Evaluation of GDF15 Significance as a Biomarker in Laryngeal Squamous Cell Carcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Material
2.2. Survival Definitions
2.3. Tissue Macroarray Construction and Immunohistochemistry
2.4. Extraction of RNA Sequencing TCGA Data and Clinical Information
2.5. GEO Data Collection
2.6. Statistical Analysis
3. Results
3.1. Immunohistochemical Analysis of GDF15 Expression Comparing Tumor Tissue with Adjacent Normal Tissue
3.2. Comparison of GDF15 Expression Between Tumor Tissue and Non-Tumor Tissue in TMA and Publicly Available Cohorts
3.3. Stratified Analysis by Clinical and Lifestyle Variables
3.4. Association Between GDF15 Expression and Clinicopathological Variables in TMA and TCGA Cohorts
3.5. Relationships to Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AJCC | American Joint Committee on Cancer |
DFS | Disease-Free Survival |
FFPE | Formalin-Fixed, Paraffin-Embedded |
GDF15 | Growth Differentiation Factor 15 |
GEO | Gene Expression Omnibus |
GTEx | Genotype-Tissue Expression |
HR | Hazard Ratio |
IHC | Immunohistochemistry |
IRS | Immunoreactive Score |
LSCC | Laryngeal Squamous Cell Carcinoma |
N/A | Not Available |
OS | Overall Survival |
ROC | Receiver Operating Characteristic |
TCGA | The Cancer Genome Atlas |
TGF-β | Transforming Growth Factor Beta |
TMA | Tissue Macroarray |
References
- Hoffman, H.T.; Karnell, L.H.; Funk, G.F.; Robinson, R.A.; Menck, H.R. The National Cancer Data Base Report on Cancer of the Head and Neck. Arch. Otolaryngol. Neck Surg. 1998, 124, 951. [Google Scholar] [CrossRef]
- Chu, E.A.; Kim, Y.J. Laryngeal Cancer: Diagnosis and Preoperative Work-Up. Otolaryngol. Clin. N. Am. 2008, 41, 673–695. [Google Scholar] [CrossRef]
- Steuer, C.E.; El-Deiry, M.; Parks, J.R.; Higgins, K.A.; Saba, N.F. An Update on Larynx Cancer. CA Cancer J. Clin. 2017, 67, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bi, Y.; Liu, G.; Wang, W.; Cui, H. Smoking and Alcohol Consumption with the Risk of 11 Common Otolaryngological Diseases: A Bidirectional Mendelian Randomization. Eur. Arch. Otorhinolaryngol. 2023, 280, 5615–5623. [Google Scholar] [CrossRef]
- Saad, M.A.; Kuo, S.Z.; Rahimy, E.; Zou, A.E.; Korrapati, A.; Rahimy, M.; Kim, E.; Zheng, H.; Yu, M.A.; Wang-Rodriguez, J.; et al. Alcohol-Dysregulated miR-30a and miR-934 in Head and Neck Squamous Cell Carcinoma. Mol. Cancer 2015, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-L.; Chang, J.T.; Lee, L.-Y.; Fan, K.-H.; Lu, Y.-C.; Li, Y.-C.; Chiang, C.-H.; You, G.-R.; Chen, H.-Y.; Cheng, A.-J. GDF15 Contributes to Radioresistance and Cancer Stemness of Head and Neck Cancer by Regulating Cellular Reactive Oxygen Species via a SMAD-Associated Signaling Pathway. Oncotarget 2017, 8, 1508–1528. [Google Scholar] [CrossRef]
- Ahmed, D.S.; Isnard, S.; Lin, J.; Routy, B.; Routy, J.-P. GDF15/GFRAL Pathway as a Metabolic Signature for Cachexia in Patients with Cancer. J. Cancer 2021, 12, 1125–1132. [Google Scholar] [CrossRef]
- Corre, J.; Hébraud, B.; Bourin, P. Concise Review: Growth Differentiation Factor 15 in Pathology: A Clinical Role? Stem Cells Transl. Med. 2013, 2, 946–952. [Google Scholar] [CrossRef]
- Adela, R.; Banerjee, S.K. GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. J. Diabetes Res. 2015, 2015, 490842. [Google Scholar] [CrossRef]
- Mullican, S.E.; Lin-Schmidt, X.; Chin, C.-N.; Chavez, J.A.; Furman, J.L.; Armstrong, A.A.; Beck, S.C.; South, V.J.; Dinh, T.Q.; Cash-Mason, T.D.; et al. GFRAL Is the Receptor for GDF15 and the Ligand Promotes Weight Loss in Mice and Nonhuman Primates. Nat. Med. 2017, 23, 1150–1157. [Google Scholar] [CrossRef]
- Wischhusen, J.; Melero, I.; Fridman, W.H. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front. Immunol. 2020, 11, 951. [Google Scholar] [CrossRef]
- Au Yeung, S.L.; Luo, S.; Schooling, C.M. The Impact of GDF-15, a Biomarker for Metformin, on the Risk of Coronary Artery Disease, Breast and Colorectal Cancer, and Type 2 Diabetes and Metabolic Traits: A Mendelian Randomisation Study. Diabetologia 2019, 62, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, R.; Yang, H.; Zhang, D.; Liu, J.; Li, J.; Guo, B. GDF15 Knockdown Suppresses Cervical Cancer Cell Migration In Vitro Through the TGF-β/Smad2/3/Snail1 Pathway. FEBS Open Bio 2020, 10, 2750–2760. [Google Scholar] [CrossRef] [PubMed]
- Sadasivan, S.M.; Chen, Y.; Gupta, N.S.; Han, X.; Bobbitt, K.R.; Chitale, D.A.; Williamson, S.R.; Rundle, A.G.; Tang, D.; Rybicki, B.A. The Interplay of Growth Differentiation Factor 15 (GDF15) Expression and M2 Macrophages during Prostate Carcinogenesis. Carcinogenesis 2020, 41, 1074–1082. [Google Scholar] [CrossRef]
- Ma, J.; Tang, X.; Sun, W.; Liu, Y.; Tan, Y.; Ma, H.; Zhu, D.; Wang, M.; Wang, L.; Li, J.; et al. Mutant GDF15 Presents a Poor Prognostic Outcome for Patients with Oral Squamous Cell Carcinoma. Oncotarget 2016, 7, 2113–2122. [Google Scholar] [CrossRef]
- Klimaszewska-Wiśniewska, A.; Neska-Długosz, I.; Buchholz, K.; Durślewicz, J.; Grzanka, D.; Kasperska, A.; Antosik, P.; Zabrzyński, J.; Grzanka, A.; Gagat, M. Prognostic Significance of KIF11 and KIF14 Expression in Pancreatic Adenocarcinoma. Cancers 2021, 13, 3017. [Google Scholar] [CrossRef]
- Buchholz, K.; Antosik, P.; Grzanka, D.; Gagat, M.; Smolińska, M.; Grzanka, A.; Gzil, A.; Kasperska, A.; Klimaszewska-Wiśniewska, A. Expression of the Body-Weight Signaling Players: GDF15, GFRAL and RET and Their Clinical Relevance in Gastric Cancer. J. Cancer 2021, 12, 4698–4709. [Google Scholar] [CrossRef]
- Remmele, W.; Stegner, H.E. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 1987, 8, 138–140. [Google Scholar]
- Ogłuszka, M.; Orzechowska, M.; Jędroszka, D.; Witas, P.; Bednarek, A.K. Evaluate Cutpoints: Adaptable Continuous Data Distribution System for Determining Survival in Kaplan-Meier Estimator. Comput. Methods Programs Biomed. 2019, 177, 133–139. [Google Scholar] [CrossRef]
- Dumas, J.; Gargano, M.A.; Dancik, G.M. shinyGEO: A Web-Based Application for Analyzing Gene Expression Omnibus Datasets. Bioinformatics 2016, 32, 3679–3681. [Google Scholar] [CrossRef]
- Fountzilas, E.; Markou, K.; Vlachtsis, K.; Nikolaou, A.; Arapantoni-Dadioti, P.; Ntoula, E.; Tassopoulos, G.; Bobos, M.; Konstantinopoulos, P.; Fountzilas, G.; et al. Identification and Validation of Gene Expression Models That Predict Clinical Outcome in Patients with Early-Stage Laryngeal Cancer. Ann. Oncol. 2012, 23, 2146–2153. [Google Scholar] [CrossRef]
- Fountzilas, E.; Kotoula, V.; Angouridakis, N.; Karasmanis, I.; Wirtz, R.M.; Eleftheraki, A.G.; Veltrup, E.; Markou, K.; Nikolaou, A.; Pectasides, D.; et al. Identification and Validation of a Multigene Predictor of Recurrence in Primary Laryngeal Cancer. PLoS ONE 2013, 8, e70429. [Google Scholar] [CrossRef]
- Plaça, J.R.; Bueno, R.D.B.E.L.; Pinheiro, D.G.; Panepucci, R.A.; De Araújo, L.F.; Mamede, R.C.M.; Figueiredo, D.L.A.; Silva, W.A. Gene Expression Analysis of Laryngeal Squamous Cell Carcinoma. Genom. Data 2015, 5, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Mock, A.; Plath, M.; Moratin, J.; Tapken, M.J.; Jäger, D.; Krauss, J.; Fröhling, S.; Hess, J.; Zaoui, K. EGFR and PI3K Pathway Activities Might Guide Drug Repurposing in HPV-Negative Head and Neck Cancers. Front. Oncol. 2021, 11, 678966. [Google Scholar] [CrossRef]
- Metzger, K.; Moratin, J.; Freier, K.; Hoffmann, J.; Zaoui, K.; Plath, M.; Stögbauer, F.; Freudlsperger, C.; Hess, J.; Horn, D. A Six-Gene Expression Signature Related to Angiolymphatic Invasion Is Associated with Poor Survival in Laryngeal Squamous Cell Carcinoma. Eur. Arch. Otorhinolaryngol. 2021, 278, 1199–1207. [Google Scholar] [CrossRef]
- Lian, M.; Fang, J.; Han, D.; Ma, H.; Feng, L.; Wang, R.; Yang, F. Microarray Gene Expression Analysis of Tumorigenesis and Regional Lymph Node Metastasis in Laryngeal Squamous Cell Carcinoma. PLoS ONE 2013, 8, e84854. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Pothuraju, R.; Khan, P.; Sharma, G.; Muniyan, S.; Seshacharyulu, P.; Jain, M.; Nasser, M.W.; Batra, S.K. Pathophysiological Role of Growth Differentiation Factor 15 (GDF15) in Obesity, Cancer, and Cachexia. Cytokine Growth Factor Rev. 2022, 64, 71–83. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhang, M.; Zhang, Z.; Jiang, L.; Li, L. GDF15 Promotes Epithelial-to-Mesenchymal Transition in Colorectal [Corrected]. Artif. Cells Nanomed. Biotechnol. 2018, 46, 652–658. [Google Scholar] [CrossRef]
- Mehta, R.S.; Chong, D.Q.; Song, M.; Meyerhardt, J.A.; Ng, K.; Nishihara, R.; Qian, Z.; Morikawa, T.; Wu, K.; Giovannucci, E.L.; et al. Association Between Plasma Levels of Macrophage Inhibitory Cytokine-1 Before Diagnosis of Colorectal Cancer and Mortality. Gastroenterology 2015, 149, 614–622. [Google Scholar] [CrossRef]
- Han, M.; Dai, D.; Yousafzai, N.A.; Wang, F.; Wang, H.; Zhou, Q.; Lu, H.; Xu, W.; Feng, L.; Jin, H.; et al. CXXC4 Activates Apoptosis through Up-Regulating GDF15 in Gastric Cancer. Oncotarget 2017, 8, 103557–103567. [Google Scholar] [CrossRef]
- Guo, J.; Bian, Y.; Wang, Y.; Chen, L.; Yu, A.; Sun, X. S100A4 Influences Cancer Stem Cell-like Properties of MGC803 Gastric Cancer Cells by Regulating GDF15 Expression. Int. J. Oncol. 2016, 49, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Chakraborty, S.; Baine, M.J.; Mallya, K.; Smith, L.M.; Sasson, A.; Brand, R.; Guha, S.; Jain, M.; Wittel, U.; et al. Potentials of Plasma NGAL and MIC-1 as Biomarker(s) in the Diagnosis of Lethal Pancreatic Cancer. PLoS ONE 2013, 8, e55171. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, S.; Tian, H.; Bao, Y. Macrophage Inhibitory Cytokine-1 versus Carbohydrate Antigen 19-9 as a Biomarker for Diagnosis of Pancreatic Cancer: A PRISMA-Compliant Meta-Analysis of Diagnostic Accuracy Studies. Medicine 2018, 97, e9994. [Google Scholar] [CrossRef] [PubMed]
- Peake, B.F.; Eze, S.M.; Yang, L.; Castellino, R.C.; Nahta, R. Growth Differentiation Factor 15 Mediates Epithelial Mesenchymal Transition and Invasion of Breast Cancers through IGF-1R-FoxM1 Signaling. Oncotarget 2017, 8, 94393–94406. [Google Scholar] [CrossRef]
- Gkretsi, V.; Stylianou, A.; Kalli, M.; Louca, M.; Voutouri, C.; Zaravinos, A.; Stylianopoulos, T. Silencing of Growth Differentiation Factor-15 Promotes Breast Cancer Cell Invasion by Down-Regulating Focal Adhesion Genes. Anticancer Res. 2020, 40, 1375–1385. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, B.Y.; Brown, D.A.; Molloy, M.P.; Marx, G.M.; Pavlakis, N.; Boyer, M.J.; Stockler, M.R.; Kaplan, W.; Breit, S.N.; et al. Identification of Candidate Biomarkers of Therapeutic Response to Docetaxel by Proteomic Profiling. Cancer Res. 2009, 69, 7696–7703. [Google Scholar] [CrossRef]
- Li, J.; Veltri, R.W.; Yuan, Z.; Christudass, C.S.; Mandecki, W. Macrophage Inhibitory Cytokine 1 Biomarker Serum Immunoassay in Combination with PSA Is a More Specific Diagnostic Tool for Detection of Prostate Cancer. PLoS ONE 2015, 10, e0122249. [Google Scholar] [CrossRef]
- Lerner, L.; Hayes, T.G.; Tao, N.; Krieger, B.; Feng, B.; Wu, Z.; Nicoletti, R.; Chiu, M.I.; Gyuris, J.; Garcia, J.M. Plasma Growth Differentiation Factor 15 Is Associated with Weight Loss and Mortality in Cancer Patients. J. Cachexia Sarcopenia Muscle 2015, 6, 317–324. [Google Scholar] [CrossRef]
- Baek, S.J.; Okazaki, R.; Lee, S.-H.; Martinez, J.; Kim, J.-S.; Yamaguchi, K.; Mishina, Y.; Martin, D.W.; Shoieb, A.; McEntee, M.F.; et al. Nonsteroidal Anti-Inflammatory Drug-Activated Gene-1 over Expression in Transgenic Mice Suppresses Intestinal Neoplasia. Gastroenterology 2006, 131, 1553–1560. [Google Scholar] [CrossRef]
- Johnen, H.; Lin, S.; Kuffner, T.; Brown, D.A.; Tsai, V.W.-W.; Bauskin, A.R.; Wu, L.; Pankhurst, G.; Jiang, L.; Junankar, S.; et al. Tumor-Induced Anorexia and Weight Loss Are Mediated by the TGF-Beta Superfamily Cytokine MIC-1. Nat. Med. 2007, 13, 1333–1340. [Google Scholar] [CrossRef]
- Ost, M.; Igual Gil, C.; Coleman, V.; Keipert, S.; Efstathiou, S.; Vidic, V.; Weyers, M.; Klaus, S. Muscle-Derived GDF15 Drives Diurnal Anorexia and Systemic Metabolic Remodeling during Mitochondrial Stress. EMBO Rep. 2020, 21, e48804. [Google Scholar] [CrossRef]
- Breen, D.M.; Jagarlapudi, S.; Patel, A.; Zou, C.; Joaquim, S.; Li, X.; Kang, L.; Pang, J.; Hales, K.; Ziso-Qejvanaj, E.; et al. Growth Differentiation Factor 15 Neutralization Does Not Impact Anorexia or Survival in Lipopolysaccharide-Induced Inflammation. iScience 2021, 24, 102554. [Google Scholar] [CrossRef]
Variable | n (%) | GDF15 Low | GDF15 High | p-Value |
---|---|---|---|---|
Demographic variables | ||||
Age (years) ≤ 60 | 17 (26.15) | 7 (41.18) | 10 (58.82) | >0.999 |
Age (years) > 60 | 48 (73.85) | 21 (43.75) | 27 (56.25) | >0.999 |
Gender: Male | 55 (84.62) | 22 (40.00) | 33 (60.00) | 0.306 |
Gender: Female | 10 (15.38) | 6 (60.00) | 4 (40.00) | 0.306 |
Tumor characteristics | ||||
Tumor grade G1 | 16 (24.62) | 6 (37.50) | 10 (62.50) | 0.854 |
Tumor grade G2 | 45 (69.23) | 20 (44.44) | 25 (55.56) | 0.854 |
Tumor grade G3 | 4 (6.15) | 2 (50.00) | 2 (50.00) | 0.854 |
pT status T1 | 32 (49.23) | 8 (25.00) | 24 (75.00) | 0.020 |
pT status T2 | 23 (35.39) | 14 (60.87) | 9 (39.13) | 0.020 |
pT status T3–T4 | 10 (15.38) | 6 (60.00) | 4 (40.00) | 0.020 |
pN status N0 | 52 (80.00) | 20 (38.46) | 32 (61.54) | 0.210 |
pN status N1–N2 | 13 (20.00) | 8 (61.54) | 5 (38.46) | 0.210 |
Resection margin: negative | 50 (76.92) | 23 (46.00) | 27 (54.00) | 0.554 |
Resection margin: positive | 15 (23.08) | 5 (33.33) | 10 (66.67) |
Variable | n (%) | GDF15 Low | GDF15 High | p-Value |
---|---|---|---|---|
Demographic variables | ||||
Age < 60 | 40 (34.48) | 33 (82.50) | 7 (17.50) | 0.358 |
Age ≥ 60 | 76 (65.52) | 56 (73.68) | 20 (26.32) | |
Male | 96 (82.76) | 74 (77.08) | 22 (22.92) | 0.780 |
Female | 20 (17.24) | 15 (75.00) | 5 (25.00) | |
Tumor grade | ||||
G1 | 8 (6.90) | 7 (87.50) | 1 (12.50) | 0.111 |
G2 | 71 (61.21) | 50 (70.42) | 21 (29.58) | |
G3–G4 | 33 (28.45) | 29 (87.88) | 4 (12.12) | |
N/A | 4 (3.45) | – | – | |
T status | ||||
T1 | 7 (6.03) | 5 (71.43) | 2 (28.57) | 0.966 |
T2 | 20 (17.24) | 15 (75.00) | 5 (25.00) | |
T3 | 33 (28.45) | 25 (75.76) | 8 (24.24) | |
T4 | 56 (48.28) | 44 (78.57) | 12 (21.43) | |
N status | ||||
N0 | 52 (44.83) | 35 (67.31) | 17 (32.69) | 0.047 |
N1–N2 | 63 (54.31) | 53 (84.13) | 10 (15.87) | |
N/A | 1 (0.86) | – | – | |
TNM stage | ||||
I–II | 15 (12.93) | 10 (66.67) | 5 (33.33) | 0.327 |
III | 19 (16.38) | 13 (68.42) | 6 (31.58) | |
IV | 82 (70.69) | 66 (80.49) | 16 (19.51) | |
Lymphovascular invasion | ||||
No | 42 (36.21) | 33 (78.57) | 9 (21.43) | >0.999 |
Yes | 36 (31.03) | 28 (77.78) | 8 (22.22) | |
N/A | 38 (32.76) | – | – | |
Alcohol consumption | ||||
No | 39 (33.62) | 33 (84.62) | 6 (15.38) | 0.240 |
Yes | 75 (64.66) | 55 (73.33) | 20 (26.67) | |
N/A | 2 (1.72) | – | – |
Variable | n/EPV | Univariable HR | 95% CI | p | Multivariable HR | 95% CI | p |
---|---|---|---|---|---|---|---|
Lower–Upper | Lower–Upper | ||||||
GDF15 (high vs. low) | 37/15–28/7 | 1.81 | 0.74–4.43 | 0.197 | 2.98 | 1.16–7.65 | 0.023 |
TNM stage | |||||||
I (reference) | 30/6 | REF. | – | – | REF. | – | – |
II vs. I | 17/8 | 2.92 | 1.01–8.43 | 0.048 | 4.64 | 1.53–14.13 | 0.007 |
III–IV vs. I | 18/8 | 2.23 | 0.77–6.44 | 0.138 | 3.13 | 1.06–9.27 | 0.040 |
Outcome | Variable | Multivariable HR | 95% CI | p |
---|---|---|---|---|
Overall Survival | ||||
Sex (male vs. female) | 0.30 | 0.15–0.59 | 0.0006 | |
Tumor grade (G2 vs. G1) | 4.83 | 1.14–20.43 | 0.032 | |
G3–G4 vs. G1 | 2.13 | 0.47–9.70 | 0.326 | |
Disease-Free Survival | ||||
N stage (N1–N3 vs. N0) | 2.69 | 1.14–6.35 | 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanowicz, A.; Komisarek, O.; Klimaszewska-Wiśniewska, A.; Antosik, P.; Naglik, K.; Czech, J.; Wrzesiński, W.; Kodzik, M.; Bodnar, M.; Grzanka, D.; et al. Evaluation of GDF15 Significance as a Biomarker in Laryngeal Squamous Cell Carcinoma. J. Clin. Med. 2025, 14, 4870. https://doi.org/10.3390/jcm14144870
Romanowicz A, Komisarek O, Klimaszewska-Wiśniewska A, Antosik P, Naglik K, Czech J, Wrzesiński W, Kodzik M, Bodnar M, Grzanka D, et al. Evaluation of GDF15 Significance as a Biomarker in Laryngeal Squamous Cell Carcinoma. Journal of Clinical Medicine. 2025; 14(14):4870. https://doi.org/10.3390/jcm14144870
Chicago/Turabian StyleRomanowicz, Aleksandra, Oskar Komisarek, Anna Klimaszewska-Wiśniewska, Paulina Antosik, Kacper Naglik, Joanna Czech, Witold Wrzesiński, Marta Kodzik, Magdalena Bodnar, Dariusz Grzanka, and et al. 2025. "Evaluation of GDF15 Significance as a Biomarker in Laryngeal Squamous Cell Carcinoma" Journal of Clinical Medicine 14, no. 14: 4870. https://doi.org/10.3390/jcm14144870
APA StyleRomanowicz, A., Komisarek, O., Klimaszewska-Wiśniewska, A., Antosik, P., Naglik, K., Czech, J., Wrzesiński, W., Kodzik, M., Bodnar, M., Grzanka, D., & Burduk, P. (2025). Evaluation of GDF15 Significance as a Biomarker in Laryngeal Squamous Cell Carcinoma. Journal of Clinical Medicine, 14(14), 4870. https://doi.org/10.3390/jcm14144870