperative Ketorolac Use on Uncemented Total Hip Arthroplasty Outcomes" Journal of Clinical Medicine 14, no. 14: 4956. https://doi.org/10.3390/jcm14144956
APA StyleMittal, M. M., Edwards, D., Chen, A. F., Mounasamy, V., & Sambandam, S. N. (2025). Evaluating the Effects of Perioperative Ketorolac Use on Uncemented Total Hip Arthroplasty Outcomes. Journal of Clinical Medicine, 14(14), 4956. https://doi.org/10.3390/jcm14144956